nodemcu-firmware/app/driver/switec.c

392 lines
8.6 KiB
C
Raw Normal View History

/*
* Module for interfacing with Switec instrument steppers (and
* similar devices). These are the steppers that are used in automotive
* instrument panels and the like. Run off 5 volts at low current.
*
* Code inspired by:
*
* SwitecX25 Arduino Library
* Guy Carpenter, Clearwater Software - 2012
*
* Licensed under the BSD2 license, see license.txt for details.
*
* NodeMcu integration by Philip Gladstone, N1DQ
*/
#include "platform.h"
#include "c_types.h"
#include "../libc/c_stdlib.h"
#include "../libc/c_stdio.h"
#include "driver/switec.h"
#include "ets_sys.h"
#include "os_type.h"
#include "osapi.h"
#include "hw_timer.h"
#include "user_interface.h"
#include "task/task.h"
#define N_STATES 6
//
// First pin passed to setup corresponds to bit 3
// On the motor, the pins are arranged
//
// 4 1
//
// 3 2
//
// The direction of rotation can be reversed by reordering the pins
//
// State 3 2 1 0 A B Value
// 0 1 0 0 1 - - 0x9
// 1 0 0 0 1 . - 0x1
// 2 0 1 1 1 + . 0x7
// 3 0 1 1 0 + + 0x6
// 4 1 1 1 0 . + 0xE
// 5 1 0 0 0 - . 0x8
static const uint8_t stateMap[N_STATES] = {0x9, 0x1, 0x7, 0x6, 0xE, 0x8};
typedef struct {
uint8_t current_state;
uint8_t stopped;
int8_t dir;
uint32_t mask;
uint32_t pinstate[N_STATES];
uint32_t next_time;
int16_t target_step;
int16_t current_step;
uint16_t vel;
uint16_t max_vel;
uint16_t min_delay;
task_handle_t task_number;
} DATA;
static DATA *data[SWITEC_CHANNEL_COUNT];
static volatile char timer_active;
#define MAXVEL 255
// Note that this has to be global so that the compiler does not
// put it into ROM.
uint8_t switec_accel_table[][2] = {
{ 20, 3000 >> 4},
{ 50, 1500 >> 4},
{ 100, 1000 >> 4},
{ 150, 800 >> 4},
{ MAXVEL, 600 >> 4}
};
static void ICACHE_RAM_ATTR timer_interrupt(os_param_t);
#define TIMER_OWNER ((os_param_t) 'S')
// Just takes the channel number
int switec_close(uint32_t channel)
{
if (channel >= sizeof(data) / sizeof(data[0])) {
return -1;
}
DATA *d = data[channel];
if (!d) {
return 0;
}
if (!d->stopped) {
return -1;
}
// Set pins as input
gpio_output_set(0, 0, 0, d->mask);
data[channel] = NULL;
c_free(d);
// See if there are any other channels active
for (channel = 0; channel < sizeof(data)/sizeof(data[0]); channel++) {
if (data[channel]) {
break;
}
}
// If not, then disable the interrupt
if (channel >= sizeof(data) / sizeof(data[0])) {
platform_hw_timer_close(TIMER_OWNER);
}
return 0;
}
static __attribute__((always_inline)) inline void write_io(DATA *d)
{
uint32_t pin_state = d->pinstate[d->current_state];
gpio_output_set(pin_state, d->mask & ~pin_state, 0, 0);
}
static __attribute__((always_inline)) inline void step_up(DATA *d)
{
d->current_step++;
d->current_state = (d->current_state + 1) % N_STATES;
write_io(d);
}
static __attribute__((always_inline)) inline void step_down(DATA *d)
{
d->current_step--;
d->current_state = (d->current_state + N_STATES - 1) % N_STATES;
write_io(d);
}
static void ICACHE_RAM_ATTR timer_interrupt(os_param_t p)
{
// This function really is running at interrupt level with everything
// else masked off. It should take as little time as necessary.
//
(void) p;
int i;
uint32_t delay = 0xffffffff;
// Loop over the channels to figure out which one needs action
for (i = 0; i < sizeof(data) / sizeof(data[0]); i++) {
DATA *d = data[i];
if (!d || d->stopped) {
continue;
}
uint32_t now = system_get_time();
if (now < d->next_time) {
int need_to_wait = d->next_time - now;
if (need_to_wait < delay) {
delay = need_to_wait;
}
continue;
}
// This channel is past it's action time. Need to process it
// Are we done yet?
if (d->current_step == d->target_step && d->vel == 0) {
d->stopped = 1;
d->dir = 0;
task_post_low(d->task_number, 0);
continue;
}
// if stopped, determine direction
if (d->vel == 0) {
d->dir = d->current_step < d->target_step ? 1 : -1;
// do not set to 0 or it could go negative in case 2 below
d->vel = 1;
}
// Move the pointer by one step in the correct direction
if (d->dir > 0) {
step_up(d);
} else {
step_down(d);
}
// determine delta, number of steps in current direction to target.
// may be negative if we are headed away from target
int delta = d->dir > 0 ? d->target_step - d->current_step : d->current_step - d->target_step;
if (delta > 0) {
// case 1 : moving towards target (maybe under accel or decel)
if (delta <= d->vel) {
// time to declerate
d->vel--;
} else if (d->vel < d->max_vel) {
// accelerating
d->vel++;
} else {
// at full speed - stay there
}
} else {
// case 2 : at or moving away from target (slow down!)
d->vel--;
}
// vel now defines delay
uint8_t row = 0;
// this is why vel must not be greater than the last vel in the table.
while (switec_accel_table[row][0] < d->vel) {
row++;
}
uint32_t micro_delay = switec_accel_table[row][1] << 4;
if (micro_delay < d->min_delay) {
micro_delay = d->min_delay;
}
// Figure out when we next need to take action
d->next_time = d->next_time + micro_delay;
if (d->next_time < now) {
d->next_time = now + micro_delay;
}
// Figure out how long to wait
int need_to_wait = d->next_time - now;
if (need_to_wait < delay) {
delay = need_to_wait;
}
}
if (delay < 1000000) {
if (delay < 50) {
delay = 50;
}
timer_active = 1;
platform_hw_timer_arm_us(TIMER_OWNER, delay);
} else {
timer_active = 0;
}
}
// The pin numbers are actual platform GPIO numbers
int switec_setup(uint32_t channel, int *pin, int max_deg_per_sec, task_handle_t task_number )
{
if (channel >= sizeof(data) / sizeof(data[0])) {
return -1;
}
if (data[channel]) {
if (switec_close(channel)) {
return -1;
}
}
DATA *d = (DATA *) c_zalloc(sizeof(DATA));
if (!d) {
return -1;
}
if (!data[0] && !data[1] && !data[2]) {
// We need to stup the timer as no channel was active before
// no autoreload
if (!platform_hw_timer_init(TIMER_OWNER, FRC1_SOURCE, FALSE)) {
// Failed to get the timer
c_free(d);
return -1;
}
}
data[channel] = d;
int i;
for (i = 0; i < 4; i++) {
// Build the mask for the pins to be output pins
d->mask |= 1 << pin[i];
int j;
// Now build the hi states for the pins according to the 6 phases above
for (j = 0; j < N_STATES; j++) {
if (stateMap[j] & (1 << (3 - i))) {
d->pinstate[j] |= 1 << pin[i];
}
}
}
d->max_vel = MAXVEL;
if (max_deg_per_sec == 0) {
max_deg_per_sec = 400;
}
d->min_delay = 1000000 / (3 * max_deg_per_sec);
d->task_number = task_number;
#ifdef SWITEC_DEBUG
for (i = 0; i < 4; i++) {
c_printf("pin[%d]=%d\n", i, pin[i]);
}
c_printf("Mask=0x%x\n", d->mask);
for (i = 0; i < N_STATES; i++) {
c_printf("pinstate[%d]=0x%x\n", i, d->pinstate[i]);
}
#endif
// Set all pins as outputs
gpio_output_set(0, 0, d->mask, 0);
platform_hw_timer_set_func(TIMER_OWNER, timer_interrupt, 0);
return 0;
}
// All this does is to assert that the current position is 0
int switec_reset(uint32_t channel)
{
if (channel >= sizeof(data) / sizeof(data[0])) {
return -1;
}
DATA *d = data[channel];
if (!d || !d->stopped) {
return -1;
}
d->current_step = d->target_step = 0;
return 0;
}
// Just takes the channel number and the position
int switec_moveto(uint32_t channel, int pos)
{
if (channel >= sizeof(data) / sizeof(data[0])) {
return -1;
}
DATA *d = data[channel];
if (!d) {
return -1;
}
if (pos < 0) {
// This ensures that we don't slam into the endstop
d->max_vel = 50;
} else {
d->max_vel = MAXVEL;
}
d->target_step = pos;
// If the pointer is not moving, setup so that we start it
if (d->stopped) {
// reset the timer to avoid possible time overflow giving spurious deltas
d->next_time = system_get_time() + 1000;
d->stopped = false;
if (!timer_active) {
timer_interrupt(0);
}
}
return 0;
}
// Get the current position, direction and target position
int switec_getpos(uint32_t channel, int32_t *pos, int32_t *dir, int32_t *target)
{
if (channel >= sizeof(data) / sizeof(data[0])) {
return -1;
}
DATA *d = data[channel];
if (!d) {
return -1;
}
*pos = d->current_step;
*dir = d->stopped ? 0 : d->dir;
*target = d->target_step;
return 0;
}