nodemcu-firmware/components/modules/node.c

732 lines
24 KiB
C
Raw Normal View History

#include "module.h"
#include "lauxlib.h"
#include "common.h"
#include "legc.h"
#include "lundump.h"
#include "platform.h"
#include "task/task.h"
#include "vfs.h"
#include "esp_system.h"
#include "esp_log.h"
#include "esp_sleep.h"
#include "driver/rtc_io.h"
#include "soc/efuse_reg.h"
#include "ldebug.h"
2019-01-31 22:03:41 +01:00
#include "esp_vfs.h"
#include "lnodeaux.h"
#include "lflash.h"
2021-04-02 08:03:17 +02:00
#include "rom/rtc.h"
// Lua: node.bootreason()
static int node_bootreason( lua_State *L)
{
int panicval = panic_get_nvval();
RESET_REASON rr0 = rtc_get_reset_reason(0);
unsigned rawinfo = 3;
// rawinfo can take these values as defined in docs/modules/node.md
//
// 1, power-on
// 2, reset (software?)
// 3, hardware reset via reset pin or unknown reason
// 4, WDT reset (watchdog timeout)
//
// extendedinfo can take these values as definded in docs/modules/node.md
//
// 0, power-on
// 1, hardware watchdog reset
// 2, exception reset
// 3, software watchdog reset
// 4, software restart
// 5, wake from deep sleep
// 6, external reset
// added values from rom/rtc.h with offset 7
// 7: NO_MEAN = 0,
// 8: POWERON_RESET = 1, /**<1, Vbat power on reset*/
// 9:
// 10: SW_RESET = 3, /**<3, Software reset digital core*/
// 11: OWDT_RESET = 4, /**<4, Legacy watch dog reset digital core*/
// 12: DEEPSLEEP_RESET = 5, /**<3, Deep Sleep reset digital core*/
// 13: SDIO_RESET = 6, /**<6, Reset by SLC module, reset digital core*/
// 14: TG0WDT_SYS_RESET = 7, /**<7, Timer Group0 Watch dog reset digital core*/
// 15: TG1WDT_SYS_RESET = 8, /**<8, Timer Group1 Watch dog reset digital core*/
// 16: RTCWDT_SYS_RESET = 9, /**<9, RTC Watch dog Reset digital core*/
// 17: INTRUSION_RESET = 10, /**<10, Instrusion tested to reset CPU*/
// 18: TGWDT_CPU_RESET = 11, /**<11, Time Group reset CPU*/
// 19: SW_CPU_RESET = 12, /**<12, Software reset CPU*/
// 20: RTCWDT_CPU_RESET = 13, /**<13, RTC Watch dog Reset CPU*/
// 21: EXT_CPU_RESET = 14, /**<14, for APP CPU, reseted by PRO CPU*/
// 22: RTCWDT_BROWN_OUT_RESET = 15, /**<15, Reset when the vdd voltage is not stable*/
// 23: RTCWDT_RTC_RESET = 16 /**<16, RTC Watch dog reset digital core and rtc module*/`
switch (rr0) {
case NO_MEAN: rawinfo = 3; break;
case POWERON_RESET: rawinfo = 1; break;
case SW_RESET: rawinfo = 2; break;
case OWDT_RESET: rawinfo = 4; break;
case DEEPSLEEP_RESET:
case SDIO_RESET:
case TG0WDT_SYS_RESET:
case TG1WDT_SYS_RESET:
rawinfo = 3; break;
case RTCWDT_SYS_RESET: rawinfo = 4; break;
case INTRUSION_RESET: rawinfo = 3; break;
case TGWDT_CPU_RESET: rawinfo = 4; break;
case SW_CPU_RESET: rawinfo = 2; break;
case RTCWDT_CPU_RESET: rawinfo = 4; break;
case EXT_CPU_RESET:
case RTCWDT_BROWN_OUT_RESET: rawinfo = 3; break;
case RTCWDT_RTC_RESET: rawinfo = 3; break;
}
lua_pushinteger(L, (lua_Integer)rawinfo);
lua_pushinteger(L, (lua_Integer)rr0+7);
if (rr0 == SW_CPU_RESET) {
lua_pushinteger(L, (lua_Integer)panicval);
return 3;
}
return 2;
}
// Lua: node.chipid()
static int node_chipid( lua_State *L )
{
// This matches the way esptool.py generates a chipid for the ESP32 as of
// esptool commit e9e9179f6fc3f2ecfc568987d3224b5e53a05f06
// Oddly, this drops the lowest byte what's effectively the MAC address, so
// it would seem plausible to encounter up to 256 chips with the same chipid
uint64_t word16 = REG_READ(EFUSE_BLK0_RDATA1_REG);
uint64_t word17 = REG_READ(EFUSE_BLK0_RDATA2_REG);
const uint64_t MAX_UINT24 = 0xffffff;
uint64_t cid = ((word17 & MAX_UINT24) << 24) | ((word16 >> 8) & MAX_UINT24);
char chipid[17] = { 0 };
sprintf(chipid, "0x%llx", cid);
lua_pushstring(L, chipid);
return 1;
}
// Lua: node.heap()
static int node_heap( lua_State* L )
{
2016-11-27 03:28:48 +01:00
uint32_t sz = esp_get_free_heap_size();
lua_pushinteger(L, sz);
return 1;
}
static int node_restart (lua_State *L)
{
2021-04-02 08:03:17 +02:00
panic_clear_nvval();
esp_restart ();
return 0;
}
static void node_sleep_set_uart (lua_State *L, int uart)
{
int err = esp_sleep_enable_uart_wakeup(uart);
if (err) {
luaL_error(L, "Error %d returned from esp_sleep_enable_uart_wakeup(%d)", err, uart);
}
}
static bool node_sleep_get_time_options (lua_State *L, int64_t *usecs)
{
lua_getfield(L, 1, "us");
lua_getfield(L, 1, "secs");
bool option_present = !lua_isnil(L, 2) || !lua_isnil(L, 3);
lua_pop(L, 2);
*usecs = 0;
if (option_present) {
*usecs += opt_checkint(L, "us", 0);
*usecs += (int64_t)opt_checkint(L, "secs", 0) * 1000000;
}
return option_present;
}
static void node_sleep_disable_wakeup_sources (lua_State *L)
{
// Start with known state, to ensure previous sleep calls don't leave any
// settings left over
int err = esp_sleep_disable_wakeup_source(ESP_SLEEP_WAKEUP_ALL);
if (err) {
luaL_error(L, "Error %d returned from esp_sleep_disable_wakeup_source", err);
}
}
static int node_sleep (lua_State *L)
{
lua_settop(L, 1);
luaL_checkanytable(L, 1);
node_sleep_disable_wakeup_sources(L);
// uart options: uart = num|{num, num, ...}
lua_getfield(L, -1, "uart");
int type = lua_type(L, -1);
if (type == LUA_TNUMBER) {
node_sleep_set_uart(L, lua_tointeger(L, -1));
} else if (type == LUA_TTABLE) {
for (int i = 1; ; i++) {
lua_rawgeti(L, -1, i);
if (lua_isnil(L, -1)) {
lua_pop(L, 1); // uart[i]
break;
}
int uart = lua_tointeger(L, -1);
lua_pop(L, 1); // uart[i]
node_sleep_set_uart(L, uart);
}
} else if (type != LUA_TNIL) {
return opt_error(L, "uart", "must be integer or table");
}
lua_pop(L, 1); // uart
// gpio option: boolean (individual pins are configured in advance with gpio.wakeup())
// Make sure to do GPIO before touch, because esp_sleep_enable_gpio_wakeup()
// seems to think touch is not compatible with GPIO wakeup and will error the
// call if you order them the other way round, despite the fact that
// esp_sleep_enable_touchpad_wakeup() does not have a similar check, and I've
// tested using both GPIO and touch wakeups at once and it works fine for me.
// I think this is simply a bug in the Espressif SDK, because sleep_modes.rst
// only mentions compatibility issues with touch and EXT0 wakeup, which is
// not the same as GPIO wakeup.
if (opt_checkbool(L, "gpio", false)) {
int err = esp_sleep_enable_gpio_wakeup();
if (err) {
return luaL_error(L, "Error %d returned from esp_sleep_enable_gpio_wakeup()", err);
}
}
// time options: us, secs
int64_t usecs = 0;
if (node_sleep_get_time_options(L, &usecs)) {
esp_sleep_enable_timer_wakeup(usecs);
}
// touch option: boolean
if (opt_checkbool(L, "touch", false)) {
int err = esp_sleep_enable_touchpad_wakeup();
if (err) {
return luaL_error(L, "Error %d returned from esp_sleep_enable_touchpad_wakeup()", err);
}
}
// ulp option: boolean
if (opt_checkbool(L, "ulp", false)) {
int err = esp_sleep_enable_ulp_wakeup();
if (err) {
return luaL_error(L, "Error %d returned from esp_sleep_enable_ulp_wakeup()", err);
}
}
int err = esp_light_sleep_start();
if (err == ESP_ERR_INVALID_STATE) {
return luaL_error(L, "WiFi and BT must be stopped before sleeping");
} else if (err) {
return luaL_error(L, "Error %d returned from esp_light_sleep_start()", err);
}
esp_sleep_wakeup_cause_t cause = esp_sleep_get_wakeup_cause();
lua_pushinteger(L, (int)cause);
return 1;
}
// Lua: node.dsleep (microseconds|{opts})
static int node_dsleep (lua_State *L)
{
lua_settop(L, 1);
node_sleep_disable_wakeup_sources(L);
bool enable_timer_wakeup = false;
int64_t usecs = 0;
int type = lua_type(L, 1);
if (type == LUA_TNUMBER) {
enable_timer_wakeup = true;
usecs = lua_tointeger(L, 1);
} else if (type == LUA_TTABLE) {
enable_timer_wakeup = node_sleep_get_time_options(L, &usecs);
// GPIO wakeup options: gpio = num|{num, num, ...}
uint64_t pin_mask = 0;
lua_getfield(L, -1, "gpio");
type = lua_type(L, -1);
if (type == LUA_TNUMBER) {
pin_mask |= 1ULL << lua_tointeger(L, -1);
} else if (type == LUA_TTABLE) {
for (int i = 1; ; i++) {
lua_rawgeti(L, -1, i);
int pin = lua_tointeger(L, -1);
lua_pop(L, 1);
if (!pin) {
break;
}
pin_mask |= 1ULL << pin;
}
}
lua_pop(L, 1); // gpio
// Check pin validity here to get better error messages
for (int pin = 0; pin < GPIO_PIN_COUNT; pin++) {
if (pin_mask & (1ULL << pin)) {
if (!rtc_gpio_is_valid_gpio(pin)) {
return luaL_error(L, "Pin %d is not an RTC GPIO and cannot be used for wakeup", pin);
}
}
}
int level = opt_checkint_range(L, "level", 1, 0, 1);
bool pull = opt_checkbool(L, "pull", false);
bool touch = opt_checkbool(L, "touch", false);
if (opt_get(L, "isolate", LUA_TTABLE)) {
for (int i = 1; ; i++) {
lua_rawgeti(L, -1, i);
if (lua_isnil(L, -1)) {
lua_pop(L, 1);
break;
}
int pin = lua_tointeger(L, -1);
lua_pop(L, 1);
int err = rtc_gpio_isolate(pin);
if (err) {
return luaL_error(L, "Error %d returned from rtc_gpio_isolate(%d)", err, pin);
}
}
lua_pop(L, 1); // isolate table
}
if (pull) {
// Keeping the peripheral domain powered keeps the pullups/downs working
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
}
if (pin_mask) {
esp_sleep_ext1_wakeup_mode_t mode = (level == 1) ?
ESP_EXT1_WAKEUP_ANY_HIGH : ESP_EXT1_WAKEUP_ALL_LOW;
int err = esp_sleep_enable_ext1_wakeup(pin_mask, mode);
if (err) {
return luaL_error(L, "Error %d returned from esp_sleep_enable_ext1_wakeup", err);
}
}
if (touch) {
esp_sleep_enable_touchpad_wakeup();
}
} else {
luaL_argerror(L, 1, "Expected integer or table");
}
if (enable_timer_wakeup) {
esp_sleep_enable_timer_wakeup(usecs);
}
esp_deep_sleep_start();
// Note, above call does not actually return
return 0;
}
extern lua_Load gLoad;
extern bool user_process_input(bool force);
// Lua: input("string")
static int node_input( lua_State* L )
{
size_t l = 0;
const char *s = luaL_checklstring(L, 1, &l);
if (s != NULL && l > 0 && l < LUA_MAXINPUT - 1)
{
lua_Load *load = &gLoad;
if (load->line_position == 0) {
memcpy(load->line, s, l);
load->line[l + 1] = '\0';
load->line_position = strlen(load->line) + 1;
load->done = 1;
user_process_input(true);
}
}
return 0;
}
2019-01-31 22:03:41 +01:00
// The implementation of node.output implies replacing stdout with a virtual write-only file of
// which we can capture fwrite calls.
// When there is any write to the replaced stdout, our function redir_write will be called.
// we can then invoke the lua callback.
static FILE *oldstdout; // keep the old stdout, e.g., the uart0
lua_ref_t output_redir = LUA_NOREF; // this will hold the Lua callback
int serial_debug = 0; // whether or not to write also to uart
const char *VFS_REDIR = "/redir"; // virtual filesystem mount point
// redir_write will be called everytime any code writes to stdout when
// redirection is active
ssize_t redir_write(int fd, const void *data, size_t size) {
if (serial_debug) // if serial_debug is nonzero, write to uart
fwrite(data, sizeof(char), size, oldstdout);
if (output_redir != LUA_NOREF) { // prepare lua call
lua_State *L = lua_getstate();
lua_rawgeti(L, LUA_REGISTRYINDEX, output_redir); // push function reference
lua_pushlstring(L, (char *)data, size); // push data
lua_pcall(L, 1, 0, 0); // invoke callback
}
return size;
}
// redir_open is called when fopen() is called on /redir/xxx
int redir_open(const char *path, int flags, int mode) {
return 79; // since we only have one "file", just return some fd number to make the VFS system happy
}
// Lua: node.output(func, serial_debug)
static int node_output(lua_State *L) {
if (lua_type(L, 1) == LUA_TFUNCTION || lua_type(L, 1) == LUA_TLIGHTFUNCTION) {
if (output_redir == LUA_NOREF) {
// create an instance of a virtual filesystem so we can use fopen
esp_vfs_t redir_fs = {
.flags = ESP_VFS_FLAG_DEFAULT,
.write = &redir_write,
.open = &redir_open,
.fstat = NULL,
.close = NULL,
.read = NULL,
};
// register this filesystem under the `/redir` namespace
ESP_ERROR_CHECK(esp_vfs_register(VFS_REDIR, &redir_fs, NULL));
oldstdout = stdout; // save the previous stdout
stdout = fopen(VFS_REDIR, "w"); // open the new one for writing
} else {
luaX_unset_ref(L, &output_redir); // dereference previous callback
}
luaX_set_ref(L, 1, &output_redir); // set the callback
} else {
if (output_redir != LUA_NOREF) {
fclose(stdout); // close the redirected stdout
stdout = oldstdout; // restore original stdout
ESP_ERROR_CHECK(esp_vfs_unregister(VFS_REDIR)); // unregister redir filesystem
luaX_unset_ref(L, &output_redir); // forget callback
}
serial_debug = 1;
return 0;
}
// second parameter indicates whether output will also be sent to old stdout
if (lua_isnumber(L, 2)) {
serial_debug = lua_tointeger(L, 2);
if (serial_debug != 0)
serial_debug = 1;
} else {
serial_debug = 1; // default to 1
}
return 0;
}
// The implementation of node.osoutput redirect all OS logging to Lua space
lua_ref_t os_output_redir = LUA_NOREF; // this will hold the Lua callback
static vprintf_like_t oldvprintf; // keep the old vprintf
// redir_vprintf will be called everytime the OS attempts to print a trace statement
int redir_vprintf(const char *fmt, va_list ap)
{
static char data[128];
int size = vsnprintf(data, 128, fmt, ap);
if (os_output_redir != LUA_NOREF) { // prepare lua call
lua_State *L = lua_getstate();
lua_rawgeti(L, LUA_REGISTRYINDEX, os_output_redir); // push function reference
lua_pushlstring(L, (char *)data, size); // push data
lua_pcall(L, 1, 0, 0); // invoke callback
}
return size;
}
// Lua: node.output(func, serial_debug)
static int node_osoutput(lua_State *L) {
if (lua_type(L, 1) == LUA_TFUNCTION || lua_type(L, 1) == LUA_TLIGHTFUNCTION) {
if (os_output_redir == LUA_NOREF) {
// register our log redirect first time this is invoked
oldvprintf = esp_log_set_vprintf(redir_vprintf);
} else {
luaX_unset_ref(L, &os_output_redir); // dereference previous callback
}
luaX_set_ref(L, 1, &os_output_redir); // set the callback
} else {
if (os_output_redir != LUA_NOREF) {
esp_log_set_vprintf(oldvprintf);
luaX_unset_ref(L, &os_output_redir); // forget callback
}
}
return 0;
}
/* node.stripdebug([level[, function]]). 
* level: 1 don't discard debug
* 2 discard Local and Upvalue debug info
* 3 discard Local, Upvalue and lineno debug info.
* function: Function to be stripped as per setfenv except 0 not permitted.
* If no arguments then the current default setting is returned.
* If function is omitted, this is the default setting for future compiles
* The function returns an estimated integer count of the bytes stripped.
*/
static int node_stripdebug (lua_State *L) {
int level;
if (L->top == L->base) {
lua_pushlightuserdata(L, &luaG_stripdebug );
lua_gettable(L, LUA_REGISTRYINDEX);
if (lua_isnil(L, -1)) {
lua_pop(L, 1);
lua_pushinteger(L, CONFIG_LUA_OPTIMIZE_DEBUG);
}
return 1;
}
level = luaL_checkint(L, 1);
if ((level <= 0) || (level > 3)) luaL_argerror(L, 1, "must in range 1-3");
if (L->top == L->base + 1) {
/* Store the default level in the registry if no function parameter */
lua_pushlightuserdata(L, &luaG_stripdebug);
lua_pushinteger(L, level);
lua_settable(L, LUA_REGISTRYINDEX);
lua_settop(L,0);
return 0;
}
if (level == 1) {
lua_settop(L,0);
lua_pushinteger(L, 0);
return 1;
}
if (!lua_isfunction(L, 2)) {
int scope = luaL_checkint(L, 2);
if (scope > 0) {
/* if the function parameter is a +ve integer then climb to find function */
lua_Debug ar;
lua_pop(L, 1); /* pop level as getinfo will replace it by the function */
if (lua_getstack(L, scope, &ar)) {
lua_getinfo(L, "f", &ar);
}
}
}
if(!lua_isfunction(L, 2) || lua_iscfunction(L, -1)) luaL_argerror(L, 2, "must be a Lua Function");
// lua_lock(L);
Proto *f = clvalue(L->base + 1)->l.p;
// lua_unlock(L);
lua_settop(L,0);
lua_pushinteger(L, luaG_stripdebug(L, f, level, 1));
return 1;
}
// Lua: node.egc.setmode( mode, [param])
// where the mode is one of the node.egc constants NOT_ACTIVE , ON_ALLOC_FAILURE,
// ON_MEM_LIMIT, ALWAYS. In the case of ON_MEM_LIMIT an integer parameter is reqired
// See legc.h and lecg.c.
static int node_egc_setmode(lua_State* L) {
unsigned mode = luaL_checkinteger(L, 1);
unsigned limit = luaL_optinteger (L, 2, 0);
luaL_argcheck(L, mode <= (EGC_ON_ALLOC_FAILURE | EGC_ON_MEM_LIMIT | EGC_ALWAYS), 1, "invalid mode");
luaL_argcheck(L, !(mode & EGC_ON_MEM_LIMIT) || limit>0, 1, "limit must be non-zero");
legc_set_mode( L, mode, limit );
return 0;
}
static int writer(lua_State* L, const void* p, size_t size, void* u)
{
UNUSED(L);
int file_fd = *( (int *)u );
if (!file_fd)
return 1;
NODE_DBG("get fd:%d,size:%d\n", file_fd, size);
if (size != 0 && (size != vfs_write(file_fd, (const char *)p, size)) )
return 1;
NODE_DBG("write fd:%d,size:%d\n", file_fd, size);
return 0;
}
#define toproto(L,i) (clvalue(L->top+(i))->l.p)
// Lua: compile(filename) -- compile lua file into lua bytecode, and save to .lc
static int node_compile( lua_State* L )
{
Proto* f;
int file_fd = 0;
size_t len;
const char *fname = luaL_checklstring( L, 1, &len );
const char *basename = vfs_basename( fname );
luaL_argcheck(L, strlen(basename) <= CONFIG_NODEMCU_FS_OBJ_NAME_LEN && strlen(fname) == len, 1, "filename invalid");
char *output = luaM_malloc( L, len+1 );
strcpy(output, fname);
// check here that filename end with ".lua".
if (len < 4 || (strcmp( output + len - 4, ".lua") != 0) ) {
luaM_free( L, output );
return luaL_error(L, "not a .lua file");
}
output[strlen(output) - 2] = 'c';
output[strlen(output) - 1] = '\0';
NODE_DBG(output);
NODE_DBG("\n");
if (luaL_loadfsfile(L, fname) != 0) {
luaM_free( L, output );
return luaL_error(L, lua_tostring(L, -1));
}
f = toproto(L, -1);
int stripping = 1; /* strip debug information? */
file_fd = vfs_open(output, "w+");
if (!file_fd)
{
luaM_free( L, output );
return luaL_error(L, "cannot open/write to file");
}
lua_lock(L);
int result = luaU_dump(L, f, writer, &file_fd, stripping);
lua_unlock(L);
if (vfs_flush(file_fd) != VFS_RES_OK) {
// overwrite Lua error, like writer() does in case of a file io error
result = 1;
}
vfs_close(file_fd);
file_fd = 0;
luaM_free( L, output );
if (result == LUA_ERR_CC_INTOVERFLOW) {
return luaL_error(L, "value too big or small for target integer type");
}
if (result == LUA_ERR_CC_NOTINTEGER) {
return luaL_error(L, "target lua_Number is integral but fractional value found");
}
if (result == 1) { // result status generated by writer() or fs_flush() fail
return luaL_error(L, "writing to file failed");
}
return 0;
}
// Task callback handler for node.task.post()
static task_handle_t do_node_task_handle;
static void do_node_task (task_param_t task_fn_ref, task_prio_t prio)
{
lua_State* L = lua_getstate();
lua_rawgeti(L, LUA_REGISTRYINDEX, (int)task_fn_ref);
luaL_unref(L, LUA_REGISTRYINDEX, (int)task_fn_ref);
lua_pushinteger(L, prio);
lua_call(L, 1, 0);
}
// Lua: node.task.post([priority],task_cb) -- schedule a task for execution next
static int node_task_post( lua_State* L )
{
int n = 1, Ltype = lua_type(L, 1);
unsigned priority = TASK_PRIORITY_MEDIUM;
if (Ltype == LUA_TNUMBER) {
priority = (unsigned) luaL_checkint(L, 1);
luaL_argcheck(L, priority <= TASK_PRIORITY_HIGH, 1, "invalid priority");
Ltype = lua_type(L, ++n);
}
luaL_argcheck(L, Ltype == LUA_TFUNCTION || Ltype == LUA_TLIGHTFUNCTION, n, "invalid function");
lua_pushvalue(L, n);
int task_fn_ref = luaL_ref(L, LUA_REGISTRYINDEX);
if (!do_node_task_handle) // bind the task handle to do_node_task on 1st call
do_node_task_handle = task_get_id(do_node_task);
if(!task_post(priority, do_node_task_handle, (task_param_t)task_fn_ref)) {
luaL_unref(L, LUA_REGISTRYINDEX, task_fn_ref);
luaL_error(L, "Task queue overflow. Task not posted");
}
return 0;
}
static int node_osprint (lua_State *L)
{
if (lua_toboolean (L, 1))
esp_log_level_set ("*", CONFIG_LOG_DEFAULT_LEVEL);
else
esp_log_level_set ("*", ESP_LOG_NONE);
return 0;
}
static int node_uptime(lua_State *L)
{
uint64_t now = esp_timer_get_time();
#ifdef LUA_NUMBER_INTEGRAL
lua_pushinteger(L, (lua_Integer)(now & 0x7FFFFFFF));
lua_pushinteger(L, (lua_Integer)((now >> 31) & 0x7FFFFFFF));
#else
// The largest double that doesn't lose whole-number precision is 2^53, so the
// mask we apply is (2^53)-1 which is 0x1FFFFFFFFFFFFF. In practice this is
// long enough the timer should never wrap, but it interesting nonetheless.
lua_pushnumber(L, (lua_Number)(now & 0x1FFFFFFFFFFFFFull));
lua_pushinteger(L, (lua_Integer)(now >> 53));
#endif
return 2;
}
LROT_BEGIN(node_egc)
LROT_FUNCENTRY( setmode, node_egc_setmode )
LROT_NUMENTRY ( NOT_ACTIVE, EGC_NOT_ACTIVE )
LROT_NUMENTRY ( ON_ALLOC_FAILURE, EGC_ON_ALLOC_FAILURE )
LROT_NUMENTRY ( ON_MEM_LIMIT, EGC_ON_MEM_LIMIT )
LROT_NUMENTRY ( ALWAYS, EGC_ALWAYS )
LROT_END(node_egc, NULL, 0)
LROT_BEGIN(node_task)
LROT_FUNCENTRY( post, node_task_post )
LROT_NUMENTRY ( LOW_PRIORITY, TASK_PRIORITY_LOW )
LROT_NUMENTRY ( MEDIUM_PRIORITY, TASK_PRIORITY_MEDIUM )
LROT_NUMENTRY ( HIGH_PRIORITY, TASK_PRIORITY_HIGH )
LROT_END(node_task, NULL, 0)
// Wakup reasons
LROT_BEGIN(node_wakeup)
LROT_NUMENTRY ( GPIO, ESP_SLEEP_WAKEUP_GPIO )
LROT_NUMENTRY ( TIMER, ESP_SLEEP_WAKEUP_TIMER )
LROT_NUMENTRY ( TOUCHPAD, ESP_SLEEP_WAKEUP_TOUCHPAD )
LROT_NUMENTRY ( UART, ESP_SLEEP_WAKEUP_UART )
LROT_NUMENTRY ( ULP, ESP_SLEEP_WAKEUP_ULP )
LROT_END(node_wakeup, NULL, 0)
LROT_BEGIN(node)
2021-04-02 08:03:17 +02:00
LROT_FUNCENTRY( bootreason, node_bootreason )
LROT_FUNCENTRY( chipid, node_chipid )
LROT_FUNCENTRY( compile, node_compile )
LROT_FUNCENTRY( dsleep, node_dsleep )
LROT_TABENTRY ( egc, node_egc )
LROT_FUNCENTRY( flashreload,luaN_reload_reboot )
LROT_FUNCENTRY( flashindex, luaN_index )
LROT_FUNCENTRY( heap, node_heap )
LROT_FUNCENTRY( input, node_input )
LROT_FUNCENTRY( output, node_output )
LROT_FUNCENTRY( osoutput, node_osoutput )
LROT_FUNCENTRY( osprint, node_osprint )
LROT_FUNCENTRY( restart, node_restart )
LROT_FUNCENTRY( sleep, node_sleep )
LROT_FUNCENTRY( stripdebug, node_stripdebug )
LROT_TABENTRY ( task, node_task )
LROT_FUNCENTRY( uptime, node_uptime )
LROT_TABENTRY ( wakeup, node_wakeup )
LROT_END(node, NULL, 0)
NODEMCU_MODULE(NODE, "node", node, NULL);