nodemcu-firmware/app/uzlib/uzlib_inflate.c

600 lines
16 KiB
C
Raw Normal View History

/*
* tinfgzip.c - tiny gzip decompressor
* tinflate.c - tiny inflate
*
* The original source headers as below for licence compliance and in
* full acknowledgement of the originitor contributions. Modified by
* Terry Ellison 2018 to provide lightweight stream inflate for NodeMCU
* Lua. Modifications are under the standard NodeMCU MIT licence.
*
* Copyright (c) 2003 by Joergen Ibsen / Jibz
* All Rights Reserved
* http://www.ibsensoftware.com/
*
* Copyright (c) 2014-2016 by Paul Sokolovsky
*
* This software is provided 'as-is', without any express
* or implied warranty. In no event will the authors be
* held liable for any damages arising from the use of
* this software.
*
* Permission is granted to anyone to use this software
* for any purpose, including commercial applications,
* and to alter it and redistribute it freely, subject to
* the following restrictions:
*
* 1. The origin of this software must not be
* misrepresented; you must not claim that you
* wrote the original software. If you use this
* software in a product, an acknowledgment in
* the product documentation would be appreciated
* but is not required.
*
* 2. Altered source versions must be plainly marked
* as such, and must not be misrepresented as
* being the original software.
*
* 3. This notice may not be removed or altered from
* any source distribution.
*/
#include <string.h>
#include <stdio.h>
#include "uzlib.h"
#ifdef DEBUG_COUNTS
#define DBG_PRINT(...) printf(__VA_ARGS__)
#define DBG_COUNT(n) (debugCounts[n]++)
#define DBG_ADD_COUNT(n,m) (debugCounts[n]+=m)
int debugCounts[20];
#else
#define NDEBUG
#define DBG_PRINT(...)
#define DBG_COUNT(n)
#define DBG_ADD_COUNT(n,m)
#endif
#define SIZE(arr) (sizeof(arr) / sizeof(*(arr)))
jmp_buf unwindAddr;
int dbg_break(void) {return 1;}
typedef uint8_t uchar;
typedef uint16_t ushort;
typedef uint32_t uint;
/* data structures */
typedef struct {
ushort table[16]; /* table of code length counts */
ushort trans[288]; /* code -> symbol translation table */
} UZLIB_TREE;
struct uzlib_data {
/*
* extra bits and base tables for length and distance codes
*/
uchar lengthBits[30];
ushort lengthBase[30];
uchar distBits[30];
ushort distBase[30];
/*
* special ordering of code length codes
*/
uchar clcidx[19];
/*
* dynamic length/symbol and distance trees
*/
UZLIB_TREE ltree;
UZLIB_TREE dtree;
/*
* methods encapsulate handling of the input and output streams
*/
uchar (*get_byte)(void);
void (*put_byte)(uchar b);
uchar (*recall_byte)(uint offset);
/*
* Other state values
*/
uint destSize;
uint tag;
uint bitcount;
uint lzOffs;
int bType;
int bFinal;
uint curLen;
uint checksum;
2019-02-17 19:26:29 +01:00
};
/*
* Note on changes to layout, naming, etc. This module combines extracts
* from 3 code files from two sources (Sokolovsky, Ibsen et al) with perhaps
* 30% from me Terry Ellison. These sources had inconsistent layout and
* naming conventions, plus extra condtional handling of platforms that
* cannot support NodeMCU. (This is intended to be run compiled and executed
* on GCC POSIX and XENTA newlib environments.) So I have (1) reformatted
* this file in line with NodeMCU rules; (2) demoted all private data and
* functions to static and removed the redundant name prefixes; (3) reordered
* functions into a more logic order; (4) added some ESP architecture
* optimisations, for example these IoT devices are very RAM limited, so
* statically allocating large RAM blocks is against programming guidelines.
*/
static void skip_bytes(UZLIB_DATA *d, int num) {
if (num) /* Skip a fixed number of bytes */
while (num--) (void) d->get_byte();
else /* Skip to next nullchar */
while (d->get_byte()) {}
}
static uint16_t get_uint16(UZLIB_DATA *d) {
uint16_t v = d->get_byte();
return v | (d->get_byte() << 8);
}
static uint get_le_uint32 (UZLIB_DATA *d) {
uint v = get_uint16(d);
return v | ((uint) get_uint16(d) << 16);
}
/* get one bit from source stream */
static int getbit (UZLIB_DATA *d) {
uint bit;
/* check if tag is empty */
if (!d->bitcount--) {
/* load next tag */
d->tag = d->get_byte();
d->bitcount = 7;
}
/* shift bit out of tag */
bit = d->tag & 0x01;
d->tag >>= 1;
return bit;
}
/* read a num bit value from a stream and add base */
static uint read_bits (UZLIB_DATA *d, int num, int base) {
/* This is an optimised version which doesn't call getbit num times */
2019-02-17 19:26:29 +01:00
if (!num)
return base;
2019-02-17 19:26:29 +01:00
uint i, n = (((uint)-1)<<num);
for (i = d->bitcount; i < num; i +=8)
d->tag |= ((uint)d->get_byte()) << i;
2019-02-17 19:26:29 +01:00
n = d->tag & ~n;
d->tag >>= num;
d->bitcount = i - num;
return base + n;
}
/* --------------------------------------------------- *
* -- uninitialized global data (static structures) -- *
* --------------------------------------------------- */
/*
* Constants are stored in flash memory on the ESP8266 NodeMCU firmware
* builds, but only word aligned data access are supported in hardare so
* short and byte accesses are handled by a S/W exception handler and
* are SLOW. RAM is also at premium, especially static initialised vars,
* so we malloc a single block on first call to hold all tables and call
* the dynamic generator to generate malloced RAM tables that have the
* same content as the above statically declared versions.
*
* This might seem a bit convolved but this runs faster and takes up
* less memory than the static version on the ESP8266.
*/
#define CLCIDX_INIT \
"\x10\x11\x12\x00\x08\x07\x09\x06\x0a\x05\x0b\x04\x0c\x03\x0d\x02\x0e\x01\x0f"
/* ----------------------- *
* -- utility functions -- *
* ----------------------- */
/* build extra bits and base tables */
static void build_bits_base (uchar *bits, ushort *base,
int delta, int first) {
int i, sum;
/* build bits table */
for (i = 0; i < delta; ++i) bits[i] = 0;
for (i = 0; i < 30 - delta; ++i) bits[i + delta] = i / delta;
/* build base table */
for (sum = first, i = 0; i < 30; ++i) {
base[i] = sum;
sum += 1 << bits[i];
}
}
/* build the fixed huffman trees */
static void build_fixed_trees (UZLIB_TREE *lt, UZLIB_TREE *dt) {
int i;
/* build fixed length tree */
for (i = 0; i < 7; ++i) lt->table[i] = 0;
lt->table[7] = 24;
lt->table[8] = 152;
lt->table[9] = 112;
for (i = 0; i < 24; ++i) lt->trans[i] = 256 + i;
for (i = 0; i < 144; ++i) lt->trans[24 + i] = i;
for (i = 0; i < 8; ++i) lt->trans[24 + 144 + i] = 280 + i;
for (i = 0; i < 112; ++i) lt->trans[24 + 144 + 8 + i] = 144 + i;
/* build fixed distance tree */
for (i = 0; i < 5; ++i) dt->table[i] = 0;
dt->table[5] = 32;
for (i = 0; i < 32; ++i) dt->trans[i] = i;
}
/* given an array of code lengths, build a tree */
static void build_tree (UZLIB_TREE *t, const uchar *lengths, uint num) {
ushort offs[16];
uint i, sum;
/* clear code length count table */
for (i = 0; i < 16; ++i)
t->table[i] = 0;
/* scan symbol lengths, and sum code length counts */
for (i = 0; i < num; ++i)
t->table[lengths[i]]++;
t->table[0] = 0;
/* compute offset table for distribution sort */
for (sum = 0, i = 0; i < 16; ++i) {
offs[i] = sum;
sum += t->table[i];
}
/* create code->symbol translation table (symbols sorted by code) */
for (i = 0; i < num; ++i) {
if (lengths[i])
t->trans[offs[lengths[i]]++] = i;
}
}
/* ---------------------- *
* -- decode functions -- *
* ---------------------- */
/* given a data stream and a tree, decode a symbol */
static int decode_symbol (UZLIB_DATA *d, UZLIB_TREE *t) {
int sum = 0, cur = 0, len = 0;
/* get more bits while code value is above sum */
do {
cur = 2*cur + getbit(d);
if (++len == SIZE(t->table))
return UZLIB_DATA_ERROR;
sum += t->table[len];
cur -= t->table[len];
} while (cur >= 0);
sum += cur;
if (sum < 0 || sum >= SIZE(t->trans))
return UZLIB_DATA_ERROR;
return t->trans[sum];
}
/* given a data stream, decode dynamic trees from it */
static int decode_trees (UZLIB_DATA *d, UZLIB_TREE *lt, UZLIB_TREE *dt) {
uchar lengths[288+32];
uint hlit, hdist, hclen, hlimit;
uint i, num, length;
/* get 5 bits HLIT (257-286) */
hlit = read_bits(d, 5, 257);
/* get 5 bits HDIST (1-32) */
hdist = read_bits(d, 5, 1);
/* get 4 bits HCLEN (4-19) */
hclen = read_bits(d, 4, 4);
for (i = 0; i < 19; ++i) lengths[i] = 0;
/* read code lengths for code length alphabet */
for (i = 0; i < hclen; ++i) {
/* get 3 bits code length (0-7) */
uint clen = read_bits(d, 3, 0);
lengths[d->clcidx[i]] = clen;
}
/* build code length tree, temporarily use length tree */
build_tree(lt, lengths, 19);
/* decode code lengths for the dynamic trees */
hlimit = hlit + hdist;
for (num = 0; num < hlimit; ) {
int sym = decode_symbol(d, lt);
uchar fill_value = 0;
int lbits, lbase = 3;
/* error decoding */
if (sym < 0)
return sym;
switch (sym) {
case 16:
/* copy previous code length 3-6 times (read 2 bits) */
fill_value = lengths[num - 1];
lbits = 2;
break;
case 17:
/* repeat code length 0 for 3-10 times (read 3 bits) */
lbits = 3;
break;
case 18:
/* repeat code length 0 for 11-138 times (read 7 bits) */
lbits = 7;
lbase = 11;
break;
default:
/* values 0-15 represent the actual code lengths */
lengths[num++] = sym;
/* continue the for loop */
continue;
}
/* special code length 16-18 are handled here */
length = read_bits(d, lbits, lbase);
if (num + length > hlimit)
return UZLIB_DATA_ERROR;
for (; length; --length)
lengths[num++] = fill_value;
}
/* build dynamic trees */
build_tree(lt, lengths, hlit);
build_tree(dt, lengths + hlit, hdist);
return UZLIB_OK;
}
/* ----------------------------- *
* -- block inflate functions -- *
* ----------------------------- */
/* given a stream and two trees, inflate a block of data */
static int inflate_block_data (UZLIB_DATA *d, UZLIB_TREE *lt, UZLIB_TREE *dt) {
if (d->curLen == 0) {
int dist;
int sym = decode_symbol(d, lt);
/* literal byte */
if (sym < 256) {
DBG_PRINT("huff sym: %02x %c\n", sym, sym);
d->put_byte(sym);
return UZLIB_OK;
}
/* end of block */
if (sym == 256)
return UZLIB_DONE;
/* substring from sliding dictionary */
sym -= 257;
/* possibly get more bits from length code */
d->curLen = read_bits(d, d->lengthBits[sym], d->lengthBase[sym]);
dist = decode_symbol(d, dt);
/* possibly get more bits from distance code */
d->lzOffs = read_bits(d, d->distBits[dist], d->distBase[dist]);
DBG_PRINT("huff dict: -%u for %u\n", d->lzOffs, d->curLen);
}
/* copy next byte from dict substring */
uchar b = d->recall_byte(d->lzOffs);
DBG_PRINT("huff dict byte(%u): -%u - %02x %c\n\n",
d->curLen, d->lzOffs, b, b);
d->put_byte(b);
d->curLen--;
return UZLIB_OK;
}
/* inflate an uncompressed block of data */
static int inflate_uncompressed_block (UZLIB_DATA *d) {
if (d->curLen == 0) {
uint length = get_uint16(d);
uint invlength = get_uint16(d);
/* check length */
if (length != (~invlength & 0x0000ffff))
return UZLIB_DATA_ERROR;
/* increment length to properly return UZLIB_DONE below, without
producing data at the same time */
d->curLen = length + 1;
/* make sure we start next block on a byte boundary */
d->bitcount = 0;
}
if (--d->curLen == 0) {
return UZLIB_DONE;
}
d->put_byte(d->get_byte());
return UZLIB_OK;
}
/* -------------------------- *
* -- main parse functions -- *
* -------------------------- */
static int parse_gzip_header(UZLIB_DATA *d) {
/* check id bytes */
if (d->get_byte() != 0x1f || d->get_byte() != 0x8b)
return UZLIB_DATA_ERROR;
if (d->get_byte() != 8) /* check method is deflate */
return UZLIB_DATA_ERROR;
uchar flg = d->get_byte();/* get flag byte */
if (flg & 0xe0)/* check that reserved bits are zero */
return UZLIB_DATA_ERROR;
skip_bytes(d, 6); /* skip rest of base header of 10 bytes */
if (flg & UZLIB_FEXTRA) /* skip extra data if present */
skip_bytes(d, get_uint16(d));
if (flg & UZLIB_FNAME) /* skip file name if present */
skip_bytes(d,0);
if (flg & UZLIB_FCOMMENT) /* skip file comment if present */
skip_bytes(d,0);
if (flg & UZLIB_FHCRC) /* ignore header crc if present */
skip_bytes(d,2);
return UZLIB_OK;
}
/* inflate next byte of compressed stream */
static int uncompress_stream (UZLIB_DATA *d) {
do {
int res;
/* start a new block */
if (d->bType == -1) {
next_blk:
/* read final block flag */
d->bFinal = getbit(d);
/* read block type (2 bits) */
d->bType = read_bits(d, 2, 0);
DBG_PRINT("Started new block: type=%d final=%d\n", d->bType, d->bFinal);
if (d->bType == 1) {
/* build fixed huffman trees */
build_fixed_trees(&d->ltree, &d->dtree);
} else if (d->bType == 2) {
/* decode trees from stream */
res = decode_trees(d, &d->ltree, &d->dtree);
if (res != UZLIB_OK)
return res;
}
}
/* process current block */
switch (d->bType) {
case 0:
/* decompress uncompressed block */
res = inflate_uncompressed_block(d);
break;
case 1:
case 2:
/* decompress block with fixed or dynamic huffman trees. These */
/* trees were decoded previously, so it's the same routine for both */
res = inflate_block_data(d, &d->ltree, &d->dtree);
break;
default:
return UZLIB_DATA_ERROR;
}
if (res == UZLIB_DONE && !d->bFinal) {
/* the block has ended (without producing more data), but we
can't return without data, so start procesing next block */
goto next_blk;
}
if (res != UZLIB_OK)
return res;
} while (--d->destSize);
return UZLIB_OK;
}
/*
* This implementation has a different use case to Paul Sokolovsky's
* uzlib implementation, in that it is designed to target IoT devices
* such as the ESP8266. Here clarity and compact code size is an
* advantage, but the ESP8266 only has 40-45Kb free heap, and has to
* process files with an unpacked size of up 256Kb, so a streaming
* implementation is essential.
*
* I have taken the architectural decision to hide the implementation
* details from the uncompress routines and the caller must provide
* three support routines to handle the streaming:
*
* void get_byte(void)
* void put_byte(uchar b)
* uchar recall_byte(uint offset)
*
* This last must be able to recall an output byte with an offset up to
* the maximum dictionary size.
*/
int uzlib_inflate (
uchar (*get_byte)(void),
void (*put_byte)(uchar v),
uchar (*recall_byte)(uint offset),
uint len, uint *crc, void **state) {
int res;
/* initialize decompression structure */
UZLIB_DATA *d = (UZLIB_DATA *) uz_malloc(sizeof(*d));
if (!d)
return UZLIB_MEMORY_ERROR;
*state = d;
d->bitcount = 0;
d->bFinal = 0;
d->bType = -1;
d->curLen = 0;
d->destSize = len;
d->get_byte = get_byte;
d->put_byte = put_byte;
d->recall_byte = recall_byte;
if ((res = UZLIB_SETJMP(unwindAddr)) != 0) {
if (crc)
*crc = d->checksum;
/* handle long jump */
if (d) {
uz_free(d);
*state = NULL;
}
return res;
}
/* create RAM copy of clcidx byte array */
memcpy(d->clcidx, CLCIDX_INIT, sizeof(d->clcidx));
/* build extra bits and base tables */
build_bits_base(d->lengthBits, d->lengthBase, 4, 3);
build_bits_base(d->distBits, d->distBase, 2, 1);
d->lengthBits[28] = 0; /* fix a special case */
d->lengthBase[28] = 258;
if ((res = parse_gzip_header(d))== UZLIB_OK)
while ((res = uncompress_stream(d)) == UZLIB_OK)
{}
if (res == UZLIB_DONE) {
d->checksum = get_le_uint32(d);
2019-02-17 19:26:29 +01:00
(void) get_le_uint32(d); /* already got length so ignore */
}
UZLIB_THROW(res);
}