Allow use of AI fields in view calculations.
This commit is contained in:
parent
aec4cc5bfb
commit
b9fb4416bb
|
@ -1 +1 @@
|
|||
Subproject commit 32d84f109d4edc526145472a7446327312151442
|
||||
Subproject commit 45f5b6fe9bbdbdf502581740ab43b82e8153260f
|
|
@ -162,6 +162,12 @@ export async function finaliseRow(
|
|||
dynamic: false,
|
||||
contextRows: [enrichedRow],
|
||||
})
|
||||
|
||||
const flag1 = await features.isEnabled(FeatureFlag.BUDIBASE_AI)
|
||||
const flag2 = await pro.features.isBudibaseAIEnabled()
|
||||
const flag3 = await features.isEnabled(FeatureFlag.AI_CUSTOM_CONFIGS)
|
||||
const flag4 = await pro.features.isAICustomConfigsEnabled()
|
||||
|
||||
const aiEnabled =
|
||||
((await features.isEnabled(FeatureFlag.BUDIBASE_AI)) &&
|
||||
(await pro.features.isBudibaseAIEnabled())) ||
|
||||
|
|
|
@ -8,7 +8,13 @@ import {
|
|||
import tk from "timekeeper"
|
||||
import emitter from "../../../../src/events"
|
||||
import { outputProcessing } from "../../../utilities/rowProcessor"
|
||||
import { context, InternalTable, tenancy, utils } from "@budibase/backend-core"
|
||||
import {
|
||||
context,
|
||||
setEnv,
|
||||
InternalTable,
|
||||
tenancy,
|
||||
utils,
|
||||
} from "@budibase/backend-core"
|
||||
import { quotas } from "@budibase/pro"
|
||||
import {
|
||||
AIOperationEnum,
|
||||
|
@ -42,19 +48,8 @@ import { InternalTables } from "../../../db/utils"
|
|||
import { withEnv } from "../../../environment"
|
||||
import { JsTimeoutError } from "@budibase/string-templates"
|
||||
import { isDate } from "../../../utilities"
|
||||
|
||||
jest.mock("@budibase/pro", () => ({
|
||||
...jest.requireActual("@budibase/pro"),
|
||||
ai: {
|
||||
LargeLanguageModel: {
|
||||
forCurrentTenant: async () => ({
|
||||
llm: {},
|
||||
run: jest.fn(() => `Mock LLM Response`),
|
||||
buildPromptFromAIOperation: jest.fn(),
|
||||
}),
|
||||
},
|
||||
},
|
||||
}))
|
||||
import nock from "nock"
|
||||
import { mockChatGPTResponse } from "../../../tests/utilities/mocks/openai"
|
||||
|
||||
const timestamp = new Date("2023-01-26T11:48:57.597Z").toISOString()
|
||||
tk.freeze(timestamp)
|
||||
|
@ -99,6 +94,8 @@ if (descriptions.length) {
|
|||
const ds = await dsProvider()
|
||||
datasource = ds.datasource
|
||||
client = ds.client
|
||||
|
||||
mocks.licenses.useCloudFree()
|
||||
})
|
||||
|
||||
afterAll(async () => {
|
||||
|
@ -172,10 +169,6 @@ if (descriptions.length) {
|
|||
)
|
||||
}
|
||||
|
||||
beforeEach(async () => {
|
||||
mocks.licenses.useCloudFree()
|
||||
})
|
||||
|
||||
const getRowUsage = async () => {
|
||||
const { total } = await config.doInContext(undefined, () =>
|
||||
quotas.getCurrentUsageValues(
|
||||
|
@ -3224,10 +3217,17 @@ if (descriptions.length) {
|
|||
isInternal &&
|
||||
describe("AI fields", () => {
|
||||
let table: Table
|
||||
let envCleanup: () => void
|
||||
|
||||
beforeAll(async () => {
|
||||
mocks.licenses.useBudibaseAI()
|
||||
mocks.licenses.useAICustomConfigs()
|
||||
envCleanup = setEnv({
|
||||
OPENAI_API_KEY: "sk-abcdefghijklmnopqrstuvwxyz1234567890abcd",
|
||||
})
|
||||
|
||||
mockChatGPTResponse("Mock LLM Response")
|
||||
|
||||
table = await config.api.table.save(
|
||||
saveTableRequest({
|
||||
schema: {
|
||||
|
