842 lines
25 KiB
C
842 lines
25 KiB
C
|
/*
|
||
|
** $Id: ltable.c,v 2.118.1.4 2018/06/08 16:22:51 roberto Exp $
|
||
|
** Lua tables (hash)
|
||
|
** See Copyright Notice in lua.h
|
||
|
*/
|
||
|
|
||
|
#define ltable_c
|
||
|
#define LUA_CORE
|
||
|
|
||
|
#include "lprefix.h"
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Implementation of tables (aka arrays, objects, or hash tables).
|
||
|
** Tables keep its elements in two parts: an array part and a hash part.
|
||
|
** Non-negative integer keys are all candidates to be kept in the array
|
||
|
** part. The actual size of the array is the largest 'n' such that
|
||
|
** more than half the slots between 1 and n are in use.
|
||
|
** Hash uses a mix of chained scatter table with Brent's variation.
|
||
|
** A main invariant of these tables is that, if an element is not
|
||
|
** in its main position (i.e. the 'original' position that its hash gives
|
||
|
** to it), then the colliding element is in its own main position.
|
||
|
** Hence even when the load factor reaches 100%, performance remains good.
|
||
|
*/
|
||
|
|
||
|
#include <math.h>
|
||
|
#include <limits.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include "lua.h"
|
||
|
|
||
|
#include "ldebug.h"
|
||
|
#include "ldo.h"
|
||
|
#include "lgc.h"
|
||
|
#include "lmem.h"
|
||
|
#include "lobject.h"
|
||
|
#include "lstate.h"
|
||
|
#include "lstring.h"
|
||
|
#include "ltable.h"
|
||
|
#include "lvm.h"
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is
|
||
|
** the largest integer such that MAXASIZE fits in an unsigned int.
|
||
|
*/
|
||
|
#define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
|
||
|
#define MAXASIZE (1u << MAXABITS)
|
||
|
|
||
|
/*
|
||
|
** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest
|
||
|
** integer such that 2^MAXHBITS fits in a signed int. (Note that the
|
||
|
** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still
|
||
|
** fits comfortably in an unsigned int.)
|
||
|
*/
|
||
|
#define MAXHBITS (MAXABITS - 1)
|
||
|
|
||
|
|
||
|
#define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
|
||
|
|
||
|
#define hashstr(t,str) hashpow2(t, (str)->hash)
|
||
|
#define hashboolean(t,p) hashpow2(t, p)
|
||
|
#define hashint(t,i) hashpow2(t, i)
|
||
|
|
||
|
|
||
|
/*
|
||
|
** for some types, it is better to avoid modulus by power of 2, as
|
||
|
** they tend to have many 2 factors.
|
||
|
*/
|
||
|
#define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
|
||
|
|
||
|
|
||
|
#define hashpointer(t,p) hashmod(t, point2uint(p))
|
||
|
|
||
|
|
||
|
#define dummynode (&dummynode_)
|
||
|
|
||
|
static const Node dummynode_ = {
|
||
|
{NILCONSTANT}, /* value */
|
||
|
{{NILCONSTANT, 0}} /* key */
|
||
|
};
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Hash for floating-point numbers.
|
||
|
** The main computation should be just
|
||
|
** n = frexp(n, &i); return (n * INT_MAX) + i
|
||
|
** but there are some numerical subtleties.
|
||
|
** In a two-complement representation, INT_MAX does not has an exact
|
||
|
** representation as a float, but INT_MIN does; because the absolute
|
||
|
** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
|
||
|
** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
|
||
|
** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
|
||
|
** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
|
||
|
** INT_MIN.
|
||
|
*/
|
||
|
#if !defined(l_hashfloat)
|
||
|
static int l_hashfloat (lua_Number n) {
|
||
|
int i;
|
||
|
lua_Integer ni;
|
||
|
n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
|
||
|
if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
|
||
|
lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
|
||
|
return 0;
|
||
|
}
|
||
|
else { /* normal case */
|
||
|
unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni);
|
||
|
return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/*
|
||
|
** returns the 'main' position of an element in a table (that is, the index
|
||
|
** of its hash value)
|
||
|
*/
|
||
|
static Node *mainposition (const Table *t, const TValue *key) {
|
||
|
switch (ttype(key)) {
|
||
|
case LUA_TNUMINT:
|
||
|
return hashint(t, ivalue(key));
|
||
|
case LUA_TNUMFLT:
|
||
|
return hashmod(t, l_hashfloat(fltvalue(key)));
|
||
|
case LUA_TSHRSTR:
|
||
|
return hashstr(t, tsvalue(key));
|
||
|
case LUA_TLNGSTR:
|
||
|
return hashpow2(t, luaS_hashlongstr(tsvalue(key)));
|
||
|
case LUA_TBOOLEAN:
|
||
|
return hashboolean(t, bvalue(key));
|
||
|
case LUA_TLIGHTUSERDATA:
|
||
|
return hashpointer(t, pvalue(key));
|
||
|
case LUA_TLCF:
|
||
|
return hashpointer(t, fvalue(key));
|
||
|
default:
|
||
|
lua_assert(!ttisdeadkey(key));
|
||
|
return hashpointer(t, gcvalue(key));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** returns the index for 'key' if 'key' is an appropriate key to live in
|
||
|
** the array part of the table, 0 otherwise.
|
||
|
*/
|
||
|
static unsigned int arrayindex (const TValue *key) {
|
||
|
if (ttisinteger(key)) {
|
||
|
lua_Integer k = ivalue(key);
|
||
|
if (0 < k && (lua_Unsigned)k <= MAXASIZE)
|
||
|
return cast(unsigned int, k); /* 'key' is an appropriate array index */
|
||
|
}
|
||
|
return 0; /* 'key' did not match some condition */
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** returns the index of a 'key' for table traversals. First goes all
|
||
|
** elements in the array part, then elements in the hash part. The
|
||
|
** beginning of a traversal is signaled by 0.
|
||
|
*/
|
||
|
static unsigned int findindex (lua_State *L, Table *t, StkId key) {
|
||
|
unsigned int i;
|
||
|
if (ttisnil(key)) return 0; /* first iteration */
|
||
|
i = arrayindex(key);
|
||
|
if (i != 0 && i <= t->sizearray) /* is 'key' inside array part? */
|
||
|
return i; /* yes; that's the index */
|
||
|
else {
|
||
|
int nx;
|
||
|
Node *n = mainposition(t, key);
|
||
|
for (;;) { /* check whether 'key' is somewhere in the chain */
|
||
|
/* key may be dead already, but it is ok to use it in 'next' */
|
||
|
if (luaV_rawequalobj(gkey(n), key) ||
|
||
|
(ttisdeadkey(gkey(n)) && iscollectable(key) &&
|
||
|
deadvalue(gkey(n)) == gcvalue(key))) {
|
||
|
i = cast_int(n - gnode(t, 0)); /* key index in hash table */
|
||
|
/* hash elements are numbered after array ones */
|
||
|
return (i + 1) + t->sizearray;
|
||
|
}
|
||
|
nx = gnext(n);
|
||
|
if (nx == 0)
|
||
|
luaG_runerror(L, "invalid key to 'next'"); /* key not found */
|
||
|
else n += nx;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void rotable_next(lua_State *L, ROTable *t, TValue *key, TValue *val);
|
||
|
|
||
|
int luaH_next (lua_State *L, Table *t, StkId key) {
|
||
|
unsigned int i;
|
||
|
if (isrotable(t)) {
|
||
|
rotable_next(L, (ROTable *) t, key, key+1);
|
||
|
return ttisnil(key) ? 0 : 1;
|
||
|
}
|
||
|
i = findindex(L, t, key); /* find original element */
|
||
|
for (; i < t->sizearray; i++) { /* try first array part */
|
||
|
if (!ttisnil(&t->array[i])) { /* a non-nil value? */
|
||
|
setivalue(key, i + 1);
|
||
|
setobj2s(L, key+1, &t->array[i]);
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) { /* hash part */
|
||
|
if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */
|
||
|
setobj2s(L, key, gkey(gnode(t, i)));
|
||
|
setobj2s(L, key+1, gval(gnode(t, i)));
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
return 0; /* no more elements */
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** {=============================================================
|
||
|
** Rehash
|
||
|
** ==============================================================
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
** Compute the optimal size for the array part of table 't'. 'nums' is a
|
||
|
** "count array" where 'nums[i]' is the number of integers in the table
|
||
|
** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
|
||
|
** integer keys in the table and leaves with the number of keys that
|
||
|
** will go to the array part; return the optimal size.
|
||
|
*/
|
||
|
static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
|
||
|
int i;
|
||
|
unsigned int twotoi; /* 2^i (candidate for optimal size) */
|
||
|
unsigned int a = 0; /* number of elements smaller than 2^i */
|
||
|
unsigned int na = 0; /* number of elements to go to array part */
|
||
|
unsigned int optimal = 0; /* optimal size for array part */
|
||
|
/* loop while keys can fill more than half of total size */
|
||
|
for (i = 0, twotoi = 1;
|
||
|
twotoi > 0 && *pna > twotoi / 2;
|
||
|
i++, twotoi *= 2) {
|
||
|
if (nums[i] > 0) {
|
||
|
a += nums[i];
|
||
|
if (a > twotoi/2) { /* more than half elements present? */
|
||
|
optimal = twotoi; /* optimal size (till now) */
|
||
|
na = a; /* all elements up to 'optimal' will go to array part */
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
|
||
|
*pna = na;
|
||
|
return optimal;
|
||
|
}
|
||
|
|
||
|
|
||
|
static int countint (const TValue *key, unsigned int *nums) {
|
||
|
unsigned int k = arrayindex(key);
|
||
|
if (k != 0) { /* is 'key' an appropriate array index? */
|
||
|
nums[luaO_ceillog2(k)]++; /* count as such */
|
||
|
return 1;
|
||
|
}
|
||
|
else
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Count keys in array part of table 't': Fill 'nums[i]' with
|
||
|
** number of keys that will go into corresponding slice and return
|
||
|
** total number of non-nil keys.
|
||
|
*/
|
||
|
static unsigned int numusearray (const Table *t, unsigned int *nums) {
|
||
|
int lg;
|
||
|
unsigned int ttlg; /* 2^lg */
|
||
|
unsigned int ause = 0; /* summation of 'nums' */
|
||
|
unsigned int i = 1; /* count to traverse all array keys */
|
||
|
/* traverse each slice */
|
||
|
for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
|
||
|
unsigned int lc = 0; /* counter */
|
||
|
unsigned int lim = ttlg;
|
||
|
if (lim > t->sizearray) {
|
||
|
lim = t->sizearray; /* adjust upper limit */
|
||
|
if (i > lim)
|
||
|
break; /* no more elements to count */
|
||
|
}
|
||
|
/* count elements in range (2^(lg - 1), 2^lg] */
|
||
|
for (; i <= lim; i++) {
|
||
|
if (!ttisnil(&t->array[i-1]))
|
||
|
lc++;
|
||
|
}
|
||
|
nums[lg] += lc;
|
||
|
ause += lc;
|
||
|
}
|
||
|
return ause;
|
||
|
}
|
||
|
|
||
|
|
||
|
static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
|
||
|
int totaluse = 0; /* total number of elements */
|
||
|
int ause = 0; /* elements added to 'nums' (can go to array part) */
|
||
|
int i = sizenode(t);
|
||
|
while (i--) {
|
||
|
Node *n = &t->node[i];
|
||
|
if (!ttisnil(gval(n))) {
|
||
|
ause += countint(gkey(n), nums);
|
||
|
totaluse++;
|
||
|
}
|
||
|
}
|
||
|
*pna += ause;
|
||
|
return totaluse;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void setarrayvector (lua_State *L, Table *t, unsigned int size) {
|
||
|
unsigned int i;
|
||
|
luaM_reallocvector(L, t->array, t->sizearray, size, TValue);
|
||
|
for (i=t->sizearray; i<size; i++)
|
||
|
setnilvalue(&t->array[i]);
|
||
|
t->sizearray = size;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void setnodevector (lua_State *L, Table *t, unsigned int size) {
|
||
|
if (size == 0) { /* no elements to hash part? */
|
||
|
t->node = cast(Node *, dummynode); /* use common 'dummynode' */
|
||
|
t->lsizenode = 0;
|
||
|
t->lastfree = NULL; /* signal that it is using dummy node */
|
||
|
}
|
||
|
else {
|
||
|
int i;
|
||
|
int lsize = luaO_ceillog2(size);
|
||
|
if (lsize > MAXHBITS)
|
||
|
luaG_runerror(L, "table overflow");
|
||
|
size = twoto(lsize);
|
||
|
t->node = luaM_newvector(L, size, Node);
|
||
|
for (i = 0; i < (int)size; i++) {
|
||
|
Node *n = gnode(t, i);
|
||
|
gnext(n) = 0;
|
||
|
setnilvalue(wgkey(n));
|
||
|
setnilvalue(gval(n));
|
||
|
}
|
||
|
t->lsizenode = cast_byte(lsize);
|
||
|
t->lastfree = gnode(t, size); /* all positions are free */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
typedef struct {
|
||
|
Table *t;
|
||
|
unsigned int nhsize;
|
||
|
} AuxsetnodeT;
|
||
|
|
||
|
|
||
|
static void auxsetnode (lua_State *L, void *ud) {
|
||
|
AuxsetnodeT *asn = cast(AuxsetnodeT *, ud);
|
||
|
setnodevector(L, asn->t, asn->nhsize);
|
||
|
}
|
||
|
|
||
|
|
||
|
void luaH_resize (lua_State *L, Table *t, unsigned int nasize,
|
||
|
unsigned int nhsize) {
|
||
|
unsigned int i;
|
||
|
int j;
|
||
|
AuxsetnodeT asn;
|
||
|
unsigned int oldasize = t->sizearray;
|
||
|
int oldhsize = allocsizenode(t);
|
||
|
Node *nold = t->node; /* save old hash ... */
|
||
|
if (nasize > oldasize) /* array part must grow? */
|
||
|
setarrayvector(L, t, nasize);
|
||
|
/* create new hash part with appropriate size */
|
||
|
asn.t = t; asn.nhsize = nhsize;
|
||
|
if (luaD_rawrunprotected(L, auxsetnode, &asn) != LUA_OK) { /* mem. error? */
|
||
|
setarrayvector(L, t, oldasize); /* array back to its original size */
|
||
|
luaD_throw(L, LUA_ERRMEM); /* rethrow memory error */
|
||
|
}
|
||
|
if (nasize < oldasize) { /* array part must shrink? */
|
||
|
t->sizearray = nasize;
|
||
|
/* re-insert elements from vanishing slice */
|
||
|
for (i=nasize; i<oldasize; i++) {
|
||
|
if (!ttisnil(&t->array[i]))
|
||
|
luaH_setint(L, t, i + 1, &t->array[i]);
|
||
|
}
|
||
|
/* shrink array */
|
||
|
luaM_reallocvector(L, t->array, oldasize, nasize, TValue);
|
||
|
}
|
||
|
/* re-insert elements from hash part */
|
||
|
for (j = oldhsize - 1; j >= 0; j--) {
|
||
|
Node *old = nold + j;
|
||
|
if (!ttisnil(gval(old))) {
|
||
|
/* doesn't need barrier/invalidate cache, as entry was
|
||
|
already present in the table */
|
||
|
setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old));
|
||
|
}
|
||
|
}
|
||
|
if (oldhsize > 0) /* not the dummy node? */
|
||
|
luaM_freearray(L, nold, cast(size_t, oldhsize)); /* free old hash */
|
||
|
}
|
||
|
|
||
|
|
||
|
void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
|
||
|
int nsize = allocsizenode(t);
|
||
|
luaH_resize(L, t, nasize, nsize);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
|
||
|
*/
|
||
|
static void rehash (lua_State *L, Table *t, const TValue *ek) {
|
||
|
unsigned int asize; /* optimal size for array part */
|
||
|
unsigned int na; /* number of keys in the array part */
|
||
|
unsigned int nums[MAXABITS + 1];
|
||
|
int i;
|
||
|
int totaluse;
|
||
|
for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
|
||
|
na = numusearray(t, nums); /* count keys in array part */
|
||
|
totaluse = na; /* all those keys are integer keys */
|
||
|
totaluse += numusehash(t, nums, &na); /* count keys in hash part */
|
||
|
/* count extra key */
|
||
|
na += countint(ek, nums);
|
||
|
totaluse++;
|
||
|
/* compute new size for array part */
|
||
|
asize = computesizes(nums, &na);
|
||
|
/* resize the table to new computed sizes */
|
||
|
luaH_resize(L, t, asize, totaluse - na);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*
|
||
|
** }=============================================================
|
||
|
*/
|
||
|
|
||
|
|
||
|
Table *luaH_new (lua_State *L) {
|
||
|
GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table));
|
||
|
Table *t = gco2t(o);
|
||
|
t->metatable = NULL;
|
||
|
t->flags = cast_byte(~0);
|
||
|
t->array = NULL;
|
||
|
t->sizearray = 0;
|
||
|
setnodevector(L, t, 0);
|
||
|
return t;
|
||
|
}
|
||
|
|
||
|
|
||
|
void luaH_free (lua_State *L, Table *t) {
|
||
|
if (!isdummy(t))
|
||
|
luaM_freearray(L, t->node, cast(size_t, sizenode(t)));
|
||
|
luaM_freearray(L, t->array, t->sizearray);
|
||
|
luaM_free(L, t);
|
||
|
}
|
||
|
|
||
|
|
||
|
static Node *getfreepos (Table *t) {
|
||
|
if (!isdummy(t)) {
|
||
|
while (t->lastfree > t->node) {
|
||
|
t->lastfree--;
|
||
|
if (ttisnil(gkey(t->lastfree)))
|
||
|
return t->lastfree;
|
||
|
}
|
||
|
}
|
||
|
return NULL; /* could not find a free place */
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*
|
||
|
** inserts a new key into a hash table; first, check whether key's main
|
||
|
** position is free. If not, check whether colliding node is in its main
|
||
|
** position or not: if it is not, move colliding node to an empty place and
|
||
|
** put new key in its main position; otherwise (colliding node is in its main
|
||
|
** position), new key goes to an empty position.
|
||
|
*/
|
||
|
TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
|
||
|
Node *mp;
|
||
|
TValue aux;
|
||
|
if(!isrwtable(t)) luaG_runerror(L, "table is Readonly");
|
||
|
if (ttisnil(key)) luaG_runerror(L, "table index is nil");
|
||
|
else if (ttisfloat(key)) {
|
||
|
lua_Integer k;
|
||
|
if (luaV_tointeger(key, &k, 0)) { /* does index fit in an integer? */
|
||
|
setivalue(&aux, k);
|
||
|
key = &aux; /* insert it as an integer */
|
||
|
}
|
||
|
else if (luai_numisnan(fltvalue(key)))
|
||
|
luaG_runerror(L, "table index is NaN");
|
||
|
}
|
||
|
mp = mainposition(t, key);
|
||
|
if (!ttisnil(gval(mp)) || isdummy(t)) { /* main position is taken? */
|
||
|
Node *othern;
|
||
|
Node *f = getfreepos(t); /* get a free place */
|
||
|
if (f == NULL) { /* cannot find a free place? */
|
||
|
rehash(L, t, key); /* grow table */
|
||
|
/* whatever called 'newkey' takes care of TM cache */
|
||
|
return luaH_set(L, t, key); /* insert key into grown table */
|
||
|
}
|
||
|
lua_assert(!isdummy(t));
|
||
|
othern = mainposition(t, gkey(mp));
|
||
|
if (othern != mp) { /* is colliding node out of its main position? */
|
||
|
/* yes; move colliding node into free position */
|
||
|
while (othern + gnext(othern) != mp) /* find previous */
|
||
|
othern += gnext(othern);
|
||
|
gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
|
||
|
*f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
|
||
|
if (gnext(mp) != 0) {
|
||
|
gnext(f) += cast_int(mp - f); /* correct 'next' */
|
||
|
gnext(mp) = 0; /* now 'mp' is free */
|
||
|
}
|
||
|
setnilvalue(gval(mp));
|
||
|
}
|
||
|
else { /* colliding node is in its own main position */
|
||
|
/* new node will go into free position */
|
||
|
if (gnext(mp) != 0)
|
||
|
gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
|
||
|
else lua_assert(gnext(f) == 0);
|
||
|
gnext(mp) = cast_int(f - mp);
|
||
|
mp = f;
|
||
|
}
|
||
|
}
|
||
|
setnodekey(L, &mp->i_key, key);
|
||
|
luaC_barrierback(L, t, key);
|
||
|
lua_assert(ttisnil(gval(mp)));
|
||
|
return gval(mp);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** search function for integers
|
||
|
*/
|
||
|
const TValue *luaH_getint (Table *t, lua_Integer key) {
|
||
|
if (isrotable(t))
|
||
|
return luaO_nilobject;
|
||
|
/* (1 <= key && key <= t->sizearray) */
|
||
|
if (l_castS2U(key) - 1 < t->sizearray)
|
||
|
return &t->array[key - 1];
|
||
|
else {
|
||
|
Node *n = hashint(t, key);
|
||
|
for (;;) { /* check whether 'key' is somewhere in the chain */
|
||
|
if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key)
|
||
|
return gval(n); /* that's it */
|
||
|
else {
|
||
|
int nx = gnext(n);
|
||
|
if (nx == 0) break;
|
||
|
n += nx;
|
||
|
}
|
||
|
}
|
||
|
return luaO_nilobject;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** search function for short strings
|
||
|
*/
|
||
|
|
||
|
static const TValue* rotable_findentry(ROTable *rotable, TString *key, unsigned *ppos);
|
||
|
|
||
|
const TValue *luaH_getshortstr (Table *t, TString *key) {
|
||
|
Node *n;
|
||
|
if (isrotable(t))
|
||
|
return rotable_findentry((ROTable*) t, key, NULL);
|
||
|
n = hashstr(t, key);
|
||
|
lua_assert(gettt(key) == LUA_TSHRSTR);
|
||
|
for (;;) { /* check whether 'key' is somewhere in the chain */
|
||
|
const TValue *k = gkey(n);
|
||
|
if (ttisshrstring(k) && eqshrstr(tsvalue(k), key))
|
||
|
return gval(n); /* that's it */
|
||
|
else {
|
||
|
int nx = gnext(n);
|
||
|
if (nx == 0)
|
||
|
return luaO_nilobject; /* not found */
|
||
|
n += nx;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** "Generic" get version. (Not that generic: not valid for integers,
|
||
|
** which may be in array part, nor for floats with integral values.)
|
||
|
*/
|
||
|
static const TValue *getgeneric (Table *t, const TValue *key) {
|
||
|
Node *n;
|
||
|
if (isrotable(t))
|
||
|
return luaO_nilobject;
|
||
|
n = mainposition(t, key);
|
||
|
for (;;) { /* check whether 'key' is somewhere in the chain */
|
||
|
if (luaV_rawequalobj(gkey(n), key))
|
||
|
return gval(n); /* that's it */
|
||
|
else {
|
||
|
int nx = gnext(n);
|
||
|
if (nx == 0)
|
||
|
return luaO_nilobject; /* not found */
|
||
|
n += nx;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
const TValue *luaH_getstr (Table *t, TString *key) {
|
||
|
if (gettt(key) == LUA_TSHRSTR)
|
||
|
return luaH_getshortstr(t, key);
|
||
|
else { /* for long strings, use generic case */
|
||
|
TValue ko;
|
||
|
setsvalue(cast(lua_State *, NULL), &ko, key);
|
||
|
return getgeneric(t, &ko);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** main search function
|
||
|
*/
|
||
|
const TValue *luaH_get (Table *t, const TValue *key) {
|
||
|
switch (ttype(key)) {
|
||
|
case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key));
|
||
|
case LUA_TNUMINT: return luaH_getint(t, ivalue(key));
|
||
|
case LUA_TNIL: return luaO_nilobject;
|
||
|
case LUA_TNUMFLT: {
|
||
|
lua_Integer k;
|
||
|
if (luaV_tointeger(key, &k, 0)) /* index is int? */
|
||
|
return luaH_getint(t, k); /* use specialized version */
|
||
|
/* else... */
|
||
|
} /* FALLTHROUGH */
|
||
|
default:
|
||
|
return getgeneric(t, key);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** beware: when using this function you probably need to check a GC
|
||
|
** barrier and invalidate the TM cache.
|
||
|
*/
|
||
|
TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
|
||
|
const TValue *p;
|
||
|
if (isrotable(t))
|
||
|
luaG_runerror(L, "table is readonly");
|
||
|
p = luaH_get(t, key);
|
||
|
if (p != luaO_nilobject)
|
||
|
return cast(TValue *, p);
|
||
|
else return luaH_newkey(L, t, key);
|
||
|
}
|
||
|
|
||
|
|
||
|
void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
|
||
|
const TValue *p;
|
||
|
if (isrotable(t))
|
||
|
luaG_runerror(L, "table is readonly");
|
||
|
p = luaH_getint(t, key);
|
||
|
TValue *cell;
|
||
|
if (p != luaO_nilobject)
|
||
|
cell = cast(TValue *, p);
|
||
|
else {
|
||
|
TValue k;
|
||
|
setivalue(&k, key);
|
||
|
cell = luaH_newkey(L, t, &k);
|
||
|
}
|
||
|
setobj2t(L, cell, value);
|
||
|
}
|
||
|
|
||
|
|
||
|
static lua_Unsigned unbound_search (Table *t, lua_Unsigned j) {
|
||
|
lua_Unsigned i = j; /* i is zero or a present index */
|
||
|
j++;
|
||
|
/* find 'i' and 'j' such that i is present and j is not */
|
||
|
while (!ttisnil(luaH_getint(t, j))) {
|
||
|
i = j;
|
||
|
if (j > l_castS2U(LUA_MAXINTEGER) / 2) { /* overflow? */
|
||
|
/* table was built with bad purposes: resort to linear search */
|
||
|
i = 1;
|
||
|
while (!ttisnil(luaH_getint(t, i))) i++;
|
||
|
return i - 1;
|
||
|
}
|
||
|
j *= 2;
|
||
|
}
|
||
|
/* now do a binary search between them */
|
||
|
while (j - i > 1) {
|
||
|
lua_Unsigned m = (i+j)/2;
|
||
|
if (ttisnil(luaH_getint(t, m))) j = m;
|
||
|
else i = m;
|
||
|
}
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Try to find a boundary in table 't'. A 'boundary' is an integer index
|
||
|
** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
|
||
|
*/
|
||
|
lua_Unsigned luaH_getn (Table *t) {
|
||
|
unsigned int j;
|
||
|
if (isrotable(t))
|
||
|
return 0;
|
||
|
j = t->sizearray;
|
||
|
if (j > 0 && ttisnil(&t->array[j - 1])) {
|
||
|
/* there is a boundary in the array part: (binary) search for it */
|
||
|
unsigned int i = 0;
|
||
|
while (j - i > 1) {
|
||
|
unsigned int m = (i+j)/2;
|
||
|
if (ttisnil(&t->array[m - 1])) j = m;
|
||
|
else i = m;
|
||
|
}
|
||
|
return i;
|
||
|
}
|
||
|
/* else must find a boundary in hash part */
|
||
|
else if (isdummy(t)) /* hash part is empty? */
|
||
|
return j; /* that is easy... */
|
||
|
else return unbound_search(t, j);
|
||
|
}
|
||
|
|
||
|
|
||
|
int luaH_isdummy (const Table *t) { return isdummy(t); }
|
||
|
|
||
|
|
||
|
/*
|
||
|
** All keyed ROTable access passes through rotable_findentry(). ROTables
|
||
|
** are simply a list of <key><TValue value> pairs.
|
||
|
**
|
||
|
** The global KeyCache is used to avoid a relatively expensive Flash memory
|
||
|
** vector scan. A simple hash on the key's TString addr and the ROTable
|
||
|
** addr selects the cache line. The line's slots are then scanned for a
|
||
|
** hit.
|
||
|
**
|
||
|
** Unlike the standard hash which uses a prime line count therefore requires
|
||
|
** the use of modulus operation which is expensive on an IoT processor
|
||
|
** without H/W divide. This hash is power of 2 based which might not be quite
|
||
|
** so uniform but can be calculated without using H/W-based instructions.
|
||
|
**
|
||
|
** If a match is found and the table addresses match, then this entry is
|
||
|
** probed first. In practice the hit-rate here is over 99% so the code
|
||
|
** rarely fails back to doing the linear scan in ROM.
|
||
|
** Note that this hash does a couple of prime multiples and a modulus 2^X
|
||
|
** with is all evaluated in H/W, and adequately randomizes the lookup.
|
||
|
*/
|
||
|
#define HASH(a,b) ((((29*(size_t)(a)) ^ (37*((b)->hash)))>>4)&(KEYCACHE_N-1))
|
||
|
#define NDX_SHFT 24
|
||
|
#define ADDR_MASK (((size_t) 1<<24)-1)
|
||
|
|
||
|
/*
|
||
|
* Find a string key entry in a rotable and return it.
|
||
|
*/
|
||
|
static const TValue* rotable_findentry(ROTable *t, TString *key, unsigned *ppos) {
|
||
|
const ROTable_entry *e = cast(const ROTable_entry *, t->entry);
|
||
|
const int tl = getlsizenode(t);
|
||
|
const char *strkey = getstr(key);
|
||
|
const int hash = HASH(t, key);
|
||
|
KeyCache *cl = luaE_getcache(hash);
|
||
|
int i, j = 1, l;
|
||
|
|
||
|
if (!e || gettt(key) != LUA_TSHRSTR)
|
||
|
return luaO_nilobject;
|
||
|
|
||
|
l = getshrlen(key);
|
||
|
/* scan the ROTable key cache and return if hit found */
|
||
|
for (i = 0; i < KEYCACHE_M; i++) {
|
||
|
int cl_ndx = cl[i] >> NDX_SHFT;
|
||
|
if ((((size_t)t - cl[i]) & ADDR_MASK) == 0 && cl_ndx < tl &&
|
||
|
strcmp(e[cl_ndx].key, strkey) == 0) {
|
||
|
if (ppos)
|
||
|
*ppos = cl_ndx;
|
||
|
return &e[cl_ndx].value;
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* In practice most table scans are from a table miss due to the key cache
|
||
|
* short-circuiting almost all table hits. ROTable keys can be unsorted
|
||
|
* because of legacy compatibility, so the search must use a sequential
|
||
|
* equality match.
|
||
|
*
|
||
|
* The masked name4 comparison is a safe 4-byte comparison for all supported
|
||
|
* NodeMCU hosts and targets; It generate fast efficient access that avoids
|
||
|
* unaligned exceptions and costly strcmp() except for a last hit validation.
|
||
|
* However, this is ENDIAN SENSITIVE which is validate during initialisation.
|
||
|
*
|
||
|
* The majority of search misses are for metavalues (keys starting with __),
|
||
|
* so all metavalues if any must be at the front of each entry list.
|
||
|
*/
|
||
|
lu_int32 name4 = *(lu_int32 *)strkey;
|
||
|
lu_int32 mask4 = l > 2 ? (~0u) : (~0u)>>((3-l)*8);
|
||
|
lua_assert(*(int*)"abcd" == 0x64636261);
|
||
|
#define eq4(s) (((*(lu_int32 *)s ^ name4) & mask4) == 0)
|
||
|
#define ismeta(s) ((*(lu_int32 *)s & 0xffff) == *(lu_int32 *)"__\0")
|
||
|
|
||
|
if (ismeta(&name4)) {
|
||
|
for(i = 0; i < tl && ismeta(e[i].key); i++) {
|
||
|
if (eq4(e[i].key) && !strcmp(e[i].key, strkey)) {
|
||
|
j = 0; break;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
for(i = 0; i < tl; i++) {
|
||
|
if (eq4(e[i].key) && !strcmp(e[i].key, strkey)) {
|
||
|
j = 0; break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (j)
|
||
|
return luaO_nilobject;
|
||
|
if (ppos)
|
||
|
*ppos = i;
|
||
|
/* In the case of a hit, update the lookaside cache */
|
||
|
for (j = KEYCACHE_M-1; j>0; j--)
|
||
|
cl[j] = cl[j-1];
|
||
|
cl[0] = ((size_t)t & ADDR_MASK) + (i << NDX_SHFT);
|
||
|
return &e[i].value;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void rotable_next_helper(lua_State *L, ROTable *t, int pos,
|
||
|
TValue *key, TValue *val) {
|
||
|
const ROTable_entry *e = cast(const ROTable_entry *, t->entry);
|
||
|
if (pos < getlsizenode(t)) {
|
||
|
/* Found an entry */
|
||
|
setsvalue(L, key, luaS_new(L, e[pos].key));
|
||
|
setobj2s(L, val, &e[pos].value);
|
||
|
} else {
|
||
|
setnilvalue(key);
|
||
|
setnilvalue(val);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* next (used for iteration) */
|
||
|
static void rotable_next(lua_State *L, ROTable *t, TValue *key, TValue *val) {
|
||
|
unsigned keypos = getlsizenode(t);
|
||
|
|
||
|
/* Special case: if key is nil, return the first element of the rotable */
|
||
|
if (ttisnil(key))
|
||
|
rotable_next_helper(L, t, 0, key, val);
|
||
|
else if (ttisstring(key)) {
|
||
|
/* Find the previous key again */
|
||
|
if (ttisstring(key)) {
|
||
|
rotable_findentry(t, tsvalue(key), &keypos);
|
||
|
}
|
||
|
/* Advance to next key */
|
||
|
rotable_next_helper(L, t, ++keypos, key, val);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
#if defined(LUA_DEBUG)
|
||
|
Node *luaH_mainposition (const Table *t, const TValue *key) {
|
||
|
return mainposition(t, key);
|
||
|
}
|
||
|
#endif
|