budibase/packages/frontend-core/src/utils/json.js

122 lines
3.8 KiB
JavaScript

/**
* Gets the schema for a datasource which is targeting a JSON array, including
* nested JSON arrays. The returned schema is a squashed, table-like schema
* which is fully compatible with the rest of the platform.
* @param tableSchema the full schema for the table this JSON field is in
* @param datasource the datasource configuration
*/
export const getJSONArrayDatasourceSchema = (tableSchema, datasource) => {
let jsonSchema = tableSchema
let keysToSchema = []
// If we are already deep inside a JSON field then we need to account
// for the keys that brought us here, so we can get the schema for the
// depth we're actually at
if (datasource.prefixKeys) {
keysToSchema = datasource.prefixKeys.concat(["schema"])
}
// We parse the label of the datasource to work out where we are inside
// the structure. We can use this to know which part of the schema
// is available underneath our current position.
keysToSchema = keysToSchema.concat(datasource.label.split(".").slice(2))
// Follow the JSON key path until we reach the schema for the level
// we are at
for (let i = 0; i < keysToSchema.length; i++) {
jsonSchema = jsonSchema?.[keysToSchema[i]]
if (jsonSchema?.schema) {
jsonSchema = jsonSchema.schema
}
}
// We need to convert the JSON schema into a more typical looking table
// schema so that it works with the rest of the platform
return convertJSONSchemaToTableSchema(jsonSchema, {
squashObjects: true,
prefixKeys: keysToSchema,
})
}
/**
* Converts a JSON field schema (or sub-schema of a nested field) into a schema
* that looks like a typical table schema.
* @param jsonSchema the JSON field schema or sub-schema
* @param options
*/
export const convertJSONSchemaToTableSchema = (jsonSchema, options) => {
if (!jsonSchema) {
return null
}
// Add default options
options = { squashObjects: false, prefixKeys: null, ...options }
// Immediately strip the wrapper schema for objects, or wrap shallow values in
// a fake "value" schema
if (jsonSchema.schema) {
jsonSchema = jsonSchema.schema
} else {
jsonSchema = {
value: jsonSchema,
}
}
// Extract all deep keys from the schema
const keys = extractJSONSchemaKeys(jsonSchema, options.squashObjects)
// Form a full schema from all the deep schema keys
let schema = {}
keys.forEach(({ key, type }) => {
schema[key] = { type, name: key, prefixKeys: options.prefixKeys }
})
return schema
}
/**
* Recursively builds paths to all leaf fields in a JSON field schema structure,
* stopping when leaf nodes or arrays are reached.
* @param jsonSchema the JSON field schema or sub-schema
* @param squashObjects whether to recurse into objects or not
*/
const extractJSONSchemaKeys = (jsonSchema, squashObjects = false) => {
if (!jsonSchema || !Object.keys(jsonSchema).length) {
return []
}
// Iterate through every schema key
let keys = []
Object.keys(jsonSchema).forEach(key => {
const type = jsonSchema[key].type
// If we encounter an object, then only go deeper if we want to squash
// object paths
if (type === "json" && squashObjects) {
// Find all keys within this objects schema
const childKeys = extractJSONSchemaKeys(
jsonSchema[key].schema,
squashObjects
)
// Append child paths onto the current path to build the full path
keys = keys.concat(
childKeys.map(childKey => ({
key: `${key}.${childKey.key}`,
type: childKey.type,
}))
)
}
// Otherwise add this as a lead node.
// We transform array types from "array" into "jsonarray" here to avoid
// confusion with the existing "array" type that represents a multi-select.
else {
keys.push({
key,
type: type === "array" ? "jsonarray" : type,
})
}
})
return keys
}