nodemcu-firmware/app/platform/platform.c

819 lines
21 KiB
C
Raw Normal View History

// Platform-dependent functions and includes
#include "platform.h"
2016-01-22 22:34:31 +01:00
#include "common.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "llimits.h"
#include "gpio.h"
#include "user_interface.h"
2016-01-22 22:34:31 +01:00
#include "driver/gpio16.h"
#include "driver/i2c_master.h"
#include "driver/spi.h"
#include "driver/uart.h"
2016-01-31 21:48:59 +01:00
#include "driver/sigma_delta.h"
#ifdef GPIO_INTERRUPT_ENABLE
static task_handle_t gpio_task_handle;
#ifdef GPIO_INTERRUPT_HOOK_ENABLE
struct gpio_hook_entry {
platform_hook_function func;
uint32_t bits;
};
struct gpio_hook {
struct gpio_hook_entry *entry;
uint32_t all_bits;
uint32_t count;
};
static struct gpio_hook platform_gpio_hook;
#endif
#endif
int platform_init()
{
// Setup the various forward and reverse mappings for the pins
get_pin_map();
cmn_platform_init();
// All done
return PLATFORM_OK;
}
// ****************************************************************************
// KEY_LED functions
uint8_t platform_key_led( uint8_t level){
uint8_t temp;
gpio16_output_set(1); // set to high first, for reading key low level
gpio16_input_conf();
temp = gpio16_input_get();
gpio16_output_conf();
gpio16_output_set(level);
return temp;
}
// ****************************************************************************
// GPIO functions
/*
* Set GPIO mode to output. Optionally in RAM helper because interrupts are dsabled
*/
static void NO_INTR_CODE set_gpio_no_interrupt(uint8 pin, uint8_t push_pull) {
unsigned pnum = pin_num[pin];
ETS_GPIO_INTR_DISABLE();
#ifdef GPIO_INTERRUPT_ENABLE
pin_int_type[pin] = GPIO_PIN_INTR_DISABLE;
#endif
PIN_FUNC_SELECT(pin_mux[pin], pin_func[pin]);
//disable interrupt
gpio_pin_intr_state_set(GPIO_ID_PIN(pnum), GPIO_PIN_INTR_DISABLE);
//clear interrupt status
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, BIT(pnum));
// configure push-pull vs open-drain
if (push_pull) {
GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum)),
GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum))) &
(~ GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_ENABLE))); //disable open drain;
} else {
GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum)),
GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum))) |
GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_ENABLE)); //enable open drain;
}
ETS_GPIO_INTR_ENABLE();
}
/*
* Set GPIO mode to interrupt. Optionally RAM helper because interrupts are dsabled
*/
#ifdef GPIO_INTERRUPT_ENABLE
static void NO_INTR_CODE set_gpio_interrupt(uint8 pin) {
ETS_GPIO_INTR_DISABLE();
PIN_FUNC_SELECT(pin_mux[pin], pin_func[pin]);
GPIO_DIS_OUTPUT(pin_num[pin]);
gpio_register_set(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin])),
GPIO_PIN_INT_TYPE_SET(GPIO_PIN_INTR_DISABLE)
| GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_DISABLE)
| GPIO_PIN_SOURCE_SET(GPIO_AS_PIN_SOURCE));
ETS_GPIO_INTR_ENABLE();
}
#endif
int platform_gpio_mode( unsigned pin, unsigned mode, unsigned pull )
{
NODE_DBG("Function platform_gpio_mode() is called. pin_mux:%d, func:%d\n", pin_mux[pin], pin_func[pin]);
if (pin >= NUM_GPIO)
return -1;
if(pin == 0){
if(mode==PLATFORM_GPIO_INPUT)
gpio16_input_conf();
else
gpio16_output_conf();
return 1;
}
#ifdef LUA_USE_MODULES_PWM
platform_pwm_close(pin); // closed from pwm module, if it is used in pwm
#endif
if (pull == PLATFORM_GPIO_PULLUP) {
PIN_PULLUP_EN(pin_mux[pin]);
} else {
PIN_PULLUP_DIS(pin_mux[pin]);
}
switch(mode){
case PLATFORM_GPIO_INPUT:
GPIO_DIS_OUTPUT(pin_num[pin]);
/* run on */
case PLATFORM_GPIO_OUTPUT:
set_gpio_no_interrupt(pin, TRUE);
break;
case PLATFORM_GPIO_OPENDRAIN:
set_gpio_no_interrupt(pin, FALSE);
break;
#ifdef GPIO_INTERRUPT_ENABLE
case PLATFORM_GPIO_INT:
set_gpio_interrupt(pin);
break;
#endif
default:
break;
}
return 1;
}
int platform_gpio_write( unsigned pin, unsigned level )
{
// NODE_DBG("Function platform_gpio_write() is called. pin:%d, level:%d\n",GPIO_ID_PIN(pin_num[pin]),level);
if (pin >= NUM_GPIO)
return -1;
if(pin == 0){
gpio16_output_conf();
gpio16_output_set(level);
return 1;
}
GPIO_OUTPUT_SET(GPIO_ID_PIN(pin_num[pin]), level);
}
int platform_gpio_read( unsigned pin )
{
// NODE_DBG("Function platform_gpio_read() is called. pin:%d\n",GPIO_ID_PIN(pin_num[pin]));
if (pin >= NUM_GPIO)
return -1;
if(pin == 0){
2015-01-18 04:46:15 +01:00
// gpio16_input_conf();
return 0x1 & gpio16_input_get();
}
2015-01-18 04:46:15 +01:00
// GPIO_DIS_OUTPUT(pin_num[pin]);
return 0x1 & GPIO_INPUT_GET(GPIO_ID_PIN(pin_num[pin]));
}
#ifdef GPIO_INTERRUPT_ENABLE
static void ICACHE_RAM_ATTR platform_gpio_intr_dispatcher (void *dummy){
uint32 j=0;
uint32 gpio_status = GPIO_REG_READ(GPIO_STATUS_ADDRESS);
UNUSED(dummy);
#ifdef GPIO_INTERRUPT_HOOK_ENABLE
if (gpio_status & platform_gpio_hook.all_bits) {
for (j = 0; j < platform_gpio_hook.count; j++) {
if (gpio_status & platform_gpio_hook.entry[j].bits)
gpio_status = (platform_gpio_hook.entry[j].func)(gpio_status);
}
}
#endif
/*
* gpio_status is a bit map where bit 0 is set if unmapped gpio pin 0 (pin3) has
* triggered the ISR. bit 1 if unmapped gpio pin 1 (pin10=U0TXD), etc. Since this
* is the ISR, it makes sense to optimize this by doing a fast scan of the status
* and reverse mapping any set bits.
*/
for (j = 0; gpio_status>0; j++, gpio_status >>= 1) {
if (gpio_status&1) {
int i = pin_num_inv[j];
if (pin_int_type[i]) {
//disable interrupt
gpio_pin_intr_state_set(GPIO_ID_PIN(j), GPIO_PIN_INTR_DISABLE);
//clear interrupt status
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, BIT(j));
uint32 level = 0x1 & GPIO_INPUT_GET(GPIO_ID_PIN(j));
task_post_high (gpio_task_handle, (i<<1) + level);
// We re-enable the interrupt when we execute the callback
}
}
}
}
void platform_gpio_init( task_handle_t gpio_task )
{
gpio_task_handle = gpio_task;
ETS_GPIO_INTR_ATTACH(platform_gpio_intr_dispatcher, NULL);
}
#ifdef GPIO_INTERRUPT_HOOK_ENABLE
/*
* Register an ISR hook to be called from the GPIO ISR for a given GPIO bitmask.
