nodemcu-firmware/app/modules/softuart.c

413 lines
12 KiB
C
Raw Normal View History

#include "ets_sys.h"
#include "osapi.h"
#include "gpio.h"
#include "os_type.h"
#include "user_interface.h"
#include "module.h"
#include "lauxlib.h"
#include "task/task.h"
#include "platform.h"
#include <stdlib.h>
#include <string.h>
#define SOFTUART_MAX_RX_BUFF 128
#define SOFTUART_GPIO_COUNT 13
typedef struct {
char receive_buffer[SOFTUART_MAX_RX_BUFF];
uint8_t length;
uint8_t buffer_overflow;
} softuart_buffer_t;
typedef struct {
uint8_t pin_rx;
uint8_t pin_tx;
volatile softuart_buffer_t buffer;
uint16_t bit_time;
uint16_t need_len; // Buffer length needed to run callback function
char end_char; // Used to run callback if last char in buffer will be the same
uint8_t armed;
} softuart_t;
typedef struct {
softuart_t *softuart;
} softuart_userdata;
// Array of pointers to SoftUART instances
softuart_t * softuart_gpio_instances[SOFTUART_GPIO_COUNT] = {NULL};
// Array of callback reference to be able to find which callback is used to which rx pin
static int softuart_rx_cb_ref[SOFTUART_GPIO_COUNT];
// Task for receiving data
static task_handle_t uart_recieve_task = 0;
// Receiving buffer for callback usage
static char softuart_rx_buffer[SOFTUART_MAX_RX_BUFF];
static inline int32_t asm_ccount(void) {
int32_t r;
asm volatile ("rsr %0, ccount" : "=r"(r));
return r;
}
static inline uint8_t checkbit(uint8_t data, uint8_t bit)
{
if ((data & bit) != 0) {
return 1;
} else {
return 0;
}
}
uint32_t ICACHE_RAM_ATTR softuart_intr_handler(uint32_t ret_gpio_status)
{
// Disable all interrupts
ets_intr_lock();
int32_t start_time = asm_ccount();
uint32_t gpio_status = GPIO_REG_READ(GPIO_STATUS_ADDRESS);
uint32_t gpio_bits = gpio_status;
for (uint8_t gpio_bit = 0; gpio_bits != 0; gpio_bit++, gpio_bits >>= 1) {
// Check all pins for interrupts
if (! (gpio_bits & 0x01)) continue;
// We got pin that was interrupted
// Load instance which has rx pin on interrupt pin attached
softuart_t *s = softuart_gpio_instances[pin_num_inv[gpio_bit]];
if (s == NULL) continue;
if (softuart_rx_cb_ref[pin_num_inv[gpio_bit]] == LUA_NOREF) continue;
if (!s->armed) continue;
// There is SoftUART rx instance on that pin
// Clear interrupt status on that pin
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, gpio_status & (1 << pin_num[s->pin_rx]));
ret_gpio_status &= ~(1 << pin_num[s->pin_rx]);
// Start listening to transmission
// TODO: inverted
if (! (GPIO_INPUT_GET(GPIO_ID_PIN(pin_num[s->pin_rx])))) {
//pin is low - therefore we have a start bit
unsigned byte = 0;
// Casting and using signed types to always be able to compute elapsed time even if there is a overflow
uint32_t elapsed_time = (uint32_t)(asm_ccount() - start_time);
// Wait till start bit is half over so we can sample the next one in the center
if (elapsed_time < s->bit_time / 2) {
uint16_t wait_time = s->bit_time / 2 - elapsed_time;
while ((uint32_t)(asm_ccount() - start_time) < wait_time);
start_time += wait_time;
}
// Sample bits
// TODO: How many bits? Add other configs to softuart
for (uint8_t i = 0; i < 8; i ++ ) {
while ((uint32_t)(asm_ccount() - start_time) < s->bit_time);
//shift d to the right
byte >>= 1;
// Read bit
if(GPIO_INPUT_GET(GPIO_ID_PIN(pin_num[s->pin_rx]))) {
// If high, set msb of 8bit to 1
byte |= 0x80;
}
// Recalculate start time for next bit
start_time += s->bit_time;
}
// Wait for stop bit
// TODO: Add config for stop bits and parity bits
while ((uint32_t)(asm_ccount() - start_time) < s->bit_time);
// Store byte in buffer
// If buffer full, set the overflow flag and return
uint8 next = s->buffer.length + 1 % SOFTUART_MAX_RX_BUFF;
if (next != 0) {
s->buffer.receive_buffer[s->buffer.length] = byte; // save new byte
s->buffer.length = next;
// Run callback when buffer is filled with enough data or last char is the triggering one
if (((s->need_len != 0) && (s->buffer.length >= s->need_len)) || \
((s->need_len == 0) && ((char)byte == s->end_char))) {
s->armed = 0;
task_post_low(uart_recieve_task, (task_param_t)s); // Send the pointer to task handler
}
} else {
//TODO: use this information somehow?
s->buffer.buffer_overflow = 1;
}
}
}
// re-enable all interrupts
ets_intr_unlock();
return ret_gpio_status;
}
static void softuart_putchar(softuart_t *s, char data)
{
// Disable all interrupts
ets_intr_lock();
int32_t start_time = asm_ccount();
// Set start bit
GPIO_OUTPUT_SET(GPIO_ID_PIN(pin_num[s->pin_tx]), 0);
for (uint32_t i = 0; i < 8; i++) {
while ((uint32_t)(asm_ccount() - start_time) < s->bit_time);
GPIO_OUTPUT_SET(GPIO_ID_PIN(pin_num[s->pin_tx]), checkbit(data, 1 << i));
// Recalculate start time for next bit
start_time += s->bit_time;
}
// Stop bit
while ((uint32_t)(asm_ccount() - start_time) < s->bit_time);
GPIO_OUTPUT_SET(GPIO_ID_PIN(pin_num[s->pin_tx]), 1);
// Delay after byte, for new sync
os_delay_us(s->bit_time*6 / system_get_cpu_freq());
// Re-enable all interrupts
ets_intr_unlock();
}
static void softuart_init(softuart_t *s)
{
NODE_DBG("SoftUART initialize gpio\n");
if (s->pin_tx != 0xFF){
// Init tx pin
platform_gpio_mode(s->pin_tx, PLATFORM_GPIO_OUTPUT, PLATFORM_GPIO_PULLUP);
platform_gpio_write(s->pin_tx, PLATFORM_GPIO_HIGH);
}
// Init rx pin
if (s->pin_rx != 0xFF){
platform_gpio_mode(s->pin_rx, PLATFORM_GPIO_INT, PLATFORM_GPIO_PULLUP);
uint32_t mask = 1 << pin_num[s->pin_rx];
platform_gpio_register_intr_hook(mask, softuart_intr_handler);
softuart_gpio_instances[s->pin_rx] = s;
// Enable interrupt for pin on falling edge
platform_gpio_intr_init(s->pin_rx, GPIO_PIN_INTR_NEGEDGE);
}
}
static int softuart_setup(lua_State *L)
{
uint32_t baudrate;
uint8_t tx_gpio_id, rx_gpio_id;
uint8_t stack = 1;
softuart_userdata *suart = NULL;
NODE_DBG("SoftUART setup called\n");
if(lua_isnumber(L, stack)) {
baudrate = (uint32_t)luaL_checkinteger( L, stack);
//230400 Is the max baudrate the author of Arduino-Esp8266-Software-UART tested
if (baudrate <= 0 || baudrate > 230400) {
return luaL_error(L, "Invalid baud rate" );
}
stack++;
} else {
return luaL_error(L, "Invalid argument type");
}
if(lua_isnumber(L, stack)) {
tx_gpio_id = (uint8_t)luaL_checkinteger( L, stack);
if (!platform_gpio_exists(tx_gpio_id) || tx_gpio_id == 0) {
return luaL_error(L, "SoftUART tx GPIO not valid");
}
stack++;
} else {
tx_gpio_id = 0xFF;
stack++;
}
if (lua_isnumber(L, stack)) {
rx_gpio_id = (uint8_t)luaL_checkinteger( L, stack);
if (!platform_gpio_exists(rx_gpio_id) || rx_gpio_id == 0) {
return luaL_error(L, "SoftUART rx GPIO not valid");
}
if (softuart_gpio_instances[rx_gpio_id] != NULL) {
return luaL_error( L, "SoftUART rx already configured on the pin.");
}
} else {
rx_gpio_id = 0xFF;
}
suart = (softuart_userdata*)lua_newuserdata(L, sizeof(softuart_userdata));
suart->softuart = malloc(sizeof(softuart_t));
if (!suart->softuart) {
free(suart->softuart);
suart->softuart = NULL;
return luaL_error(L, "Not enough memory");
}
suart->softuart->pin_rx = rx_gpio_id;
suart->softuart->pin_tx = tx_gpio_id;
suart->softuart->need_len = RX_BUFF_SIZE;
suart->softuart->armed = 0;
//set bit time
suart->softuart->bit_time = system_get_cpu_freq() * 1000000 / baudrate;
// Set metatable
luaL_getmetatable(L, "softuart.port");
lua_setmetatable(L, -2);
// Init SoftUART
softuart_init(suart->softuart);
return 1;
}
static void softuart_rx_callback(task_param_t arg)
{
softuart_t *softuart = (softuart_t*)arg; //Receive pointer from ISR
lua_State *L = lua_getstate();
lua_rawgeti(L, LUA_REGISTRYINDEX, softuart_rx_cb_ref[softuart->pin_rx]);
// Copy volatile data to static buffer
for (int i = 0; i < softuart->buffer.length; i++) {
softuart_rx_buffer[i] = softuart->buffer.receive_buffer[i];
}
lua_pushlstring(L, softuart_rx_buffer, softuart->buffer.length);
softuart->buffer.length = 0;
softuart->armed = 1;
lua_call(L, 1, 0);
}
// Arguments: event name, minimum buffer filled to run callback, callback function
static int softuart_on(lua_State *L)
{
NODE_DBG("SoftUART on called\n");
softuart_userdata *suart = NULL;
size_t name_len, arg_len;
uint8_t stack = 1;
suart = (softuart_userdata *)luaL_checkudata(L, 1, "softuart.port");
luaL_argcheck(L, suart, stack, "softuart.port expected");
if (suart == NULL) {
NODE_DBG("Userdata is nil\n");
return 0;
}
stack++;
const char *method = luaL_checklstring(L, stack, &name_len);
if (method == NULL)
return luaL_error(L, "Wrong argument type");
stack++;
if (lua_type(L, stack) == LUA_TNUMBER) {
suart->softuart->need_len = (uint16_t)luaL_checkinteger( L, stack );
stack++;
suart->softuart->end_char = 0;
if (suart->softuart->need_len > SOFTUART_MAX_RX_BUFF) {
suart->softuart->need_len = 0;
return luaL_error(L, "Argument bigger than SoftUART buffer");
}
suart->softuart->armed = 1;
} else if (lua_isstring(L, stack)) {
const char *end = luaL_checklstring(L , stack, &arg_len);
stack++;
if ( arg_len != 1) {
return luaL_error(L, "Wrong end char length");
}
suart->softuart->end_char = end[0];
suart->softuart->need_len = 0;
suart->softuart->armed = 1;
} else {
return luaL_error(L, "Wrong argument type");
}
if (lua_type(L, stack) == LUA_TFUNCTION || lua_type(L, stack) == LUA_TLIGHTFUNCTION) {
lua_pushvalue(L, stack); // Copy to top of the stack
} else {
lua_pushnil(L);
}
if (name_len == 4 && strcmp(method, "data") == 0) {
if(suart->softuart->pin_rx == 0xFF) {
return luaL_error(L, "Rx pin was not declared");
}
if (softuart_rx_cb_ref[suart->softuart->pin_rx] != LUA_NOREF) {
luaL_unref(L, LUA_REGISTRYINDEX, softuart_rx_cb_ref[suart->softuart->pin_rx]);
softuart_rx_cb_ref[suart->softuart->pin_rx] = LUA_NOREF;
}
if (! lua_isnil(L, -1)) {
softuart_rx_cb_ref[suart->softuart->pin_rx] = luaL_ref(L, LUA_REGISTRYINDEX);
} else {
lua_pop(L, 1);
}
} else {
lua_pop(L, 1);
return luaL_error(L, "Method not supported");
}
return 0;
}
static int softuart_write(lua_State *L)
{
NODE_DBG("SoftUART write called\n");
softuart_userdata *suart = NULL;
uint8_t stack = 1;
size_t str_len;
suart = (softuart_userdata *)luaL_checkudata(L, 1, "softuart.port");
luaL_argcheck(L, suart, stack, "softuart.port expected");
if (suart == NULL) {
NODE_DBG("Userdata is nil\n");
return 0;
}
stack++;
if(suart->softuart->pin_tx == 0xFF) {
return luaL_error(L, "Tx pin was not declared");
}
if (lua_type(L, stack) == LUA_TNUMBER) {
// Send byte
uint32_t byte = (uint32_t)luaL_checkinteger( L, stack );
if (byte > 255) {
return luaL_error(L, "Integer too large for a byte");
}
softuart_putchar(suart->softuart, (char)byte);
} else if (lua_isstring(L, stack)) {
// Send string
const char *string = luaL_checklstring(L , stack, &str_len);
for (size_t i = 0; i < str_len; i++) {
softuart_putchar(suart->softuart, string[i]);
}
} else {
return luaL_error(L, "Wrong argument type");
}
return 0;
}
static int softuart_gcdelete(lua_State *L)
{
NODE_DBG("SoftUART GC called\n");
softuart_userdata *suart = NULL;
suart = (softuart_userdata *)luaL_checkudata(L, 1, "softuart.port");
luaL_argcheck(L, suart, 1, "softuart.port expected");
if (suart == NULL) {
NODE_DBG("Userdata is nil\n");
return 0;
}
softuart_gpio_instances[suart->softuart->pin_rx] = NULL;
luaL_unref(L, LUA_REGISTRYINDEX, softuart_rx_cb_ref[suart->softuart->pin_rx]);
softuart_rx_cb_ref[suart->softuart->pin_rx] = LUA_NOREF;
free(suart->softuart);
return 0;
}
// Port function map
LROT_BEGIN(softuart_port)
LROT_FUNCENTRY( on, softuart_on)
LROT_FUNCENTRY( write, softuart_write)
LROT_TABENTRY( __index, softuart_port)
LROT_FUNCENTRY( __gc, softuart_gcdelete)
LROT_END(ads1115, softuart_port, LROT_MASK_GC_INDEX)
// Module function map
LROT_BEGIN(softuart)
LROT_FUNCENTRY( setup, softuart_setup)
LROT_TABENTRY(__metatable, softuart_port)
LROT_END(softuart, NULL, 0 )
static int luaopen_softuart(lua_State *L)
{
for(int i = 0; i < SOFTUART_GPIO_COUNT; i++) {
softuart_rx_cb_ref[i] = LUA_NOREF;
}
uart_recieve_task = task_get_id((task_callback_t) softuart_rx_callback);
luaL_rometatable(L, "softuart.port", (void *)softuart_port_map);
return 0;
}
NODEMCU_MODULE(SOFTUART, "softuart", softuart, luaopen_softuart);