607 lines
20 KiB
C
607 lines
20 KiB
C
|
|
||
|
#define lnodemcu_c
|
||
|
#define LUA_CORE
|
||
|
|
||
|
#include "lua.h"
|
||
|
#include <string.h>
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
#include "lobject.h"
|
||
|
#include "lstate.h"
|
||
|
#include "lapi.h"
|
||
|
#include "lauxlib.h"
|
||
|
#include "lfunc.h"
|
||
|
#include "lgc.h"
|
||
|
#include "lstring.h"
|
||
|
#include "ltable.h"
|
||
|
#include "ltm.h"
|
||
|
#include "lnodemcu.h"
|
||
|
#include "lundump.h"
|
||
|
#include "lzio.h"
|
||
|
|
||
|
#ifdef LUA_USE_ESP
|
||
|
#include "platform.h"
|
||
|
#include "user_interface.h"
|
||
|
#include "vfs.h"
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
** This is a mixed bag of NodeMCU additions broken into the following sections:
|
||
|
** * POSIX vs VFS file API abstraction
|
||
|
** * Emulate Platform_XXX() API
|
||
|
** * ESP and HOST lua_debugbreak() test stubs
|
||
|
** * NodeMCU lua.h API extensions
|
||
|
** * NodeMCU LFS Table emulator
|
||
|
** * NodeMCU bootstrap to set up and to reimage LFS resources
|
||
|
**
|
||
|
** Just search down for //== or ==// to flip through the sections.
|
||
|
*/
|
||
|
|
||
|
#define byte_addr(p) cast(char *,p)
|
||
|
#define byteptr(p) cast(lu_byte *, p)
|
||
|
#define byteoffset(p,q) (byteptr(p) - byteptr(q))
|
||
|
#define wordptr(p) cast(lu_int32 *, p)
|
||
|
#define wordoffset(p,q) (wordptr(p) - wordptr(q))
|
||
|
|
||
|
|
||
|
//== Wrap POSIX and VFS file API =============================================//
|
||
|
#ifdef LUA_USE_ESP
|
||
|
int luaopen_file(lua_State *L);
|
||
|
# define l_file(f) int f
|
||
|
# define l_open(f) vfs_open(f, "r")
|
||
|
# define l_close(f) vfs_close(f)
|
||
|
# define l_feof(f) vfs_eof(f)
|
||
|
# define l_read(f,b) vfs_read(f, b, sizeof (b))
|
||
|
# define l_rewind(f) vfs_lseek(f, 0, VFS_SEEK_SET)
|
||
|
#else
|
||
|
# define l_file(f) FILE *f
|
||
|
# define l_open(n) fopen(n,"rb")
|
||
|
# define l_close(f) fclose(f)
|
||
|
# define l_feof(f) feof(f)
|
||
|
# define l_read(f,b) fread(b, 1, sizeof (b), f)
|
||
|
# define l_rewind(f) rewind(f)
|
||
|
#endif
|
||
|
|
||
|
//== Emulate Platform_XXX() API ==============================================//
|
||
|
#ifdef LUA_USE_ESP
|
||
|
|
||
|
extern void dbg_printf(const char *fmt, ...); // DEBUG
|
||
|
#undef printf
|
||
|
#define printf(...) dbg_printf(__VA_ARGS__) // DEBUG
|
||
|
|
||
|
#define FLASH_PAGE_SIZE INTERNAL_FLASH_SECTOR_SIZE
|
||
|
/* Erasing the LFS invalidates ESP instruction cache, so doing a block 64Kb */
|
||
|
/* read is the simplest way to flush the icache, restoring cache coherency */
|
||
|
#define flush_icache(F) \
|
||
|
UNUSED(memcmp(F->addr, F->addr+(0x8000/sizeof(*F->addr)), 0x8000));
|
||
|
#define unlockFlashWrite()
|
||
|
#define lockFlashWrite()
|
||
|
|
||
|
#else // LUA_USE_HOST
|
||
|
|
||
|
#include<stdio.h> // DEBUG
|
||
|
/*
|
||
|
** The ESP implementation use a platform_XXX() API to provide a level of
|
||
|
** H/W abstraction. The following functions and macros emulate a subset
|
||
|
** of this API for the host environment. LFSregion is the true address in
|
||
|
** the luac process address space of the mapped LFS region. All actual
|
||
|
** erasing and writing is done relative to this address.
|
||
|
**
|
||
|
** In normal LFS emulation the LFSaddr is also set to this LFSregion address
|
||
|
** so that any subsequent execution using LFS refers to the correct memory
|
||
|
** address.
|
||
|
**
|
||
|
** The second LFS mode is used to create absolute LFS images for directly
|
||
|
** downloading to the ESP or including in a firmware image, and in this case
|
||
|
** LFSaddr refers to the actual ESP mapped address of the ESP LFS region.
|
||
|
** This is a 32-bit address typically in the address range 0x40210000-0x402FFFFF
|
||
|
** (and with the high 32bits set to 0 in the case of 64-bit execution). Such
|
||
|
** images are solely intended for ESP execution and any attempt to execute
|
||
|
** them in a host execution environment will result in an address exception.
|
||
|
*/
|
||
|
#define PLATFORM_RCR_FLASHLFS 4
|
||
|
#define LFS_SIZE 0x40000
|
||
|
#define FLASH_PAGE_SIZE 0x1000
|
||
|
#define FLASH_BASE 0x90000 /* Some 'Random' but typical value */
|
||
|
#define IROM0_SEG 0x40210000ul
|
||
|
|
||
|
void *LFSregion = NULL;
|
||
|
static void *LFSaddr = NULL;
|
||
|
static size_t LFSbase = FLASH_BASE;
|
||
|
extern char *LFSimageName;
|
||
|
|
||
|
#ifdef __unix__
|
||
|
/* On POSIX systems we can toggle the "Flash" write attribute */
|
||
|
#include <sys/mman.h>
|
||
|
#define aligned_malloc(a,n) posix_memalign(&a, FLASH_PAGE_SIZE, (n))
|
||
|
#define unlockFlashWrite() mprotect(LFSaddr, LFS_SIZE, PROT_READ| PROT_WRITE)
|
||
|
#define lockFlashWrite() mprotect(LFSaddr, LFS_SIZE, PROT_READ)
|
||
|
#else
|
||
|
#define aligned_malloc(a,n) ((a = malloc(n)) == NULL)
|
||
|
#define unlockFlashWrite()
|
||
|
#define lockFlashWrite()
|
||
|
#endif
|
||
|
|
||
|
#define platform_rcr_write(id,rec,l) (128)
|
||
|
#define platform_flash_phys2mapped(n) \
|
||
|
(byteptr(LFSaddr) + (n) - LFSbase)
|
||
|
#define platform_flash_mapped2phys(n) \
|
||
|
(byteoffset(n, LFSaddr) + LFSbase)
|
||
|
#define platform_flash_get_sector_of_address(n) ((n)>>12)
|
||
|
#define platform_rcr_delete(id) LFSimageName = NULL
|
||
|
#define platform_rcr_read(id,s) \
|
||
|
(*s = LFSimageName, (LFSimageName) ? strlen(LFSimageName) : ~0);
|
||
|
|
||
|
void luaN_setabsolute(lu_int32 addr) {
|
||
|
LFSaddr = cast(void *, cast(size_t, addr));
|
||
|
LFSbase = addr - IROM0_SEG;
|
||
|
}
|
||
|
|
||
|
static lu_int32 platform_flash_get_partition (lu_int32 part_id, lu_int32 *addr) {
|
||
|
lua_assert(part_id == NODEMCU_LFS0_PARTITION);
|
||
|
if (!LFSregion) {
|
||
|
if(aligned_malloc(LFSregion, LFS_SIZE))
|
||
|
return 0;
|
||
|
memset(LFSregion, ~0, LFS_SIZE);
|
||
|
lockFlashWrite();
|
||
|
}
|
||
|
if(LFSaddr == NULL)
|
||
|
LFSaddr = LFSregion;
|
||
|
*addr = LFSbase;
|
||
|
return LFS_SIZE;
|
||
|
}
|
||
|
|
||
|
static void platform_flash_erase_sector(lu_int32 i) {
|
||
|
lua_assert (i >= LFSbase/FLASH_PAGE_SIZE &&
|
||
|
i < (LFSbase+LFS_SIZE)/FLASH_PAGE_SIZE);
|
||
|
unlockFlashWrite();
|
||
|
memset(byteptr(LFSregion) + (i*FLASH_PAGE_SIZE - LFSbase), ~(0), FLASH_PAGE_SIZE);
|
||
|
lockFlashWrite();
|
||
|
}
|
||
|
|
||
|
static void platform_s_flash_write(const void *from, lu_int32 to, lu_int32 len) {
|
||
|
lua_assert(to >= LFSbase && to + len < LFSbase + LFS_SIZE); /* DEBUG */
|
||
|
unlockFlashWrite();
|
||
|
memcpy(byteptr(LFSregion) + (to-LFSbase), from, len);
|
||
|
lockFlashWrite();
|
||
|
}
|
||
|
|
||
|
#define flush_icache(F) /* not needed */
|
||
|
|
||
|
#endif
|
||
|
|
||
|
//== ESP and HOST lua_debugbreak() test stubs ================================//
|
||
|
|
||
|
#ifdef DEVELOPMENT_USE_GDB
|
||
|
/*
|
||
|
* lua_debugbreak is a stub used by lua_assert() if DEVELOPMENT_USE_GDB is
|
||
|
* defined. On the ESP, instead of crashing out with an assert error, this hook
|
||
|
* starts the GDB remote stub if not already running and then issues a break.
|
||
|
* The rationale here is that when testing the developer might be using screen /
|
||
|
* PuTTY to work interactively with the Lua Interpreter via UART0. However if
|
||
|
* an assert triggers, then there is the option to exit the interactive session
|
||
|
* and start the Xtensa remote GDB which will then sync up with the remote GDB
|
||
|
* client to allow forensics of the error. On the host it is an stub which can
|
||
|
* be set as a breakpoint in the gdb debugger.
|
||
|
*/
|
||
|
extern void gdbstub_init(void);
|
||
|
extern void gdbstub_redirect_output(int);
|
||
|
|
||
|
LUALIB_API void lua_debugbreak(void) {
|
||
|
#ifdef LUA_USE_HOST
|
||
|
/* allows debug backtrace analysis of assert fails */
|
||
|
lua_writestring(" lua_debugbreak ", sizeof(" lua_debugbreak ")-1);
|
||
|
#else
|
||
|
static int repeat_entry = 0;
|
||
|
if (repeat_entry == 0) {
|
||
|
dbg_printf("Start up the gdb stub if not already started\n");
|
||
|
gdbstub_init();
|
||
|
gdbstub_redirect_output(1);
|
||
|
repeat_entry = 1;
|
||
|
}
|
||
|
asm("break 0,0" ::);
|
||
|
#endif
|
||
|
}
|
||
|
#else
|
||
|
#define lua_debugbreak() (void)(0)
|
||
|
#endif
|
||
|
|
||
|
//== NodeMCU lua.h API extensions ============================================//
|
||
|
|
||
|
LUA_API int lua_freeheap (void) {
|
||
|
#ifdef LUA_USE_HOST
|
||
|
return MAX_INT;
|
||
|
#else
|
||
|
return (int) platform_freeheap();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
LUA_API int lua_getstrings(lua_State *L, int opt) {
|
||
|
stringtable *tb = NULL;
|
||
|
Table *t;
|
||
|
int i, j, n = 0;
|
||
|
|
||
|
if (n == 0)
|
||
|
tb = &G(L)->strt;
|
||
|
#ifdef LUA_USE_ESP
|
||
|
else if (n == 1 && G(L)->ROstrt.hash)
|
||
|
tb = &G(L)->ROstrt;
|
||
|
#endif
|
||
|
if (tb == NULL)
|
||
|
return 0;
|
||
|
|
||
|
lua_lock(L);
|
||
|
t = luaH_new(L);
|
||
|
sethvalue(L, L->top, t);
|
||
|
api_incr_top(L);
|
||
|
luaH_resize(L, t, tb->nuse, 0);
|
||
|
luaC_checkGC(L);
|
||
|
lua_unlock(L);
|
||
|
|
||
|
for (i = 0, j = 1; i < tb->size; i++) {
|
||
|
TString *o;
|
||
|
for(o = tb->hash[i]; o; o = o->u.hnext) {
|
||
|
TValue s;
|
||
|
setsvalue(L, &s, o);
|
||
|
luaH_setint(L, hvalue(L->top-1), j++, &s); /* table[n] = true */
|
||
|
}
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
LUA_API void lua_createrotable (lua_State *L, ROTable *t,
|
||
|
const ROTable_entry *e, ROTable *mt) {
|
||
|
int i, j;
|
||
|
lu_byte flags = ~0;
|
||
|
const char *plast = (char *)"_";
|
||
|
for (i = 0; e[i].key; i++) {
|
||
|
if (e[i].key[0] == '_' && strcmp(e[i].key,plast)) {
|
||
|
plast = e[i].key;
|
||
|
lua_pushstring(L,e[i].key);
|
||
|
for (j=0; j<TM_EQ; j++){
|
||
|
if(tsvalue(L->top-1)==G(L)->tmname[i]) {
|
||
|
flags |= cast_byte(1u<<i);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
lua_pop(L,1);
|
||
|
}
|
||
|
}
|
||
|
t->next = (GCObject *)1;
|
||
|
t->tt = LUA_TTBLROF;
|
||
|
t->marked = LROT_MARKED;
|
||
|
t->flags = flags;
|
||
|
t->lsizenode = i;
|
||
|
t->metatable = cast(Table *, mt);
|
||
|
t->entry = cast(ROTable_entry *, e);
|
||
|
}
|
||
|
|
||
|
//== NodeMCU LFS Table emulator ==============================================//
|
||
|
|
||
|
static int lfs_func (lua_State* L);
|
||
|
|
||
|
LROT_BEGIN(LFS_meta, NULL, LROT_MASK_INDEX)
|
||
|
LROT_FUNCENTRY( __index, lfs_func)
|
||
|
LROT_END(LFS_meta, NULL, LROT_MASK_INDEX)
|
||
|
|
||
|
LROT_BEGIN(LFS, LROT_TABLEREF(LFS_meta), 0)
|
||
|
LROT_END(LFS, LROT_TABLEREF(LFS_meta), 0)
|
||
|
|
||
|
|
||
|
static int lfs_func (lua_State* L) { /*T[1] = LFS, T[2] = fieldname */
|
||
|
const char *name = lua_tostring(L, 2);
|
||
|
LFSHeader *fh = G(L)->l_LFS;
|
||
|
Proto *f;
|
||
|
LClosure *cl;
|
||
|
lua_settop(L,2);
|
||
|
if (!fh) { /* return nil if LFS not loaded */
|
||
|
lua_pushnil(L);
|
||
|
return 1;
|
||
|
}
|
||
|
if (!strcmp(name, "_config")) {
|
||
|
size_t ba = cast(size_t, fh);
|
||
|
lua_createtable(L, 0, 3);
|
||
|
lua_pushinteger(L, cast(lua_Integer, ba));
|
||
|
lua_setfield(L, -2, "lfs_mapped");
|
||
|
lua_pushinteger(L, cast(lua_Integer, platform_flash_mapped2phys(ba)));
|
||
|
lua_setfield(L, -2, "lfs_base");
|
||
|
lua_pushinteger(L, G(L)->LFSsize);
|
||
|
lua_setfield(L, -2, "lfs_size");
|
||
|
return 1;
|
||
|
} else if (!strcmp(name, "_list")) {
|
||
|
int i = 1;
|
||
|
setobjs2s(L, L->top-2, &G(L)->LFStable); /* overwrite T[1] with LSFtable */
|
||
|
lua_newtable(L); /* new list table at T[3] */
|
||
|
lua_pushnil(L); /* first key (nil) at T4] */
|
||
|
while (lua_next(L, 1) != 0) { /* loop over LSFtable k,v at T[4:5] */
|
||
|
lua_pop(L, 1); /* dump value */
|
||
|
lua_pushvalue(L, -1); /* dup key */
|
||
|
lua_rawseti(L, 3, i++); /* table[i]=key */
|
||
|
}
|
||
|
return 1;
|
||
|
} else if (!strcmp(name, "_time")) {
|
||
|
lua_pushinteger(L, fh->timestamp);
|
||
|
return 1;
|
||
|
}
|
||
|
setobjs2s(L, L->top-2, &G(L)->LFStable); /* overwrite T[1] with LSFtable */
|
||
|
if (lua_rawget(L,1) != LUA_TNIL) { /* get LFStable[name] */
|
||
|
lua_pushglobaltable(L);
|
||
|
f = cast(Proto *, lua_topointer(L,-2));
|
||
|
lua_lock(L);
|
||
|
cl = luaF_newLclosure(L, f->sizeupvalues);
|
||
|
setclLvalue(L, L->top-2, cl); /* overwrite f addr slot with closure */
|
||
|
cl->p = f; /* bind f to it */
|
||
|
if (cl->nupvalues >= 1) { /* does it have at least one upvalue? */
|
||
|
luaF_initupvals(L, cl ); /* initialise upvals */
|
||
|
setobj(L, cl->upvals[0]->v, L->top-1); /* set UV[1] to _ENV */
|
||
|
}
|
||
|
lua_unlock(L);
|
||
|
lua_pop(L,1); /* pop _ENV leaving closure at ToS */
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
//== NodeMCU bootstrap to set up and to reimage LFS resources ================//
|
||
|
/*
|
||
|
** This processing uses 2 init hooks during the Lua startup. The first is
|
||
|
** called early in the Lua state setup to initialize the LFS if present. The
|
||
|
** second is only used to rebuild the LFS region; this requires the Lua
|
||
|
** environment to be in place, so this second hook is immediately before
|
||
|
** processing LUA_INIT.
|
||
|
**
|
||
|
** An application library initiates an LFS rebuild by writing a FLASHLFS
|
||
|
** message to the Reboot Config Record area (RCR), and then restarting the
|
||
|
** processor. This RCR record is read during startup by the 2nd hook. The
|
||
|
** content is the name of the Lua LFS image file to be loaded. If present then
|
||
|
** the LFS reload process is initiated instead of LUA_INIT. This uses lundump
|
||
|
** functions to load the components directly into the LFS region.
|
||
|
**
|
||
|
** FlashState used to share context with the low level lua_load write routines
|
||
|
** is passed as a ZIO data field. Note this is only within the phase
|
||
|
** processing and not across phases.
|
||
|
*/
|
||
|
|
||
|
|
||
|
typedef struct LFSflashState {
|
||
|
lua_State *L;
|
||
|
LFSHeader hdr;
|
||
|
l_file(f);
|
||
|
const char *LFSfileName;
|
||
|
lu_int32 *addr;
|
||
|
lu_int32 oNdx; /* in size_t units */
|
||
|
lu_int32 oChunkNdx; /* in size_t units */
|
||
|
lu_int32 *oBuff; /* FLASH_PAGE_SIZE bytes */
|
||
|
lu_byte *inBuff; /* FLASH_PAGE_SIZE bytes */
|
||
|
lu_int32 inNdx; /* in bytes */
|
||
|
lu_int32 addrPhys;
|
||
|
lu_int32 size;
|
||
|
lu_int32 allocmask;
|
||
|
stringtable ROstrt;
|
||
|
GCObject *pLTShead;
|
||
|
} LFSflashState;
|
||
|
#define WORDSIZE sizeof(lu_int32)
|
||
|
#define OSIZE (FLASH_PAGE_SIZE/WORDSIZE)
|
||
|
#define ISIZE (FLASH_PAGE_SIZE)
|
||
|
#ifdef LUA_USE_ESP
|
||
|
#define ALIGN(F,n) (n + WORDSIZE - 1) / WORDSIZE;
|
||
|
#else
|
||
|
#define ALIGN(F,n) ((n + F->allocmask) & ~(F->allocmask)) / WORDSIZE;
|
||
|
#endif
|
||
|
|
||
|
/* This conforms to the ZIO lua_Reader spec, hence the L parameter */
|
||
|
static const char *readF (lua_State *L, void *ud, size_t *size) {
|
||
|
UNUSED(L);
|
||
|
LFSflashState *F = cast(LFSflashState *, ud);
|
||
|
if (F->inNdx > 0) {
|
||
|
*size = F->inNdx;
|
||
|
F->inNdx = 0;
|
||
|
} else {
|
||
|
if (l_feof(F->f)) return NULL;
|
||
|
*size = l_read(F->f, F->inBuff) ; /* read block */
|
||
|
}
|
||
|
return cast(const char *,F->inBuff);
|
||
|
}
|
||
|
|
||
|
static void eraseLFS(LFSflashState *F) {
|
||
|
lu_int32 i;
|
||
|
printf("\nErasing LFS from flash addr 0x%06x", F->addrPhys);
|
||
|
unlockFlashWrite();
|
||
|
for (i = 0; i < F->size; i += FLASH_PAGE_SIZE) {
|
||
|
size_t *f = cast(size_t *, F->addr + i/sizeof(*f));
|
||
|
lu_int32 s = platform_flash_get_sector_of_address(F->addrPhys + i);
|
||
|
/* it is far faster not erasing if you don't need to */
|
||
|
#ifdef LUA_USE_ESP
|
||
|
if (*f == ~0 && !memcmp(f, f + 1, FLASH_PAGE_SIZE - sizeof(*f)))
|
||
|
continue;
|
||
|
#endif
|
||
|
platform_flash_erase_sector(s);
|
||
|
printf(".");
|
||
|
}
|
||
|
printf(" to 0x%06x\n", F->addrPhys + F->size-1);
|
||
|
flush_icache(F);
|
||
|
lockFlashWrite();
|
||
|
}
|
||
|
|
||
|
LUAI_FUNC void luaN_setFlash(void *F, unsigned int o) {
|
||
|
luaN_flushFlash(F); /* flush the pending write buffer */
|
||
|
lua_assert((o & (WORDSIZE-1))==0);
|
||
|
cast(LFSflashState *,F)->oChunkNdx = o/WORDSIZE;
|
||
|
}
|
||
|
|
||
|
LUAI_FUNC void luaN_flushFlash(void *vF) {
|
||
|
LFSflashState *F = cast(LFSflashState *, vF);
|
||
|
lu_int32 start = F->addrPhys + F->oChunkNdx*WORDSIZE;
|
||
|
lu_int32 size = F->oNdx * WORDSIZE;
|
||
|
lua_assert(start + size < F->addrPhys + F->size); /* is write in bounds? */
|
||
|
//printf("Flush Buf: %6x (%u)\n", F->oNdx, size); //DEBUG
|
||
|
platform_s_flash_write(F->oBuff, start, size);
|
||
|
F->oChunkNdx += F->oNdx;
|
||
|
F->oNdx = 0;
|
||
|
}
|
||
|
|
||
|
LUAI_FUNC void *luaN_writeFlash(void *vF, const void *rec, size_t n) {
|
||
|
LFSflashState *F = cast(LFSflashState *, vF);
|
||
|
lu_byte *p = byteptr(F->addr + F->oChunkNdx + F->oNdx);
|
||
|
//int i; printf("writing %4u bytes:", (lu_int32) n); for (i=0;i<n;i++){printf(" %02x", byteptr(rec)[i]);} printf("\n");
|
||
|
if (n==0)
|
||
|
return p;
|
||
|
while (1) {
|
||
|
int nw = ALIGN(F, n);
|
||
|
if (F->oNdx + nw > OSIZE) {
|
||
|
/* record overflows the buffer so fill buffer, flush and repeat */
|
||
|
int rem = OSIZE - F->oNdx;
|
||
|
if (rem)
|
||
|
memcpy(F->oBuff+F->oNdx, rec, rem * WORDSIZE);
|
||
|
rec = cast(void *, cast(lu_int32 *, rec) + rem);
|
||
|
n -= rem * WORDSIZE;
|
||
|
F->oNdx = OSIZE;
|
||
|
luaN_flushFlash(F);
|
||
|
} else {
|
||
|
/* append remaining record to buffer */
|
||
|
F->oBuff[F->oNdx+nw-1] = 0; /* ensure any trailing odd byte are 0 */
|
||
|
memcpy(F->oBuff+F->oNdx, rec, n);
|
||
|
F->oNdx += nw;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
//int i; for (i=0;i<(rem * WORDSIZE); i++) {printf("%c%02x",i?' ':'.',*((lu_byte*)rec+i));}
|
||
|
//for (i=0;i<n; i++) printf("%c%02x",i?' ':'.',*((lu_byte*)rec+i));
|
||
|
//printf("\n");
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Hook used in Lua Startup to carry out the optional LFS startup processes.
|
||
|
*/
|
||
|
LUAI_FUNC int luaN_init (lua_State *L) {
|
||
|
static LFSflashState *F = NULL;
|
||
|
int n;
|
||
|
static LFSHeader *fh;
|
||
|
/*
|
||
|
* The first entry is called from lstate.c:f_luaopen() before modules
|
||
|
* are initialised. This is detected because F is NULL on first entry.
|
||
|
*/
|
||
|
if (F == NULL) {
|
||
|
size_t Fsize = sizeof(LFSflashState) + OSIZE*WORDSIZE + ISIZE;
|
||
|
/* outlining the buffers just makes debugging easier. Sorry */
|
||
|
F = calloc(Fsize, 1);
|
||
|
F->oBuff = wordptr(F + 1);
|
||
|
F->inBuff = byteptr(F->oBuff + OSIZE);
|
||
|
n = platform_rcr_read(PLATFORM_RCR_FLASHLFS, cast(void**, &F->LFSfileName));
|
||
|
F->size = platform_flash_get_partition (NODEMCU_LFS0_PARTITION, &F->addrPhys);
|
||
|
if (F->size) {
|
||
|
F->addr = cast(lu_int32 *, platform_flash_phys2mapped(F->addrPhys));
|
||
|
fh = cast(LFSHeader *, F->addr);
|
||
|
if (n < 0) {
|
||
|
global_State *g = G(L);
|
||
|
g->LFSsize = F->size;
|
||
|
/* Set up LFS hooks on normal Entry */
|
||
|
if (fh->flash_sig == FLASH_SIG) {
|
||
|
g->l_LFS = fh;
|
||
|
g->seed = fh->seed;
|
||
|
g->ROstrt.hash = cast(TString **, F->addr + fh->oROhash);
|
||
|
g->ROstrt.nuse = fh->nROuse ;
|
||
|
g->ROstrt.size = fh->nROsize;
|
||
|
sethvalue(L, &g->LFStable, cast(Table *, F->addr + fh->protoROTable));
|
||
|
lua_writestringerror("LFS image %s\n", "loaded");
|
||
|
} else if ((fh->flash_sig != 0 && fh->flash_sig != ~0)) {
|
||
|
lua_writestringerror("LFS image %s\n", "corrupted.");
|
||
|
eraseLFS(F);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
} else { /* hook 2 called from protected pmain, so can throw errors. */
|
||
|
int status = 0;
|
||
|
if (F->LFSfileName) { /* hook == 2 LFS image load */
|
||
|
ZIO z;
|
||
|
/*
|
||
|
* To avoid reboot loops, the load is only attempted once, so we
|
||
|
* always deleted the RCR record if we enter this path. Also note
|
||
|
* that this load process can throw errors and if so these are
|
||
|
* caught by the parent function in lua.c
|
||
|
*/
|
||
|
#ifdef DEVELOPMENT_USE_GDB
|
||
|
/* For GDB builds, prefixing the filename with ! forces a break in the hook */
|
||
|
if (F->LFSfileName[0] == '!') {
|
||
|
lua_debugbreak();
|
||
|
F->LFSfileName++;
|
||
|
}
|
||
|
#endif
|
||
|
platform_rcr_delete(PLATFORM_RCR_FLASHLFS);
|
||
|
#ifdef LUA_USE_ESP
|
||
|
luaopen_file(L);
|
||
|
#endif
|
||
|
if (!(F->f = l_open(F->LFSfileName))) {
|
||
|
free(F);
|
||
|
return luaL_error(L, "cannot open %s", F->LFSfileName);
|
||
|
}
|
||
|
eraseLFS(F);
|
||
|
luaZ_init(L, &z, readF, F);
|
||
|
lua_lock(L);
|
||
|
#ifdef LUA_USE_HOST
|
||
|
F->allocmask = (LFSaddr == LFSregion) ? sizeof(size_t) - 1 :
|
||
|
sizeof(lu_int32) - 1;
|
||
|
status = luaU_undumpLFS(L, &z, LFSaddr != LFSregion);
|
||
|
#else
|
||
|
status = luaU_undumpLFS(L, &z, 0);
|
||
|
#endif
|
||
|
lua_unlock(L);
|
||
|
l_close(F->f);
|
||
|
free(F);
|
||
|
F = NULL;
|
||
|
if (status == LUA_OK)
|
||
|
lua_pushstring(L, "!LFSrestart!"); /* Signal a restart */
|
||
|
lua_error(L); /* throw error / restart request */
|
||
|
} else { /* hook == 2, Normal startup */
|
||
|
free(F);
|
||
|
F = NULL;
|
||
|
}
|
||
|
return status;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// =============================================================================
|
||
|
#define getfield(L,t,f) \
|
||
|
lua_getglobal(L, #t); luaL_getmetafield( L, 1, #f ); lua_remove(L, -2);
|
||
|
|
||
|
LUAI_FUNC int luaN_reload_reboot (lua_State *L) {
|
||
|
int n = 0;
|
||
|
#ifdef LUA_USE_ESP
|
||
|
size_t l;
|
||
|
int off = 0;
|
||
|
const char *img = lua_tolstring(L, 1, &l);
|
||
|
#ifdef DEVELOPMENT_USE_GDB
|
||
|
if (*img == '!') /* For GDB builds, any leading ! is ignored for checking */
|
||
|
off = 1; /* existence. This forces a debug break in the init hook */
|
||
|
#endif
|
||
|
lua_settop(L, 1);
|
||
|
lua_getglobal(L, "file");
|
||
|
lua_getfield(L, 2, "exists");
|
||
|
lua_pushstring(L, img + off);
|
||
|
lua_call(L, 1, 1);
|
||
|
if (G(L)->LFSsize == 0 || lua_toboolean(L, -1) == 0) {
|
||
|
lua_pushstring(L, "No LFS partition allocated");
|
||
|
return 1;
|
||
|
}
|
||
|
n = platform_rcr_write(PLATFORM_RCR_FLASHLFS, img, l+1);/* incl trailing \0 */
|
||
|
if (n>0)
|
||
|
system_restart();
|
||
|
#endif
|
||
|
lua_pushboolean(L, n>0);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
LUAI_FUNC int luaN_index (lua_State *L) {
|
||
|
lua_settop(L,1);
|
||
|
if (lua_isstring(L, 1)){
|
||
|
lua_getglobal(L, "LFS");
|
||
|
lua_getfield(L, 2, lua_tostring(L,1));
|
||
|
} else {
|
||
|
lua_pushnil(L);
|
||
|
}
|
||
|
return 1;
|
||
|
}
|