* This routine is only called a few times so has been optimised for size and
* the unregister is a special case when the bits are 0.
*
* Each hook function can only be registered once. If it is re-registered
* then the hooked bits are just updated to the new value.
*/
int platform_gpio_register_intr_hook(uint32_t bits, platform_hook_function hook)
{
struct gpio_hook nh, oh = platform_gpio_hook;
int i, j;
if (!hook) {
// Cannot register or unregister null hook
return 0;
}
int delete_slot = -1;
// If hook already registered, just update the bits
for (i=0; i<oh.count; i++) {
if (hook == oh.entry[i].func) {
if (!bits) {
// Unregister if move to zero bits
delete_slot = i;
break;
}
if (bits & (oh.all_bits & ~oh.entry[i].bits)) {
// Attempt to hook an already hooked bit
return 0;
}
// Update the hooked bits (in the right order)
uint32_t old_bits = oh.entry[i].bits;
*(volatile uint32_t *) &oh.entry[i].bits = bits;
*(volatile uint32_t *) &oh.all_bits = (oh.all_bits & ~old_bits) | bits;
return 1;
}
}
// This must be the register new hook / delete old hook
if (delete_slot < 0) {
if (bits & oh.all_bits) {
return 0; // Attempt to hook already hooked bits
}
nh.count = oh.count + 1; // register a new hook
} else {
nh.count = oh.count - 1; // unregister an old hook
}
// These return NULL if the count = 0 so only error check if > 0)
nh.entry = malloc( nh.count * sizeof(*(nh.entry)) );
if (nh.count && !(nh.entry)) {
return 0; // Allocation failure
}
for (i=0, j=0; i<oh.count; i++) {
// Don't copy if this is the entry to delete
if (i != delete_slot) {
nh.entry[j++] = oh.entry[i];
}
}
if (delete_slot < 0) { // for a register add the hook to the tail and set the all bits
nh.entry[j].bits = bits;
nh.entry[j].func = hook;
nh.all_bits = oh.all_bits | bits;
} else { // for an unregister clear the matching all bits
nh.all_bits = oh.all_bits & (~oh.entry[delete_slot].bits);
}
ETS_GPIO_INTR_DISABLE();
// This is a structure copy, so interrupts need to be disabled
platform_gpio_hook = nh;
ETS_GPIO_INTR_ENABLE();
free(oh.entry);
return 1;
}
#endif // GPIO_INTERRUPT_HOOK_ENABLE
/*
* Initialise GPIO interrupt mode. Optionally in RAM because interrupts are dsabled
*/
void NO_INTR_CODE platform_gpio_intr_init( unsigned pin, GPIO_INT_TYPE type )
{
if (platform_gpio_exists(pin)) {
ETS_GPIO_INTR_DISABLE();
//clear interrupt status
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, BIT(pin_num[pin]));
pin_int_type[pin] = type;
//enable interrupt
gpio_pin_intr_state_set(GPIO_ID_PIN(pin_num[pin]), type);
ETS_GPIO_INTR_ENABLE();
}
}
#endif
// ****************************************************************************
// UART
// TODO: Support timeouts.
// UartDev is defined and initialized in rom code.
extern UartDevice UartDev;
uint32_t platform_uart_setup( unsigned id, uint32_t baud, int databits, int parity, int stopbits )
{
switch( baud )
{
2015-02-11 15:50:26 +01:00
case BIT_RATE_300:
case BIT_RATE_600:
case BIT_RATE_1200:
case BIT_RATE_2400:
case BIT_RATE_4800:
case BIT_RATE_9600:
case BIT_RATE_19200:
case BIT_RATE_38400:
case BIT_RATE_57600:
case BIT_RATE_74880:
case BIT_RATE_115200:
case BIT_RATE_230400:
case BIT_RATE_256000:
case BIT_RATE_460800:
case BIT_RATE_921600:
2015-02-11 15:50:26 +01:00
case BIT_RATE_1843200:
case BIT_RATE_3686400:
UartDev.baut_rate = baud;
break;
default:
UartDev.baut_rate = BIT_RATE_9600;
break;
}
switch( databits )
{
case 5:
UartDev.data_bits = FIVE_BITS;
break;
case 6:
UartDev.data_bits = SIX_BITS;
break;
case 7:
UartDev.data_bits = SEVEN_BITS;
break;
case 8:
UartDev.data_bits = EIGHT_BITS;
break;
default:
UartDev.data_bits = EIGHT_BITS;
break;
}
switch (stopbits)
{
case PLATFORM_UART_STOPBITS_1_5:
UartDev.stop_bits = ONE_HALF_STOP_BIT;
break;
case PLATFORM_UART_STOPBITS_2:
UartDev.stop_bits = TWO_STOP_BIT;
break;
default:
UartDev.stop_bits = ONE_STOP_BIT;
break;
}
switch (parity)
{
case PLATFORM_UART_PARITY_EVEN:
UartDev.parity = EVEN_BITS;
UartDev.exist_parity = STICK_PARITY_EN;
break;
case PLATFORM_UART_PARITY_ODD:
UartDev.parity = ODD_BITS;
UartDev.exist_parity = STICK_PARITY_EN;
break;
default:
UartDev.parity = NONE_BITS;
UartDev.exist_parity = STICK_PARITY_DIS;
break;
}
uart_setup(id);
return baud;
}
// if set=1, then alternate serial output pins are used. (15=rx, 13=tx)
void platform_uart_alt( int set )
{
uart0_alt( set );
return;
}
// Send: version with and without mux
void platform_uart_send( unsigned id, u8 data )
{
uart_tx_one_char(id, data);
}
// ****************************************************************************
// PWMs
static uint16_t pwms_duty[NUM_PWM] = {0};
void platform_pwm_init()
{
int i;
for(i=0;i<NUM_PWM;i++){
pwms_duty[i] = DUTY(0);
}
pwm_init(500, NULL);
// NODE_DBG("Function pwms_init() is called.\n");
}
// Return the PWM clock
// NOTE: Can't find a function to query for the period set for the timer,
// therefore using the struct.
// This may require adjustment if driver libraries are updated.
uint32_t platform_pwm_get_clock( unsigned pin )
{
// NODE_DBG("Function platform_pwm_get_clock() is called.\n");
if( pin >= NUM_PWM)
return 0;
if(!pwm_exist(pin))
return 0;
return (uint32_t)pwm_get_freq(pin);
}
// Set the PWM clock
uint32_t platform_pwm_set_clock( unsigned pin, uint32_t clock )
{
// NODE_DBG("Function platform_pwm_set_clock() is called.\n");
if( pin >= NUM_PWM)
return 0;
if(!pwm_exist(pin))
return 0;
pwm_set_freq((uint16_t)clock, pin);
pwm_start();
return (uint32_t)pwm_get_freq( pin );
}
uint32_t platform_pwm_get_duty( unsigned pin )
{
// NODE_DBG("Function platform_pwm_get_duty() is called.\n");
if( pin < NUM_PWM){
if(!pwm_exist(pin))
return 0;
// return NORMAL_DUTY(pwm_get_duty(pin));
return pwms_duty[pin];
}
return 0;
}
// Set the PWM duty
uint32_t platform_pwm_set_duty( unsigned pin, uint32_t duty )
{
// NODE_DBG("Function platform_pwm_set_duty() is called.\n");
if ( pin < NUM_PWM)
{
if(!pwm_exist(pin))
return 0;
pwm_set_duty(DUTY(duty), pin);
} else {
return 0;
}
pwm_start();
pwms_duty[pin] = NORMAL_DUTY(pwm_get_duty(pin));
return pwms_duty[pin];
}
uint32_t platform_pwm_setup( unsigned pin, uint32_t frequency, unsigned duty )
{
uint32_t clock;
if ( pin < NUM_PWM)
{
platform_gpio_mode(pin, PLATFORM_GPIO_OUTPUT, PLATFORM_GPIO_FLOAT); // disable gpio interrupt first
if(!pwm_add(pin))
return 0;
// pwm_set_duty(DUTY(duty), pin);
pwm_set_duty(0, pin);
pwms_duty[pin] = duty;
pwm_set_freq((uint16_t)frequency, pin);
} else {
return 0;
}
clock = platform_pwm_get_clock( pin );
if (!pwm_start()) {
return 0;
}
return clock;
}
void platform_pwm_close( unsigned pin )
{
// NODE_DBG("Function platform_pwm_stop() is called.\n");
if ( pin < NUM_PWM)
{
pwm_delete(pin);
pwm_start();
}
}
bool platform_pwm_start( unsigned pin )
{
// NODE_DBG("Function platform_pwm_start() is called.\n");
if ( pin < NUM_PWM)
{
if(!pwm_exist(pin))
return FALSE;
pwm_set_duty(DUTY(pwms_duty[pin]), pin);
return pwm_start();
}
return FALSE;
}
void platform_pwm_stop( unsigned pin )
{
// NODE_DBG("Function platform_pwm_stop() is called.\n");
if ( pin < NUM_PWM)
{
if(!pwm_exist(pin))
return;
pwm_set_duty(0, pin);
pwm_start();
}
}
2016-01-31 21:48:59 +01:00
// *****************************************************************************
// Sigma-Delta platform interface
uint8_t platform_sigma_delta_setup( uint8_t pin )
{
if (pin < 1 || pin > NUM_GPIO)
return 0;
sigma_delta_setup();
// set GPIO output mode for this pin
platform_gpio_mode( pin, PLATFORM_GPIO_OUTPUT, PLATFORM_GPIO_FLOAT );
platform_gpio_write( pin, PLATFORM_GPIO_LOW );
// enable sigma-delta on this pin
GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin])),
(GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin]))) &(~GPIO_PIN_SOURCE_MASK)) |
GPIO_PIN_SOURCE_SET( SIGMA_AS_PIN_SOURCE ));
return 1;
}
uint8_t platform_sigma_delta_close( uint8_t pin )
{
if (pin < 1 || pin > NUM_GPIO)
return 0;
sigma_delta_stop();
// set GPIO input mode for this pin
platform_gpio_mode( pin, PLATFORM_GPIO_INPUT, PLATFORM_GPIO_PULLUP );
// CONNECT GPIO TO PIN PAD
GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin])),
(GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin]))) &(~GPIO_PIN_SOURCE_MASK)) |
GPIO_PIN_SOURCE_SET( GPIO_AS_PIN_SOURCE ));
return 1;
}
void platform_sigma_delta_set_pwmduty( uint8_t duty )
{
uint8_t target = 0, prescale = 0;
target = duty > 128 ? 256 - duty : duty;
prescale = target == 0 ? 0 : target-1;
//freq = 80000 (khz) /256 /duty_target * (prescale+1)
sigma_delta_set_prescale_target( prescale, duty );
}
void platform_sigma_delta_set_prescale( uint8_t prescale )
{
sigma_delta_set_prescale_target( prescale, -1 );
}
void platform_sigma_delta_set_target( uint8_t target )
{
sigma_delta_set_prescale_target( -1, target );
}
// *****************************************************************************
// I2C platform interface
uint32_t platform_i2c_setup( unsigned id, uint8_t sda, uint8_t scl, uint32_t speed ){
if (sda >= NUM_GPIO || scl >= NUM_GPIO)
return 0;
// platform_pwm_close(sda);
// platform_pwm_close(scl);
// disable gpio interrupt first
platform_gpio_mode(sda, PLATFORM_GPIO_INPUT, PLATFORM_GPIO_PULLUP); // inside this func call platform_pwm_close
platform_gpio_mode(scl, PLATFORM_GPIO_INPUT, PLATFORM_GPIO_PULLUP); // disable gpio interrupt first
i2c_master_gpio_init(sda, scl);
return PLATFORM_I2C_SPEED_SLOW;
}
void platform_i2c_send_start( unsigned id ){
i2c_master_start();
}
void platform_i2c_send_stop( unsigned id ){
i2c_master_stop();
}
int platform_i2c_send_address( unsigned id, uint16_t address, int direction ){
// Convert enum codes to R/w bit value.
// If TX == 0 and RX == 1, this test will be removed by the compiler
if ( ! ( PLATFORM_I2C_DIRECTION_TRANSMITTER == 0 &&
PLATFORM_I2C_DIRECTION_RECEIVER == 1 ) ) {
direction = ( direction == PLATFORM_I2C_DIRECTION_TRANSMITTER ) ? 0 : 1;
}
i2c_master_writeByte( (uint8_t) ((address << 1) | direction ));
// Low-level returns nack (0=acked); we return ack (1=acked).
return ! i2c_master_getAck();
}
int platform_i2c_send_byte( unsigned id, uint8_t data ){
i2c_master_writeByte(data);
// Low-level returns nack (0=acked); we return ack (1=acked).
return ! i2c_master_getAck();
}
int platform_i2c_recv_byte( unsigned id, int ack ){
uint8_t r = i2c_master_readByte();
i2c_master_setAck( !ack );
return r;
}
// *****************************************************************************
// SPI platform interface
uint32_t platform_spi_setup( uint8_t id, int mode, unsigned cpol, unsigned cpha, uint32_t clock_div)
{
spi_master_init( id, cpol, cpha, clock_div );
return 1;
}
int platform_spi_send( uint8_t id, uint8_t bitlen, spi_data_type data )
{
if (bitlen > 32)
return PLATFORM_ERR;
spi_mast_transaction( id, 0, 0, bitlen, data, 0, 0, 0 );
return PLATFORM_OK;
}
spi_data_type platform_spi_send_recv( uint8_t id, uint8_t bitlen, spi_data_type data )
{
if (bitlen > 32)
return 0;
spi_mast_set_mosi( id, 0, bitlen, data );
spi_mast_transaction( id, 0, 0, 0, 0, bitlen, 0, -1 );
return spi_mast_get_miso( id, 0, bitlen );
}
int platform_spi_set_mosi( uint8_t id, uint16_t offset, uint8_t bitlen, spi_data_type data )
2015-10-08 23:13:31 +02:00
{
if (offset + bitlen > 512)
return PLATFORM_ERR;
spi_mast_set_mosi( id, offset, bitlen, data );
return PLATFORM_OK;
}
spi_data_type platform_spi_get_miso( uint8_t id, uint16_t offset, uint8_t bitlen )
2015-10-10 22:34:36 +02:00
{
if (offset + bitlen > 512)
return 0;
return spi_mast_get_miso( id, offset, bitlen );
}
2015-10-08 23:13:31 +02:00
int platform_spi_transaction( uint8_t id, uint8_t cmd_bitlen, spi_data_type cmd_data,
uint8_t addr_bitlen, spi_data_type addr_data,
uint16_t mosi_bitlen, uint8_t dummy_bitlen, int16_t miso_bitlen )
2015-10-08 23:13:31 +02:00
{
if ((cmd_bitlen > 16) ||
(addr_bitlen > 32) ||
(mosi_bitlen > 512) ||
(dummy_bitlen > 256) ||
(miso_bitlen > 512))
return PLATFORM_ERR;
spi_mast_transaction( id, cmd_bitlen, cmd_data, addr_bitlen, addr_data, mosi_bitlen, dummy_bitlen, miso_bitlen );
return PLATFORM_OK;
}
// ****************************************************************************
// Flash access functions
/*
* Assumptions:
* > toaddr is INTERNAL_FLASH_WRITE_UNIT_SIZE aligned
* > size is a multiple of INTERNAL_FLASH_WRITE_UNIT_SIZE
*/
uint32_t platform_s_flash_write( const void *from, uint32_t toaddr, uint32_t size )
{
SpiFlashOpResult r;
const uint32_t blkmask = INTERNAL_FLASH_WRITE_UNIT_SIZE - 1;
uint32_t *apbuf = NULL;
uint32_t fromaddr = (uint32_t)from;
if( (fromaddr & blkmask ) || (fromaddr >= INTERNAL_FLASH_MAPPED_ADDRESS)) {
apbuf = (uint32_t *)malloc(size);
if(!apbuf)
return 0;
memcpy(apbuf, from, size);
}
system_soft_wdt_feed ();
r = flash_write(toaddr, apbuf?(uint32 *)apbuf:(uint32 *)from, size);
if(apbuf)
free(apbuf);
if(SPI_FLASH_RESULT_OK == r)
return size;
else{
NODE_ERR( "ERROR in flash_write: r=%d at %08X\n", ( int )r, ( unsigned )toaddr);
return 0;
}
}
/*
* Assumptions:
* > fromaddr is INTERNAL_FLASH_READ_UNIT_SIZE aligned
* > size is a multiple of INTERNAL_FLASH_READ_UNIT_SIZE
*/
uint32_t platform_s_flash_read( void *to, uint32_t fromaddr, uint32_t size )
{
if (size==0)
return 0;
SpiFlashOpResult r;
system_soft_wdt_feed ();
const uint32_t blkmask = (INTERNAL_FLASH_READ_UNIT_SIZE - 1);
if( ((uint32_t)to) & blkmask )
{
uint32_t size2=size-INTERNAL_FLASH_READ_UNIT_SIZE;
uint32* to2=(uint32*)((((uint32_t)to)&(~blkmask))+INTERNAL_FLASH_READ_UNIT_SIZE);
r = flash_read(fromaddr, to2, size2);
if(SPI_FLASH_RESULT_OK == r)
{
memmove(to,to2,size2);
char back[ INTERNAL_FLASH_READ_UNIT_SIZE ] __attribute__ ((aligned(INTERNAL_FLASH_READ_UNIT_SIZE)));
r=flash_read(fromaddr+size2,(uint32*)back,INTERNAL_FLASH_READ_UNIT_SIZE);
os_memcpy((uint8_t*)to+size2,back,INTERNAL_FLASH_READ_UNIT_SIZE);
}
}
else
r = flash_read(fromaddr, (uint32 *)to, size);
if(SPI_FLASH_RESULT_OK == r)
return size;
else{
NODE_ERR( "ERROR in flash_read: r=%d at %08X\n", ( int )r, ( unsigned )fromaddr);
return 0;
}
}
int platform_flash_erase_sector( uint32_t sector_id )
{
system_soft_wdt_feed ();
return flash_erase( sector_id ) == SPI_FLASH_RESULT_OK ? PLATFORM_OK : PLATFORM_ERR;
}
uint32_t platform_flash_mapped2phys (uint32_t mapped_addr)
{
uint32_t cache_ctrl = READ_PERI_REG(CACHE_FLASH_CTRL_REG);
if (!(cache_ctrl & CACHE_FLASH_ACTIVE))
return -1;
bool b0 = (cache_ctrl & CACHE_FLASH_MAPPED0) ? 1 : 0;
bool b1 = (cache_ctrl & CACHE_FLASH_MAPPED1) ? 1 : 0;
uint32_t meg = (b1 << 1) | b0;
return mapped_addr - INTERNAL_FLASH_MAPPED_ADDRESS + meg * 0x100000;
}