@ -3251,7 +3251,9 @@ if (descriptions.length) {
|
|||
})
|
||||
|
||||
afterAll(() => {
|
||||
jest.unmock("@budibase/pro")
|
||||
nock.cleanAll()
|
||||
envCleanup()
|
||||
mocks.licenses.useCloudFree()
|
||||
})
|
||||
|
||||
it("should be able to save a row with an AI column", async () => {
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import {
|
||||
AIOperationEnum,
|
||||
ArrayOperator,
|
||||
BasicOperator,
|
||||
BBReferenceFieldSubType,
|
||||
|
@ -42,7 +43,9 @@ import {
|
|||
} from "../../../integrations/tests/utils"
|
||||
import merge from "lodash/merge"
|
||||
import { quotas } from "@budibase/pro"
|
||||
import { context, db, events, roles } from "@budibase/backend-core"
|
||||
import { context, db, events, roles, setEnv } from "@budibase/backend-core"
|
||||
import { mockChatGPTResponse } from "../../../tests/utilities/mocks/openai"
|
||||
import nock from "nock"
|
||||
|
||||
const descriptions = datasourceDescribe({ exclude: [DatabaseName.MONGODB] })
|
||||
|
||||
|
@ -100,6 +103,7 @@ if (descriptions.length) {
|
|||
|
||||
beforeAll(async () => {
|
||||
await config.init()
|
||||
mocks.licenses.useCloudFree()
|
||||
|
||||
const ds = await dsProvider()
|
||||
rawDatasource = ds.rawDatasource
|
||||
|
@ -109,7 +113,6 @@ if (descriptions.length) {
|
|||
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks()
|
||||
mocks.licenses.useCloudFree()
|
||||
})
|
||||
|
||||
describe("view crud", () => {
|
||||
|
@ -507,7 +510,6 @@ if (descriptions.length) {
|
|||
})
|
||||
|
||||
it("readonly fields can be used on free license", async () => {
|
||||
mocks.licenses.useCloudFree()
|
||||
const table = await config.api.table.save(
|
||||
saveTableRequest({
|
||||
schema: {
|
||||
|
@ -933,6 +935,94 @@ if (descriptions.length) {
|
|||
}
|
||||
)
|
||||
})
|
||||
|
||||
describe("AI fields", () => {
|
||||
let envCleanup: () => void
|
||||
beforeAll(() => {
|
||||
mocks.licenses.useBudibaseAI()
|
||||
mocks.licenses.useAICustomConfigs()
|
||||
envCleanup = setEnv({
|
||||
OPENAI_API_KEY: "sk-abcdefghijklmnopqrstuvwxyz1234567890abcd",
|
||||
})
|
||||
|
||||
mockChatGPTResponse(prompt => {
|
||||
if (prompt.includes("elephant")) {
|
||||
return "big"
|
||||
}
|
||||
if (prompt.includes("mouse")) {
|
||||
return "small"
|
||||
}
|
||||
if (prompt.includes("whale")) {
|
||||
return "big"
|
||||
}
|
||||
return "unknown"
|
||||
})
|
||||
})
|
||||
|
||||
afterAll(() => {
|
||||
nock.cleanAll()
|
||||
envCleanup()
|
||||
mocks.licenses.useCloudFree()
|
||||
})
|
||||
|
||||
it("can use AI fields in view calculations", async () => {
|
||||
const table = await config.api.table.save(
|
||||
saveTableRequest({
|
||||
schema: {
|
||||
animal: {
|
||||
name: "animal",
|
||||
type: FieldType.STRING,
|
||||
},
|
||||
bigOrSmall: {
|
||||
name: "bigOrSmall",
|
||||
type: FieldType.AI,
|
||||
operation: AIOperationEnum.CATEGORISE_TEXT,
|
||||
categories: "big,small",
|
||||
columns: ["animal"],
|
||||
},
|
||||
},
|
||||
})
|
||||
)
|
||||
|
||||
const view = await config.api.viewV2.create({
|
||||
tableId: table._id!,
|
||||
name: generator.guid(),
|
||||
type: ViewV2Type.CALCULATION,
|
||||
schema: {
|
||||
bigOrSmall: {
|
||||
visible: true,
|
||||
},
|
||||
count: {
|
||||
visible: true,
|
||||
calculationType: CalculationType.COUNT,
|
||||
field: "animal",
|
||||
},
|
||||
},
|
||||
})
|
||||
|
||||
await config.api.row.save(table._id!, {
|
||||
animal: "elephant",
|
||||
})
|
||||
|
||||
await config.api.row.save(table._id!, {
|
||||
animal: "mouse",
|
||||
})
|
||||
|
||||
await config.api.row.save(table._id!, {
|
||||
animal: "whale",
|
||||
})
|
||||
|
||||
const { rows } = await config.api.row.search(view.id, {
|
||||
sort: "bigOrSmall",
|
||||
sortOrder: SortOrder.ASCENDING,
|
||||
})
|
||||
expect(rows).toHaveLength(2)
|
||||
expect(rows[0].bigOrSmall).toEqual("big")
|
||||
expect(rows[1].bigOrSmall).toEqual("small")
|
||||
expect(rows[0].count).toEqual(2)
|
||||
expect(rows[1].count).toEqual(1)
|
||||
})
|
||||
})
|
||||
})
|
||||
|
||||
describe("update", () => {
|
||||
|
@ -1836,7 +1926,6 @@ if (descriptions.length) {
|
|||
},
|
||||
})
|
||||
|
||||
mocks.licenses.useCloudFree()
|
||||
const view = await getDelegate(res)
|
||||
expect(view.schema?.one).toEqual(
|
||||
expect.objectContaining({ visible: true, readonly: true })
|
||||
|
|
|
@ -0,0 +1,46 @@
|
|||
import nock from "nock"
|
||||
|
||||
let chatID = 1
|
||||
|
||||
export function mockChatGPTResponse(
|
||||
response: string | ((prompt: string) => string)
|
||||
) {
|
||||
return nock("https://api.openai.com")
|
||||
.post("/v1/chat/completions")
|
||||
.reply(200, (uri, requestBody) => {
|
||||
let content = response
|
||||
if (typeof response === "function") {
|
||||
const messages = (requestBody as any).messages
|
||||
content = response(messages[0].content)
|
||||
}
|
||||
|
||||
chatID++
|
||||
|
||||
return {
|
||||
id: `chatcmpl-${chatID}`,
|
||||
object: "chat.completion",
|
||||
created: Math.floor(Date.now() / 1000),
|
||||
model: "gpt-4o-mini",
|
||||
system_fingerprint: `fp_${chatID}`,
|
||||
choices: [
|
||||
{
|
||||
index: 0,
|
||||
message: { role: "assistant", content },
|
||||
logprobs: null,
|
||||
finish_reason: "stop",
|
||||
},
|
||||
],
|
||||
usage: {
|
||||
prompt_tokens: 0,
|
||||
completion_tokens: 0,
|
||||
total_tokens: 0,
|
||||
completion_tokens_details: {
|
||||
reasoning_tokens: 0,
|
||||
accepted_prediction_tokens: 0,
|
||||
rejected_prediction_tokens: 0,
|
||||
},
|
||||
},
|
||||
}
|
||||
})
|
||||
.persist()
|
||||
}
|
|
@ -160,7 +160,7 @@ export async function processAIColumns<T extends Row | Row[]>(
|
|||
|
||||
return tracer.trace("processAIColumn", {}, async span => {
|
||||
span?.addTags({ table_id: table._id, column })
|
||||
const llmResponse = await llmWrapper.run(prompt!)
|
||||
const llmResponse = await llmWrapper.run(prompt)
|
||||
return {
|
||||
...row,
|
||||
[column]: llmResponse,
|
||||
|
|
|
@ -154,6 +154,7 @@ export const GroupByTypes = [
|
|||
FieldType.BOOLEAN,
|
||||
FieldType.DATETIME,
|
||||
FieldType.BIGINT,
|
||||
FieldType.AI,
|
||||
]
|
||||
|
||||
export function canGroupBy(type: FieldType) {
|
||||
|
|
|
@ -123,7 +123,7 @@ export interface AIFieldMetadata extends BaseFieldSchema {
|
|||
operation: AIOperationEnum
|
||||
columns?: string[]
|
||||
column?: string
|
||||
categories?: string[]
|
||||
categories?: string
|
||||
prompt?: string
|
||||
language?: string
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue