[![Join the chat at https://gitter.im/nodemcu/nodemcu-firmware](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/nodemcu/nodemcu-firmware?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
- Build on [ESP8266 NONOS SDK 1.4.0](http://bbs.espressif.com/viewtopic.php?f=46&t=1124)
- Lua core based on [eLua project](http://www.eluaproject.net/)
- cjson based on [lua-cjson](https://github.com/mpx/lua-cjson)
- File system based on [spiffs](https://github.com/pellepl/spiffs)
- Open source development kit for NodeMCU [nodemcu-devkit-v0.9](https://github.com/nodemcu/nodemcu-devkit) [nodemcu-devkit-v1.0](https://github.com/nodemcu/nodemcu-devkit-v1.0)
Because Lua is a high level language and several modules are built into the firmware, you can very easily program your ESP8266. Here are some examples!
There are several options for building the NodeMCU firmware.
## Online firmware custom build
Please try Marcel's [NodeMCU custom builds](http://frightanic.com/nodemcu-custom-build) cloud service and you can choose only the modules you need, and download the firmware once built.
NodeMCU custom builds can build from the master branch and dev branch (with the latest fixes).
## Docker containerised build
See https://hub.docker.com/r/asmaps/nodemcu-builder/
This docker image includes the build toolchain and SDK. You just run the docker
image with your checked-out NodeMCU firmware repository (this one). The docker
image can also flash the firmware to your device.
You will need to see BUILD OPTIONS below, to configure the firmware before building.
## Build it yourself
See BUILD OPTIONS below, to configure the firmware before building.
### Minimum requirements:
- unrar
- GNU autoconf, automake, libtool
- GNU gcc, g++, make
- GNU flex, bison, gawk, sed
- python, python-serial, libexpat-dev
- srecord
- The esp-open-sdk from https://github.com/pfalcon/esp-open-sdk
### Build instructions:
Assuming NodeMCU firmware is checked-out to `/opt/nodemcu-firmware`:
Disable modules you won't be using, to reduce firmware size on flash and
free more RAM. The ESP8266 is quite limited in available RAM, and running
out can cause a system panic.
## Edit `app/include/user_modules.h`
Comment-out the #define statement for unused modules. Example:
```c
#ifdef LUA_USE_MODULES
#define LUA_USE_MODULES_NODE
#define LUA_USE_MODULES_FILE
#define LUA_USE_MODULES_GPIO
#define LUA_USE_MODULES_WIFI
#define LUA_USE_MODULES_NET
#define LUA_USE_MODULES_PWM
#define LUA_USE_MODULES_I2C
#define LUA_USE_MODULES_SPI
#define LUA_USE_MODULES_TMR
#define LUA_USE_MODULES_ADC
#define LUA_USE_MODULES_UART
#define LUA_USE_MODULES_OW
#define LUA_USE_MODULES_BIT
#define LUA_USE_MODULES_MQTT
// #define LUA_USE_MODULES_COAP
// #define LUA_USE_MODULES_U8G
// #define LUA_USE_MODULES_WS2801
// #define LUA_USE_MODULES_WS2812
// #define LUA_USE_MODULES_CJSON
#define LUA_USE_MODULES_CRYPTO
#define LUA_USE_MODULES_RC
#define LUA_USE_MODULES_DHT
#define LUA_USE_MODULES_RTCMEM
#define LUA_USE_MODULES_RTCTIME
#define LUA_USE_MODULES_RTCFIFO
#define LUA_USE_MODULES_SNTP
// #define LUA_USE_MODULES_BMP085
#define LUA_USE_MODULES_TSL2561
// #define LUA_USE_MODULES_HX711
#endif /* LUA_USE_MODULES */
```
## Tagging your build
Identify your firmware builds by editing `app/include/user_version.h`
```c
#define NODE_VERSION "NodeMCU 1.4.0+myname"
#ifndef BUILD_DATE
#define BUILD_DATE "YYYYMMDD"
#endif
```
## Setting the boot time serial interface rate
The initial baud rate at boot time is 9600 bps, but you can change this by
editing `app/include/user_config.h` and change BIT_RATE_DEFAULT, e.g.:
```c
#define BIT_RATE_DEFAULT BIT_RATE_115200
```
## Debugging
To enable runtime debug messages to serial console, edit `app/include/user_config.h`
```c
#define DEVELOP_VERSION
```
`DEVELOP_VERSION` changes the startup baud rate to 74880.
# Flash the firmware
## Flash tools for Windows
You can use the [nodemcu-flasher](https://github.com/nodemcu/nodemcu-flasher) to burn the firmware.
## Flash tools for Linux
Esptool is a python utility which can read and write the flash in an ESP8266 device. See https://github.com/themadinventor/esptool
## Preparing the hardware for firmware upgrade
To enable ESP8266 firmware flashing, the GPIO0 pin must be pulled low before
the device is reset. Conversely, for a normal boot, GPIO0 must be pulled high
or floating.
If you have a [NodeMCU Development Kit](http://www.nodemcu.com/index_en.html) then
you don't need to do anything, as the USB connection can pull GPIO0
low by asserting DTR, and reset your board by asserting RTS.
If you have an ESP-01 or other device without inbuilt USB, you will need to
enable flashing yourself by pulling GPIO0 low or pressing a "flash" switch.
## Files to burn to the flash
If you got your firmware from [NodeMCU custom builds](http://frightanic.com/nodemcu-custom-build) then you can flash that file directly to address 0x00000.
Otherwise, if you built your own firmware from source code:
- bin/0x00000.bin to 0x00000
- bin/0x10000.bin to 0x10000
Also, in some special circumstances, you may need to flash `blank.bin` or `esp_init_data_default.bin` to various addresses on the flash (depending on flash size and type).
If upgrading from `spiffs` version 0.3.2 to 0.3.3 or later, or after flashing any new firmware (particularly one with a much different size), you may need to run `file.format()` to re-format your flash filesystem.
You will know if you need to do this because your flash files disappeared, or they exist but seem empty, or data cannot be written to new files.
# Connecting to your NodeMCU device
NodeMCU serial interface uses 9600 baud at boot time. To increase the speed after booting, issue `uart.setup(0,115200,8,0,1,1)` (ESPlorer will do this automatically when changing the speed in the dropdown list).
If the device panics and resets at any time, errors will be written to the serial interface at 115200 bps.
# User Interface tools
## Esplorer
Victor Brutskiy's [ESPlorer](https://github.com/4refr0nt/ESPlorer) is written in Java, is open source and runs on most platforms such as Linux, Windows, Mac OS, etc.
#### Features
- Edit Lua scripts and run on the ESP8266 and save to its flash
- Serial console log
- Also supports original AT firmware (reading and setting WiFi modes, etc)
## NodeMCU Studio
[NodeMCU Studio](https://github.com/nodemcu/nodemcu-studio-csharp) is written in C# and supports Windows. This software is open source and can write lua files to filesystem.
Hook up SDA and SCL to any free GPIOs. Eg. [u8g_graphics_test.lua](lua_examples/u8glib/u8g_graphics_test.lua) expects SDA=5 (GPIO14) and SCL=6 (GPIO12). They are used to set up nodemcu's I2C driver before accessing the display:
Again, refer to [u8g_graphics_test.lua](lua_examples/u8glib/u8g_graphics_test.lua) to get an impression how this is achieved with Lua code. Visit the [u8glib homepage](https://github.com/olikraus/u8glib) for technical details.
#####Displays
I2C and HW SPI based displays with support in u8glib can be enabled. To get access to the respective constructors, add the desired entries to the I2C or SPI display tables in [app/include/u8g_config.h](app/include/u8g_config.h):
```c
#define U8G_DISPLAY_TABLE_I2C \
U8G_DISPLAY_TABLE_ENTRY(ssd1306_128x64_i2c) \
#define U8G_DISPLAY_TABLE_SPI \
U8G_DISPLAY_TABLE_ENTRY(ssd1306_128x64_hw_spi) \
U8G_DISPLAY_TABLE_ENTRY(pcd8544_84x48_hw_spi) \
U8G_DISPLAY_TABLE_ENTRY(pcf8812_96x65_hw_spi) \
```
An exhaustive list of available displays can be found in the [u8g module wiki entry](https://github.com/nodemcu/nodemcu-firmware/wiki/nodemcu_api_en#u8g-module).
u8glib comes with a wide range of fonts for small displays. Since they need to be compiled into the firmware image, you'd need to include them in [app/include/u8g_config.h](app/include/u8g_config.h) and recompile. Simply add the desired fonts to the font table:
Bitmaps and XBMs are supplied as strings to `drawBitmap()` and `drawXBM()`. This off-loads all data handling from the u8g module to generic methods for binary files. See [u8g_bitmaps.lua](lua_examples/u8glib/u8g_bitmaps.lua).
In contrast to the source code based inclusion of XBMs into u8glib, it's required to provide precompiled binary files. This can be performed online with [Online-Utility's Image Converter](http://www.online-utility.org/image_converter.jsp): Convert from XBM to MONO format and upload the binary result with [nodemcu-uploader.py](https://github.com/kmpm/nodemcu-uploader).
The Lua bindings for this library closely follow ucglib's object oriented C++ API. Based on the ucg class, you create an object for your display type.
ILI9341 via SPI:
```lua
cs = 8 -- GPIO15, pull-down 10k to GND
dc = 4 -- GPIO2
res = 0 -- GPIO16, RES is optional YMMV
disp = ucg.ili9341_18x240x320_hw_spi(cs, dc, res)
```
This object provides all of ucglib's methods to control the display.
Again, refer to [GraphicsTest.lua](lua_examples/ucglib/GraphicsTest.lua) to get an impression how this is achieved with Lua code. Visit the [ucglib homepage](https://github.com/olikraus/ucglib) for technical details.
#####Displays
To get access to the display constructors, add the desired entries to the display table in [app/include/ucg_config.h](app/include/ucg_config.h):
ucglib comes with a wide range of fonts for small displays. Since they need to be compiled into the firmware image, you'd need to include them in [app/include/ucg_config.h](app/include/ucg_config.h) and recompile. Simply add the desired fonts to the font table: