nodemcu-firmware/app/driver/NmraDcc.c

1708 lines
54 KiB
C
Raw Normal View History

2019-12-28 14:10:11 +01:00
//------------------------------------------------------------------------
//
// Model Railroading with Arduino - NmraDcc.cpp
//
2021-02-03 23:23:52 +01:00
// Copyright (c) 2008 - 2020 Alex Shepherd
2019-12-28 14:10:11 +01:00
//
2021-02-03 23:23:52 +01:00
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
2019-12-28 14:10:11 +01:00
//
//------------------------------------------------------------------------
//
// file: NmraDcc.cpp
// author: Alex Shepherd
// webpage: http://mrrwa.org/
// history: 2008-03-20 Initial Version
// 2011-06-26 Migrated into Arduino library from OpenDCC codebase
// 2014 Added getAddr to NmraDcc Geoff Bunza
// 2015-11-06 Martin Pischky (martin@pischky.de):
// Experimental Version to support 14 speed steps
// and new signature of notifyDccSpeed and notifyDccFunc
// 2015-12-16 Version without use of Timer0 by Franz-Peter Müller
// 2016-07-16 handle glitches on DCC line
2021-02-03 23:23:52 +01:00
// 2016-08-20 added ESP8266 support by Sven (littleyoda)
// 2017-01-19 added STM32F1 support by Franz-Peter
2019-12-28 14:10:11 +01:00
// 2017-11-29 Ken West (kgw4449@gmail.com):
// Minor fixes to pass NMRA Baseline Conformance Tests.
// 2018-12-17 added ESP32 support by Trusty (thierry@lapajaparis.net)
// 2019-02-17 added ESP32 specific changes by Hans Tanner
2021-02-03 23:23:52 +01:00
// 2020-05-15 changes to pass NMRA Tests ( always search for preamble )
2019-12-28 14:10:11 +01:00
//------------------------------------------------------------------------
//
// purpose: Provide a simplified interface to decode NMRA DCC packets
2021-02-03 23:23:52 +01:00
// and build DCC Mobile and Stationary Decoders
2019-12-28 14:10:11 +01:00
//
//------------------------------------------------------------------------
2021-02-03 23:23:52 +01:00
#include "NmraDcc.h"
#include "EEPROM.h"
2019-12-28 14:10:11 +01:00
2021-02-03 23:23:52 +01:00
// Uncomment to print DEBUG messages
// #define DEBUG_PRINT
2019-12-28 14:10:11 +01:00
//------------------------------------------------------------------------
// DCC Receive Routine
//
// Howto: uses two interrupts: a rising edge in DCC polarity triggers INTx
// in INTx handler, Timer0 CompareB with a delay of 80us is started.
// On Timer0 CompareB Match the level of DCC is evaluated and
// parsed.
//
// |<-----116us----->|
//
// DCC 1: _________XXXXXXXXX_________XXXXXXXXX_________
// ^-INTx
// |----87us--->|
// ^Timer-INT: reads zero
//
// DCC 0: _________XXXXXXXXXXXXXXXXXX__________________
// ^-INTx
// |----------->|
// ^Timer-INT: reads one
//
// new DCC Receive Routine without Timer0 ........................................................
//
// Howto: uses only one interrupt at the rising or falling edge of the DCC signal
// The time between two edges is measured to determine the bit value
// Synchronising to the edge of the first part of a bit is done after recognizing the start bit
// During synchronizing each part of a bit is detected ( Interruptmode 'change' )
//
// |<-----116us----->|
// DCC 1: _________XXXXXXXXX_________XXXXXXXXX_________
// |<--------146us------>|
// ^-INTx ^-INTx
2021-02-03 23:23:52 +01:00
// less than 146us: its a one-Bit
2019-12-28 14:10:11 +01:00
//
//
// |<-----------------232us----------->|
// DCC 0: _________XXXXXXXXXXXXXXXXXX__________________XXXXXXXX__________
// |<--------146us------->|
// ^-INTx ^-INTx
2021-02-03 23:23:52 +01:00
// greater than 146us: its a zero bit
2019-12-28 14:10:11 +01:00
//
//
//
//
2021-02-03 23:23:52 +01:00
//------------------------------------------------------------------------
// if this is commented out, bit synchronisation is only done after a wrong checksum
#define SYNC_ALWAYS
2019-12-28 14:10:11 +01:00
2021-02-03 23:23:52 +01:00
// if this is commented out, Zero-Bit_Stretching is not supported
// ( Bits longer than 2* MAX ONEBIT are treated as error )
#define SUPPORT_ZERO_BIT_STRETCHING
2019-12-28 14:10:11 +01:00
#define MAX_ONEBITFULL 146
#define MAX_PRAEAMBEL 146
#define MAX_ONEBITHALF 82
#define MIN_ONEBITFULL 82
#define MIN_ONEBITHALF 35
2021-02-03 23:23:52 +01:00
#define MAX_BITDIFF 24
// Debug-Ports
//#define debug // Testpulse for logic analyser
#ifdef debug
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define MODE_TP1 DDRF |= (1<<2) //pinA2
#define SET_TP1 PORTF |= (1<<2)
#define CLR_TP1 PORTF &= ~(1<<2)
#define MODE_TP2 DDRF |= (1<<3) //pinA3
#define SET_TP2 PORTF |= (1<<3)
#define CLR_TP2 PORTF &= ~(1<<3)
#define MODE_TP3 DDRF |= (1<<4) //pinA4
#define SET_TP3 PORTF |= (1<<4)
#define CLR_TP3 PORTF &= ~(1<<4)
#define MODE_TP4 DDRF |= (1<<5) //pinA5
#define SET_TP4 PORTF |= (1<<5)
#define CLR_TP4 PORTF &= ~(1<<5)
#elif defined(__AVR_ATmega32U4__)
#define MODE_TP1 DDRF |= (1<<4) //A3
#define SET_TP1 PORTF |= (1<<4)
#define CLR_TP1 PORTF &= ~(1<<4)
#define MODE_TP2 DDRF |= (1<<5) //A2
#define SET_TP2 PORTF |= (1<<5)
#define CLR_TP2 PORTF &= ~(1<<5)
#define MODE_TP3
#define SET_TP3
#define CLR_TP3
#define MODE_TP4
#define SET_TP4
#define CLR_TP4
#elif defined(__AVR_ATmega328P__)
#define MODE_TP1 DDRC |= (1<<1) //A1
#define SET_TP1 PORTC |= (1<<1)
#define CLR_TP1 PORTC &= ~(1<<1)
#define MODE_TP2 DDRC |= (1<<2) // A2
#define SET_TP2 PORTC |= (1<<2)
#define CLR_TP2 PORTC &= ~(1<<2)
#define MODE_TP3 DDRC |= (1<<3) //A3
#define SET_TP3 PORTC |= (1<<3)
#define CLR_TP3 PORTC &= ~(1<<3)
#define MODE_TP4 DDRC |= (1<<4) //A4
#define SET_TP4 PORTC |= (1<<4)
#define CLR_TP4 PORTC &= ~(1<<4)
#elif defined(__arm__) && (defined(__MK20DX128__) || defined(__MK20DX256__))
// Teensys 3.x
#define MODE_TP1 pinMode( A1,OUTPUT ) // A1= PortC, Bit0
#define SET_TP1 GPIOC_PSOR = 0x01
#define CLR_TP1 GPIOC_PCOR = 0x01
#define MODE_TP2 pinMode( A2,OUTPUT ) // A2= PortB Bit0
#define SET_TP2 GPIOB_PSOR = 0x01
#define CLR_TP2 GPIOB_PCOR = 0x01
#define MODE_TP3 pinMode( A3,OUTPUT ) // A3 = PortB Bit1
#define SET_TP3 GPIOB_PSOR = 0x02
#define CLR_TP3 GPIOB_PCOR = 0x02
#define MODE_TP4 pinMode( A4,OUTPUT ) // A4 = PortB Bit3
#define SET_TP4 GPIOB_PSOR = 0x08
#define CLR_TP4 GPIOB_PCOR = 0x08
#elif defined (__STM32F1__)
// STM32F103...
#define MODE_TP1 pinMode( PB12,OUTPUT ) // TP1= PB12
#define SET_TP1 gpio_write_bit( GPIOB,12, HIGH );
#define CLR_TP1 gpio_write_bit( GPIOB,12, LOW );
#define MODE_TP2 pinMode( PB13,OUTPUT ) // TP2= PB13
#define SET_TP2 gpio_write_bit( GPIOB,13, HIGH );
#define CLR_TP2 gpio_write_bit( GPIOB,13, LOW );
#define MODE_TP3 pinMode( PB14,OUTPUT ) // TP3 = PB14
#define SET_TP3 gpio_write_bit( GPIOB,14, HIGH );
#define CLR_TP3 gpio_write_bit( GPIOB,14, LOW );
#define MODE_TP4 pinMode( PB15,OUTPUT ) // TP4 = PB15
#define SET_TP4 gpio_write_bit( GPIOB,15, HIGH );
#define CLR_TP4 gpio_write_bit( GPIOB,15, LOW );
#elif defined(ESP8266)
#define MODE_TP1 pinMode( D5,OUTPUT ) ; // GPIO 14
#define SET_TP1 GPOS = (1 << D5);
#define CLR_TP1 GPOC = (1 << D5);
#define MODE_TP2 pinMode( D6,OUTPUT ) ; // GPIO 12
#define SET_TP2 GPOS = (1 << D6);
#define CLR_TP2 GPOC = (1 << D6);
#define MODE_TP3 pinMode( D7,OUTPUT ) ; // GPIO 13
#define SET_TP3 GPOS = (1 << D7);
#define CLR_TP3 GPOC = (1 << D7);
#define MODE_TP4 pinMode( D8,OUTPUT ) ; // GPIO 15
#define SET_TP4 GPOS = (1 << D8);
#define CLR_TP4 GPOC = (1 << D8);
#elif defined(ESP32)
#define MODE_TP1 pinMode( 33,OUTPUT ) ; // GPIO 33
#define SET_TP1 GPOS = (1 << 33);
#define CLR_TP1 GPOC = (1 << 33);
#define MODE_TP2 pinMode( 25,OUTPUT ) ; // GPIO 25
#define SET_TP2 GPOS = (1 << 25);
#define CLR_TP2 GPOC = (1 << 25);
#define MODE_TP3 pinMode( 26,OUTPUT ) ; // GPIO 26
#define SET_TP3 GPOS = (1 << 26);
#define CLR_TP3 GPOC = (1 << 26);
#define MODE_TP4 pinMode( 27,OUTPUT ) ; // GPIO 27
#define SET_TP4 GPOS = (1 << 27);
#define CLR_TP4 GPOC = (1 << 27);
//#elif defined(__AVR_ATmega128__) ||defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
#else
#define MODE_TP1
#define SET_TP1
#define CLR_TP1
#define MODE_TP2
#define SET_TP2
#define CLR_TP2
#define MODE_TP3
#define SET_TP3
#define CLR_TP3
#define MODE_TP4
#define SET_TP4
#define CLR_TP4
2019-12-28 14:10:11 +01:00
2021-02-03 23:23:52 +01:00
#endif
2019-12-28 14:10:11 +01:00
#else
#define MODE_TP1
#define SET_TP1
#define CLR_TP1
#define MODE_TP2
#define SET_TP2
#define CLR_TP2
#define MODE_TP3
#define SET_TP3
#define CLR_TP3
#define MODE_TP4
#define SET_TP4
#define CLR_TP4
2021-02-03 23:23:52 +01:00
#endif
#ifdef DEBUG_PRINT
#define DB_PRINT( x, ... ) { char dbgbuf[80]; sprintf_P( dbgbuf, (const char*) F( x ) , ##__VA_ARGS__ ) ; Serial.println( dbgbuf ); }
#define DB_PRINT_( x, ... ) { char dbgbuf[80]; sprintf_P( dbgbuf, (const char*) F( x ) , ##__VA_ARGS__ ) ; Serial.print( dbgbuf ); }
#else
#define DB_PRINT( x, ... ) ;
#define DB_PRINT_( x, ... ) ;
2019-12-28 14:10:11 +01:00
#endif
2021-02-03 23:23:52 +01:00
#ifdef DCC_DBGVAR
struct countOf_t countOf;
#endif
2019-12-28 14:10:11 +01:00
2021-02-03 23:23:52 +01:00
#if defined ( __STM32F1__ )
static ExtIntTriggerMode ISREdge;
#elif defined ( ESP32 )
static byte ISREdge; // Holder of the Next Edge we're looking for: RISING or FALLING
static byte ISRWatch; // Interrupt Handler Edge Filter
#else
static byte ISREdge; // Holder of the Next Edge we're looking for: RISING or FALLING
static byte ISRWatch; // Interrupt Handler Edge Filter
#endif
byte ISRLevel; // expected Level at DCC input during ISR ( to detect glitches )
byte ISRChkMask; // Flag if Level must be checked
static word bitMax, bitMin;
2019-12-28 14:10:11 +01:00
typedef enum
{
WAIT_PREAMBLE = 0,
WAIT_START_BIT,
2021-02-03 23:23:52 +01:00
#ifndef SYNC_ALWAYS
WAIT_START_BIT_FULL,
#endif
2019-12-28 14:10:11 +01:00
WAIT_DATA,
WAIT_END_BIT
}
DccRxWaitState ;
typedef enum
{
OPS_INS_RESERVED = 0,
OPS_INS_VERIFY_BYTE,
OPS_INS_BIT_MANIPULATION,
OPS_INS_WRITE_BYTE
}
OpsInstructionType;
struct DccRx_t
{
DccRxWaitState State ;
2021-02-03 23:23:52 +01:00
uint8_t DataReady ;
2019-12-28 14:10:11 +01:00
uint8_t BitCount ;
uint8_t TempByte ;
2021-02-03 23:23:52 +01:00
uint8_t chkSum;
2019-12-28 14:10:11 +01:00
DCC_MSG PacketBuf;
DCC_MSG PacketCopy;
}
DccRx ;
typedef struct
{
uint8_t Flags ;
uint8_t OpsModeAddressBaseCV ;
uint8_t inServiceMode ;
long LastServiceModeMillis ;
uint8_t PageRegister ; // Used for Paged Operations in Service Mode Programming
uint8_t DuplicateCount ;
DCC_MSG LastMsg ;
2021-02-03 23:23:52 +01:00
uint8_t ExtIntNum;
uint8_t ExtIntPinNum;
volatile uint8_t *ExtIntPort; // use port and bitmask to read input at AVR in ISR
uint8_t ExtIntMask; // digitalRead is too slow on AVR
int16_t myDccAddress; // Cached value of DCC Address from CVs
2019-12-28 14:10:11 +01:00
uint8_t inAccDecDCCAddrNextReceivedMode;
2021-02-03 23:23:52 +01:00
uint8_t cv29Value;
2019-12-28 14:10:11 +01:00
#ifdef DCC_DEBUG
2021-02-03 23:23:52 +01:00
uint8_t IntCount;
uint8_t TickCount;
uint8_t NestedIrqCount;
2019-12-28 14:10:11 +01:00
#endif
}
DCC_PROCESSOR_STATE ;
DCC_PROCESSOR_STATE DccProcState ;
2021-02-03 23:23:52 +01:00
#ifdef ESP32
portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED;
2019-12-28 14:10:11 +01:00
2021-02-03 23:23:52 +01:00
void IRAM_ATTR ExternalInterruptHandler(void)
#elif defined(ESP8266)
void ICACHE_RAM_ATTR ExternalInterruptHandler(void)
#else
void ExternalInterruptHandler(void)
#endif
2019-12-28 14:10:11 +01:00
{
2021-02-03 23:23:52 +01:00
SET_TP3;
#ifdef ESP32
// switch (ISRWatch)
// {
// case RISING: if (digitalRead(DccProcState.ExtIntPinNum)) break;
// case FALLING: if (digitalRead(DccProcState.ExtIntPinNum)) return; break;
// }
// First compare the edge we're looking for to the pin state
switch (ISRWatch)
{
case CHANGE:
break;
case RISING:
if (digitalRead(DccProcState.ExtIntPinNum) != HIGH)
return;
break;
case FALLING:
if (digitalRead(DccProcState.ExtIntPinNum) != LOW)
return;
break;
}
#endif
// Bit evaluation without Timer 0 ------------------------------
uint8_t DccBitVal;
static int8_t bit1, bit2 ;
static unsigned int lastMicros = 0;
static byte halfBit, DCC_IrqRunning, preambleBitCount;
unsigned int actMicros, bitMicros;
#ifdef ALLOW_NESTED_IRQ
if ( DCC_IrqRunning ) {
// nested DCC IRQ - obviously there are glitches
// ignore this interrupt and increment glitchcounter
CLR_TP3;
#ifdef DCC_DEBUG
DccProcState.NestedIrqCount++;
#endif
SET_TP3;
return; //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> abort IRQ
}
#endif
actMicros = micros();
bitMicros = actMicros-lastMicros;
2019-12-28 14:10:11 +01:00
2021-02-03 23:23:52 +01:00
CLR_TP3; SET_TP3;
#ifdef __AVR_MEGA__
if ( bitMicros < bitMin || ( DccRx.State != WAIT_START_BIT && (*DccProcState.ExtIntPort & DccProcState.ExtIntMask) != (ISRLevel) ) ) {
#else
if ( bitMicros < bitMin || ( DccRx.State != WAIT_START_BIT && digitalRead( DccProcState.ExtIntPinNum ) != (ISRLevel) ) ) {
#endif
// too short - my be false interrupt due to glitch or false protocol or level does not match RISING / FALLING edge -> ignore this IRQ
CLR_TP3;
SET_TP4; /*delayMicroseconds(1); */ CLR_TP4;
return; //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> abort IRQ
}
CLR_TP3; SET_TP3;
2019-12-28 14:10:11 +01:00
2021-02-03 23:23:52 +01:00
lastMicros = actMicros;
#ifndef SUPPORT_ZERO_BIT_STRETCHING
//if ( bitMicros > MAX_ZEROBITFULL ) {
if ( bitMicros > (bitMax*2) ) {
// too long - my be false protocol -> start over
DccRx.State = WAIT_PREAMBLE ;
DccRx.BitCount = 0 ;
preambleBitCount = 0;
// SET_TP2; CLR_TP2;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
#if defined ( __STM32F1__ )
detachInterrupt( DccProcState.ExtIntNum );
#endif
#ifdef ESP32
ISRWatch = ISREdge;
#else
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge );
#endif
// enable level-checking
ISRChkMask = DccProcState.ExtIntMask;
ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ;
CLR_TP3;
//CLR_TP3;
return; //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> abort IRQ
}
CLR_TP3;
SET_TP3;
#endif
DccBitVal = ( bitMicros < bitMax );
#ifdef ALLOW_NESTED_IRQ
DCC_IrqRunning = true;
interrupts(); // time critical is only the micros() command,so allow nested irq's
#endif
#ifdef DCC_DEBUG
DccProcState.TickCount++;
#endif
2019-12-28 14:10:11 +01:00
switch( DccRx.State )
{
case WAIT_PREAMBLE:
2021-02-03 23:23:52 +01:00
// We don't have to do anything special - looking for a preamble condition is done always
SET_TP2;
break;
#ifndef SYNC_ALWAYS
case WAIT_START_BIT_FULL:
// wait for startbit without level checking
if ( !DccBitVal ) {
// we got the startbit
CLR_TP2;CLR_TP1;
DccRx.State = WAIT_DATA ;
2019-12-28 14:10:11 +01:00
CLR_TP1;
2021-02-03 23:23:52 +01:00
// initialize packet buffer
DccRx.PacketBuf.Size = 0;
/*for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ )
DccRx.PacketBuf.Data[i] = 0;*/
DccRx.PacketBuf.PreambleBits = preambleBitCount;
DccRx.BitCount = 0 ;
DccRx.chkSum = 0 ;
DccRx.TempByte = 0 ;
//SET_TP1;
2019-12-28 14:10:11 +01:00
}
break;
2021-02-03 23:23:52 +01:00
#endif
2019-12-28 14:10:11 +01:00
case WAIT_START_BIT:
// we are looking for first half "0" bit after preamble
switch ( halfBit ) {
2021-02-03 23:23:52 +01:00
case 0:
2019-12-28 14:10:11 +01:00
// check first part
if ( DccBitVal ) {
// is still 1-bit (Preamble)
halfBit=1;
bit1=bitMicros;
} else {
// was "0" half bit, maybe the startbit
2021-02-03 23:23:52 +01:00
halfBit = 4;
}
2019-12-28 14:10:11 +01:00
break;
2021-02-03 23:23:52 +01:00
case 1: // previous halfbit was '1'
2019-12-28 14:10:11 +01:00
if ( DccBitVal ) {
// its a '1' halfBit -> we are still in the preamble
halfBit = 0;
bit2=bitMicros;
2021-02-03 23:23:52 +01:00
preambleBitCount++;
2019-12-28 14:10:11 +01:00
if( abs(bit2-bit1) > MAX_BITDIFF ) {
// the length of the 2 halfbits differ too much -> wrong protokoll
DccRx.State = WAIT_PREAMBLE;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
2021-02-03 23:23:52 +01:00
preambleBitCount = 0;
// SET_TP2; CLR_TP2;
#if defined ( __STM32F1__ )
detachInterrupt( DccProcState.ExtIntNum );
#endif
#ifdef ESP32
ISRWatch = ISREdge;
#else
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge );
// enable level checking ( with direct port reading @ AVR )
ISRChkMask = DccProcState.ExtIntMask;
ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ;
#endif
SET_TP3;
2019-12-28 14:10:11 +01:00
CLR_TP4;
}
} else {
// first '0' half detected in second halfBit
// wrong sync or not a DCC protokoll
CLR_TP3;
2021-02-03 23:23:52 +01:00
halfBit = 3;
2019-12-28 14:10:11 +01:00
SET_TP3;
}
break;
2021-02-03 23:23:52 +01:00
case 3: // previous halfbit was '0' in second halfbit
2019-12-28 14:10:11 +01:00
if ( DccBitVal ) {
// its a '1' halfbit -> we got only a half '0' bit -> cannot be DCC
DccRx.State = WAIT_PREAMBLE;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
2021-02-03 23:23:52 +01:00
preambleBitCount = 0;
// SET_TP2; CLR_TP2;
2019-12-28 14:10:11 +01:00
} else {
// we got two '0' halfbits -> it's the startbit
// but sync is NOT ok, change IRQ edge.
2021-02-03 23:23:52 +01:00
CLR_TP2;CLR_TP1;
if ( ISREdge == RISING ) ISREdge = FALLING; else ISREdge = RISING;
2019-12-28 14:10:11 +01:00
DccRx.State = WAIT_DATA ;
2021-02-03 23:23:52 +01:00
CLR_TP1;
2019-12-28 14:10:11 +01:00
bitMax = MAX_ONEBITFULL;
bitMin = MIN_ONEBITFULL;
DccRx.PacketBuf.Size = 0;
2021-02-03 23:23:52 +01:00
/*for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ )
DccRx.PacketBuf.Data[i] = 0;*/
DccRx.PacketBuf.PreambleBits = preambleBitCount;
2019-12-28 14:10:11 +01:00
DccRx.BitCount = 0 ;
2021-02-03 23:23:52 +01:00
DccRx.chkSum = 0 ;
2019-12-28 14:10:11 +01:00
DccRx.TempByte = 0 ;
2021-02-03 23:23:52 +01:00
//SET_TP1;
2019-12-28 14:10:11 +01:00
}
2021-02-03 23:23:52 +01:00
//SET_TP4;
#if defined ( __STM32F1__ )
detachInterrupt( DccProcState.ExtIntNum );
#endif
#ifdef ESP32
ISRWatch = ISREdge;
#else
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge );
#endif
// enable level-checking
ISRChkMask = DccProcState.ExtIntMask;
ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ;
//CLR_TP4;
2019-12-28 14:10:11 +01:00
break;
2021-02-03 23:23:52 +01:00
case 4: // previous (first) halfbit was 0
2019-12-28 14:10:11 +01:00
// if this halfbit is 0 too, we got the startbit
if ( DccBitVal ) {
// second halfbit is 1 -> unknown protokoll
DccRx.State = WAIT_PREAMBLE;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
2021-02-03 23:23:52 +01:00
preambleBitCount = 0;
CLR_TP2;CLR_TP1;
2019-12-28 14:10:11 +01:00
DccRx.BitCount = 0;
} else {
// we got the startbit
2021-02-03 23:23:52 +01:00
CLR_TP2;CLR_TP1;
2019-12-28 14:10:11 +01:00
DccRx.State = WAIT_DATA ;
2021-02-03 23:23:52 +01:00
CLR_TP1;
2019-12-28 14:10:11 +01:00
bitMax = MAX_ONEBITFULL;
bitMin = MIN_ONEBITFULL;
2021-02-03 23:23:52 +01:00
// initialize packet buffer
2019-12-28 14:10:11 +01:00
DccRx.PacketBuf.Size = 0;
2021-02-03 23:23:52 +01:00
/*for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ )
DccRx.PacketBuf.Data[i] = 0;*/
DccRx.PacketBuf.PreambleBits = preambleBitCount;
2019-12-28 14:10:11 +01:00
DccRx.BitCount = 0 ;
2021-02-03 23:23:52 +01:00
DccRx.chkSum = 0 ;
2019-12-28 14:10:11 +01:00
DccRx.TempByte = 0 ;
2021-02-03 23:23:52 +01:00
//SET_TP1;
2019-12-28 14:10:11 +01:00
}
2021-02-03 23:23:52 +01:00
//SET_TP4;
#if defined ( __STM32F1__ )
detachInterrupt( DccProcState.ExtIntNum );
#endif
#ifdef ESP32
ISRWatch = ISREdge;
#else
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge );
#endif
// enable level-checking
ISRChkMask = DccProcState.ExtIntMask;
ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ;
//CLR_TP4;
2019-12-28 14:10:11 +01:00
break;
}
break;
case WAIT_DATA:
2021-02-03 23:23:52 +01:00
CLR_TP2;
2019-12-28 14:10:11 +01:00
DccRx.BitCount++;
DccRx.TempByte = ( DccRx.TempByte << 1 ) ;
if( DccBitVal )
DccRx.TempByte |= 1 ;
if( DccRx.BitCount == 8 )
{
if( DccRx.PacketBuf.Size == MAX_DCC_MESSAGE_LEN ) // Packet is too long - abort
{
DccRx.State = WAIT_PREAMBLE ;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
DccRx.BitCount = 0 ;
}
else
{
DccRx.State = WAIT_END_BIT ;
DccRx.PacketBuf.Data[ DccRx.PacketBuf.Size++ ] = DccRx.TempByte ;
2021-02-03 23:23:52 +01:00
DccRx.chkSum ^= DccRx.TempByte;
2019-12-28 14:10:11 +01:00
}
}
break;
case WAIT_END_BIT:
2021-02-03 23:23:52 +01:00
SET_TP2;CLR_TP2;
2019-12-28 14:10:11 +01:00
DccRx.BitCount++;
2021-02-03 23:23:52 +01:00
if( DccBitVal ) { // End of packet?
CLR_TP3; SET_TP4;
2019-12-28 14:10:11 +01:00
DccRx.State = WAIT_PREAMBLE ;
2021-02-03 23:23:52 +01:00
DccRx.BitCount = 0 ;
2019-12-28 14:10:11 +01:00
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
2021-02-03 23:23:52 +01:00
SET_TP1;
if ( DccRx.chkSum == 0 ) {
// Packet is valid
#ifdef ESP32
portENTER_CRITICAL_ISR(&mux);
#endif
DccRx.PacketCopy = DccRx.PacketBuf ;
DccRx.DataReady = 1 ;
#ifdef ESP32
portEXIT_CRITICAL_ISR(&mux);
#endif
// SET_TP2; CLR_TP2;
preambleBitCount = 0 ;
} else {
// Wrong checksum
CLR_TP1;
#ifdef DCC_DBGVAR
DB_PRINT("Cerr");
countOf.Err++;
#endif
}
SET_TP3; CLR_TP4;
} else { // Get next Byte
2019-12-28 14:10:11 +01:00
// KGW - Abort immediately if packet is too long.
if( DccRx.PacketBuf.Size == MAX_DCC_MESSAGE_LEN ) // Packet is too long - abort
{
DccRx.State = WAIT_PREAMBLE ;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
DccRx.BitCount = 0 ;
}
else
{
DccRx.State = WAIT_DATA ;
DccRx.BitCount = 0 ;
DccRx.TempByte = 0 ;
}
2021-02-03 23:23:52 +01:00
}
}
// unless we're already looking for the start bit
// we always search for a preamble ( ( 10 or more consecutive 1 bits )
// if we found it within a packet, the packet decoding is aborted because
// that much one bits cannot be valid in a packet.
if ( DccRx.State != WAIT_START_BIT ) {
if( DccBitVal )
{
preambleBitCount++;
//SET_TP2;
if( preambleBitCount > 10 ) {
CLR_TP2;
#ifndef SYNC_ALWAYS
if ( DccRx.chkSum == 0 ) {
// sync must be correct if chksum was ok, no need to check sync
DccRx.State = WAIT_START_BIT_FULL;
} else {
#endif
DccRx.State = WAIT_START_BIT ;
SET_TP2;
// While waiting for the start bit, detect halfbit lengths. We will detect the correct
// sync and detect whether we see a false (e.g. motorola) protocol
#if defined ( __STM32F1__ )
detachInterrupt( DccProcState.ExtIntNum );
#endif
#ifdef ESP32
ISRWatch = CHANGE;
#else
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, CHANGE);
#endif
ISRChkMask = 0; // AVR level check is always true with this settings
ISRLevel = 0; // ( there cannot be false edge IRQ's with CHANGE )
halfBit = 0;
bitMax = MAX_ONEBITHALF;
bitMin = MIN_ONEBITHALF;
//CLR_TP1;
#ifndef SYNC_ALWAYS
}
#endif
}
} else {
CLR_TP1;
preambleBitCount = 0 ;
// SET_TP2; CLR_TP2;
}
2019-12-28 14:10:11 +01:00
}
2021-02-03 23:23:52 +01:00
#ifdef ALLOW_NESTED_IRQ
DCC_IrqRunning = false;
#endif
//CLR_TP1;
2019-12-28 14:10:11 +01:00
CLR_TP3;
2021-02-03 23:23:52 +01:00
}
void ackCV(void)
{
if( notifyCVAck )
{
DB_PRINT("ackCV: Send Basic ACK");
notifyCVAck() ;
}
}
void ackAdvancedCV(void)
{
if( notifyAdvancedCVAck && (DccProcState.cv29Value & CV29_RAILCOM_ENABLE) )
{
DB_PRINT("ackAdvancedCV: Send RailCom ACK");
notifyAdvancedCVAck() ;
}
}
uint8_t readEEPROM( unsigned int CV )
{
return EEPROM.read(CV) ;
}
void writeEEPROM( unsigned int CV, uint8_t Value )
{
EEPROM.write(CV, Value) ;
#if defined(ESP8266)
EEPROM.commit();
#endif
#if defined(ESP32)
EEPROM.commit();
#endif
}
bool readyEEPROM()
{
#if defined ARDUINO_ARCH_MEGAAVR
return bit_is_clear(NVMCTRL.STATUS,NVMCTRL_EEBUSY_bp);
#elif defined __AVR_MEGA__
return eeprom_is_ready();
#else
return true;
#endif
2019-12-28 14:10:11 +01:00
}
uint8_t validCV( uint16_t CV, uint8_t Writable )
{
if( notifyCVResetFactoryDefault && (CV == CV_MANUFACTURER_ID ) && Writable )
2021-02-03 23:23:52 +01:00
notifyCVResetFactoryDefault();
2019-12-28 14:10:11 +01:00
if( notifyCVValid )
return notifyCVValid( CV, Writable ) ;
2021-02-03 23:23:52 +01:00
uint8_t Valid = 1 ;
if( CV > MAXCV )
Valid = 0 ;
if( Writable && ( ( CV ==CV_VERSION_ID ) || (CV == CV_MANUFACTURER_ID ) ) )
Valid = 0 ;
return Valid ;
2019-12-28 14:10:11 +01:00
}
uint8_t readCV( unsigned int CV )
{
2021-02-03 23:23:52 +01:00
uint8_t Value ;
2019-12-28 14:10:11 +01:00
if( notifyCVRead )
return notifyCVRead( CV ) ;
2021-02-03 23:23:52 +01:00
Value = readEEPROM(CV);
return Value ;
2019-12-28 14:10:11 +01:00
}
uint8_t writeCV( unsigned int CV, uint8_t Value)
{
switch( CV )
{
case CV_29_CONFIG:
// copy addressmode Bit to Flags
2021-02-03 23:23:52 +01:00
Value = Value & ~CV29_RAILCOM_ENABLE; // Bidi (RailCom) Bit must not be enabled,
// because you cannot build a Bidi decoder with this lib.
DccProcState.cv29Value = Value;
2019-12-28 14:10:11 +01:00
DccProcState.Flags = ( DccProcState.Flags & ~FLAGS_CV29_BITS) | (Value & FLAGS_CV29_BITS);
// no break, because myDccAdress must also be reset
2021-02-03 23:23:52 +01:00
case CV_ACCESSORY_DECODER_ADDRESS_LSB: // Also same CV for CV_MULTIFUNCTION_PRIMARY_ADDRESS
2019-12-28 14:10:11 +01:00
case CV_ACCESSORY_DECODER_ADDRESS_MSB:
case CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB:
case CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB:
2021-02-03 23:23:52 +01:00
DccProcState.myDccAddress = -1; // Assume any CV Write Operation might change the Address
2019-12-28 14:10:11 +01:00
}
if( notifyCVWrite )
return notifyCVWrite( CV, Value ) ;
2021-02-03 23:23:52 +01:00
if( readEEPROM( CV ) != Value )
{
writeEEPROM( CV, Value ) ;
if( notifyCVChange )
notifyCVChange( CV, Value) ;
if( notifyDccCVChange && !(DccProcState.Flags & FLAGS_SETCV_CALLED) )
notifyDccCVChange( CV, Value );
}
return readEEPROM( CV ) ;
2019-12-28 14:10:11 +01:00
}
uint16_t getMyAddr(void)
{
2021-02-03 23:23:52 +01:00
if( DccProcState.myDccAddress != -1 ) // See if we can return the cached value
return( DccProcState.myDccAddress );
2019-12-28 14:10:11 +01:00
2021-02-03 23:23:52 +01:00
if( DccProcState.cv29Value & CV29_ACCESSORY_DECODER ) // Accessory Decoder?
2019-12-28 14:10:11 +01:00
{
2021-02-03 23:23:52 +01:00
if( DccProcState.cv29Value & CV29_OUTPUT_ADDRESS_MODE )
2019-12-28 14:10:11 +01:00
DccProcState.myDccAddress = ( readCV( CV_ACCESSORY_DECODER_ADDRESS_MSB ) << 8 ) | readCV( CV_ACCESSORY_DECODER_ADDRESS_LSB );
else
DccProcState.myDccAddress = ( ( readCV( CV_ACCESSORY_DECODER_ADDRESS_MSB ) & 0b00000111) << 6 ) | ( readCV( CV_ACCESSORY_DECODER_ADDRESS_LSB ) & 0b00111111) ;
}
else // Multi-Function Decoder?
{
2021-02-03 23:23:52 +01:00
if( DccProcState.cv29Value & CV29_EXT_ADDRESSING ) // Two Byte Address?
2019-12-28 14:10:11 +01:00
DccProcState.myDccAddress = ( ( readCV( CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB ) - 192 ) << 8 ) | readCV( CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB ) ;
else
DccProcState.myDccAddress = readCV( 1 ) ;
}
2021-02-03 23:23:52 +01:00
2019-12-28 14:10:11 +01:00
return DccProcState.myDccAddress ;
}
2021-02-03 23:23:52 +01:00
void processDirectCVOperation( uint8_t Cmd, uint16_t CVAddr, uint8_t Value, void (*ackFunction)() )
2019-12-28 14:10:11 +01:00
{
// is it a Byte Operation
if( Cmd & 0x04 )
{
// Perform the Write Operation
if( Cmd & 0x08 )
{
if( validCV( CVAddr, 1 ) )
{
2021-02-03 23:23:52 +01:00
DB_PRINT("CV: %d Byte Write: %02X", CVAddr, Value)
if( writeCV( CVAddr, Value ) == Value )
ackFunction();
}
}
else // Perform the Verify Operation
{
if( validCV( CVAddr, 0 ) )
{
DB_PRINT("CV: %d Byte Read: %02X", CVAddr, Value)
if( readCV( CVAddr ) == Value )
ackFunction();
2019-12-28 14:10:11 +01:00
}
}
}
// Perform the Bit-Wise Operation
else
{
uint8_t BitMask = (1 << (Value & 0x07) ) ;
uint8_t BitValue = Value & 0x08 ;
uint8_t BitWrite = Value & 0x10 ;
uint8_t tempValue = readCV( CVAddr ) ; // Read the Current CV Value
2021-02-03 23:23:52 +01:00
DB_PRINT("CV: %d Current Value: %02X Bit-Wise Mode: %s Mask: %02X Value: %02X", CVAddr, tempValue, BitWrite ? "Write":"Read", BitMask, BitValue);
2019-12-28 14:10:11 +01:00
// Perform the Bit Write Operation
if( BitWrite )
{
if( validCV( CVAddr, 1 ) )
{
if( BitValue )
tempValue |= BitMask ; // Turn the Bit On
else
tempValue &= ~BitMask ; // Turn the Bit Off
2021-02-03 23:23:52 +01:00
if( writeCV( CVAddr, tempValue ) == tempValue )
ackFunction() ;
}
}
// Perform the Bit Verify Operation
else
{
if( validCV( CVAddr, 0 ) )
{
if( BitValue )
{
if( tempValue & BitMask )
ackFunction() ;
}
else
{
if( !( tempValue & BitMask) )
ackFunction() ;
}
}
2019-12-28 14:10:11 +01:00
}
}
}
2021-02-03 23:23:52 +01:00
/////////////////////////////////////////////////////////////////////////
2019-12-28 14:10:11 +01:00
#ifdef NMRA_DCC_PROCESS_MULTIFUNCTION
void processMultiFunctionMessage( uint16_t Addr, DCC_ADDR_TYPE AddrType, uint8_t Cmd, uint8_t Data1, uint8_t Data2 )
{
uint8_t speed ;
uint16_t CVAddr ;
DCC_DIRECTION dir ;
DCC_SPEED_STEPS speedSteps ;
uint8_t CmdMasked = Cmd & 0b11100000 ;
// If we are an Accessory Decoder
if( DccProcState.Flags & FLAGS_DCC_ACCESSORY_DECODER )
{
// and this isn't an Ops Mode Write or we are NOT faking the Multifunction Ops mode address in CV 33+34 or
// it's not our fake address, then return
if( ( CmdMasked != 0b11100000 ) || ( DccProcState.OpsModeAddressBaseCV == 0 ) )
return ;
uint16_t FakeOpsAddr = readCV( DccProcState.OpsModeAddressBaseCV ) | ( readCV( DccProcState.OpsModeAddressBaseCV + 1 ) << 8 ) ;
uint16_t OpsAddr = Addr & 0x3FFF ;
if( OpsAddr != FakeOpsAddr )
return ;
}
// We are looking for FLAGS_MY_ADDRESS_ONLY but it does not match and it is not a Broadcast Address then return
else if( ( DccProcState.Flags & FLAGS_MY_ADDRESS_ONLY ) && ( Addr != getMyAddr() ) && ( Addr != 0 ) )
return ;
switch( CmdMasked )
{
case 0b00000000: // Decoder Control
switch( Cmd & 0b00001110 )
{
case 0b00000000:
2021-02-03 23:23:52 +01:00
if( notifyDccReset)
notifyDccReset( Cmd & 0b00000001 ) ;
2019-12-28 14:10:11 +01:00
break ;
case 0b00000010: // Factory Test
break ;
case 0b00000110: // Set Decoder Flags
break ;
case 0b00001010: // Set Advanced Addressing
break ;
case 0b00001110: // Decoder Acknowledgment
break ;
default: // Reserved
;
}
break ;
case 0b00100000: // Advanced Operations
switch( Cmd & 0b00011111 )
{
case 0b00011111:
if( notifyDccSpeed )
{
switch( Data1 & 0b01111111 )
{
case 0b00000000: // 0=STOP
speed = 1 ; // => 1
break ;
case 0b00000001: // 1=EMERGENCY_STOP
speed = 0 ; // => 0
break ;
default: // 2..127
speed = (Data1 & 0b01111111) ;
}
dir = (DCC_DIRECTION) ((Data1 & 0b10000000) >> 7) ;
notifyDccSpeed( Addr, AddrType, speed, dir, SPEED_STEP_128 ) ;
}
}
break;
case 0b01000000:
case 0b01100000:
//TODO should we cache this info in DCC_PROCESSOR_STATE.Flags ?
#ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE
2021-02-03 23:23:52 +01:00
speedSteps = (DccProcState.cv29Value & CV29_F0_LOCATION) ? SPEED_STEP_28 : SPEED_STEP_14 ;
2019-12-28 14:10:11 +01:00
#else
speedSteps = SPEED_STEP_28 ;
#endif
if( notifyDccSpeed )
{
switch( Cmd & 0b00011111 )
{
case 0b00000000: // 0 0000 = STOP
case 0b00010000: // 1 0000 = STOP
speed = 1 ; // => 1
break ;
case 0b00000001: // 0 0001 = EMERGENCY STOP
case 0b00010001: // 1 0001 = EMERGENCY STOP
speed = 0 ; // => 0
break ;
default:
#ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE
if( speedSteps == SPEED_STEP_14 )
{
speed = (Cmd & 0b00001111) ; // => 2..15
}
else
{
#endif
speed = (((Cmd & 0b00001111) << 1 ) | ((Cmd & 0b00010000) >> 4)) - 2 ; // => 2..29
#ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE
}
#endif
}
dir = (DCC_DIRECTION) ((Cmd & 0b00100000) >> 5) ;
notifyDccSpeed( Addr, AddrType, speed, dir, speedSteps ) ;
}
if( notifyDccSpeedRaw )
2021-02-03 23:23:52 +01:00
notifyDccSpeedRaw(Addr, AddrType, Cmd );
2019-12-28 14:10:11 +01:00
#ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE
if( notifyDccFunc && (speedSteps == SPEED_STEP_14) )
{
// function light is controlled by this package
uint8_t fn0 = (Cmd & 0b00010000) ;
notifyDccFunc( Addr, AddrType, FN_0, fn0 ) ;
}
#endif
break;
case 0b10000000: // Function Group 0..4
if( notifyDccFunc )
{
// function light is controlled by this package (28 or 128 speed steps)
notifyDccFunc( Addr, AddrType, FN_0_4, Cmd & 0b00011111 ) ;
}
break;
case 0b10100000: // Function Group 5..8
if( notifyDccFunc)
{
if (Cmd & 0b00010000 )
notifyDccFunc( Addr, AddrType, FN_5_8, Cmd & 0b00001111 ) ;
else
notifyDccFunc( Addr, AddrType, FN_9_12, Cmd & 0b00001111 ) ;
}
break;
case 0b11000000: // Feature Expansion Instruction
2021-02-03 23:23:52 +01:00
switch(Cmd & 0b00011111)
{
case 0b00011110:
if( notifyDccFunc )
notifyDccFunc( Addr, AddrType, FN_13_20, Data1 ) ;
break;
case 0b00011111:
if( notifyDccFunc )
notifyDccFunc( Addr, AddrType, FN_21_28, Data1 ) ;
break;
}
2019-12-28 14:10:11 +01:00
break;
case 0b11100000: // CV Access
CVAddr = ( ( ( Cmd & 0x03 ) << 8 ) | Data1 ) + 1 ;
2021-02-03 23:23:52 +01:00
processDirectCVOperation( Cmd, CVAddr, Data2, ackAdvancedCV) ;
2019-12-28 14:10:11 +01:00
break;
}
}
#endif
/////////////////////////////////////////////////////////////////////////
#ifdef NMRA_DCC_PROCESS_SERVICEMODE
void processServiceModeOperation( DCC_MSG * pDccMsg )
{
uint16_t CVAddr ;
uint8_t Value ;
if( pDccMsg->Size == 3) // 3 Byte Packets are for Address Only, Register and Paged Mode
{
uint8_t RegisterAddr ;
2021-02-03 23:23:52 +01:00
DB_PRINT("CV Address, Register & Paged Mode Operation");
2019-12-28 14:10:11 +01:00
RegisterAddr = pDccMsg->Data[0] & 0x07 ;
Value = pDccMsg->Data[1] ;
if( RegisterAddr == 5 )
{
DccProcState.PageRegister = Value ;
2021-02-03 23:23:52 +01:00
ackCV();
2019-12-28 14:10:11 +01:00
}
else
{
if( RegisterAddr == 4 )
CVAddr = CV_29_CONFIG ;
else if( ( RegisterAddr <= 3 ) && ( DccProcState.PageRegister > 0 ) )
CVAddr = ( ( DccProcState.PageRegister - 1 ) * 4 ) + RegisterAddr + 1 ;
else
CVAddr = RegisterAddr + 1 ;
if( pDccMsg->Data[0] & 0x08 ) // Perform the Write Operation
{
if( validCV( CVAddr, 1 ) )
{
2021-02-03 23:23:52 +01:00
if( writeCV( CVAddr, Value ) == Value )
ackCV();
}
}
else // Perform the Verify Operation
{
if( validCV( CVAddr, 0 ) )
{
if( readCV( CVAddr ) == Value )
ackCV();
2019-12-28 14:10:11 +01:00
}
}
}
}
else if( pDccMsg->Size == 4) // 4 Byte Packets are for Direct Byte & Bit Mode
{
2021-02-03 23:23:52 +01:00
DB_PRINT("CV Direct Byte and Bit Mode Mode Operation");
2019-12-28 14:10:11 +01:00
CVAddr = ( ( ( pDccMsg->Data[0] & 0x03 ) << 8 ) | pDccMsg->Data[1] ) + 1 ;
Value = pDccMsg->Data[2] ;
2021-02-03 23:23:52 +01:00
processDirectCVOperation( pDccMsg->Data[0] & 0b00001100, CVAddr, Value, ackCV) ;
2019-12-28 14:10:11 +01:00
}
}
#endif
2021-02-03 23:23:52 +01:00
/////////////////////////////////////////////////////////////////////////
2019-12-28 14:10:11 +01:00
void resetServiceModeTimer(uint8_t inServiceMode)
{
if (notifyServiceMode && inServiceMode != DccProcState.inServiceMode)
{
notifyServiceMode(inServiceMode);
}
// Set the Service Mode
DccProcState.inServiceMode = inServiceMode ;
2021-02-03 23:23:52 +01:00
DccProcState.LastServiceModeMillis = inServiceMode ? millis() : 0 ;
2019-12-28 14:10:11 +01:00
if (notifyServiceMode && inServiceMode != DccProcState.inServiceMode)
{
notifyServiceMode(inServiceMode);
}
}
2021-02-03 23:23:52 +01:00
/////////////////////////////////////////////////////////////////////////
2019-12-28 14:10:11 +01:00
void clearDccProcState(uint8_t inServiceMode)
{
resetServiceModeTimer( inServiceMode ) ;
// Set the Page Register to it's default of 1 only on the first Reset
DccProcState.PageRegister = 1 ;
// Clear the LastMsg buffer and DuplicateCount in preparation for possible CV programming
DccProcState.DuplicateCount = 0 ;
memset( &DccProcState.LastMsg, 0, sizeof( DCC_MSG ) ) ;
}
2021-02-03 23:23:52 +01:00
/////////////////////////////////////////////////////////////////////////
#ifdef DEBUG_PRINT
void SerialPrintPacketHex(const __FlashStringHelper *strLabel, DCC_MSG * pDccMsg)
2019-12-28 14:10:11 +01:00
{
2021-02-03 23:23:52 +01:00
Serial.print( strLabel );
for( uint8_t i = 0; i < pDccMsg->Size; i++ )
{
if( pDccMsg->Data[i] <= 9)
Serial.print('0');
Serial.print( pDccMsg->Data[i], HEX );
Serial.write( ' ' );
}
Serial.println();
}
#endif
2019-12-28 14:10:11 +01:00
2021-02-03 23:23:52 +01:00
///////////////////////////////////////////////////////////////////////////////
void execDccProcessor( DCC_MSG * pDccMsg )
{
2019-12-28 14:10:11 +01:00
if( ( pDccMsg->Data[0] == 0 ) && ( pDccMsg->Data[1] == 0 ) )
{
if( notifyDccReset )
notifyDccReset( 0 ) ;
2021-02-03 23:23:52 +01:00
2019-12-28 14:10:11 +01:00
#ifdef NMRA_DCC_PROCESS_SERVICEMODE
// If this is the first Reset then perform some one-shot actions as we maybe about to enter service mode
if( DccProcState.inServiceMode )
resetServiceModeTimer( 1 ) ;
else
clearDccProcState( 1 );
#endif
}
else
{
#ifdef NMRA_DCC_PROCESS_SERVICEMODE
if( DccProcState.inServiceMode && ( pDccMsg->Data[0] >= 112 ) && ( pDccMsg->Data[0] < 128 ) )
{
resetServiceModeTimer( 1 ) ;
2021-02-03 23:23:52 +01:00
//Only check the DCC Packet "Size" and "Data" fields and ignore the "PreambleBits" as they can be different to the previous packet
if(pDccMsg->Size != DccProcState.LastMsg.Size || memcmp( pDccMsg->Data, &DccProcState.LastMsg.Data, pDccMsg->Size ) != 0 )
2019-12-28 14:10:11 +01:00
{
DccProcState.DuplicateCount = 0 ;
memcpy( &DccProcState.LastMsg, pDccMsg, sizeof( DCC_MSG ) ) ;
}
2021-02-03 23:23:52 +01:00
// Wait until you see 2 identical packets before acting on a Service Mode Packet
2019-12-28 14:10:11 +01:00
else
{
DccProcState.DuplicateCount++ ;
processServiceModeOperation( pDccMsg ) ;
}
}
else
{
if( DccProcState.inServiceMode )
2021-02-03 23:23:52 +01:00
clearDccProcState( 0 );
2019-12-28 14:10:11 +01:00
#endif
// Idle Packet
if( ( pDccMsg->Data[0] == 0b11111111 ) && ( pDccMsg->Data[1] == 0 ) )
{
if( notifyDccIdle )
notifyDccIdle() ;
}
#ifdef NMRA_DCC_PROCESS_MULTIFUNCTION
// Multi Function Decoders (7-bit address)
else if( pDccMsg->Data[0] < 128 )
processMultiFunctionMessage( pDccMsg->Data[0], DCC_ADDR_SHORT, pDccMsg->Data[1], pDccMsg->Data[2], pDccMsg->Data[3] ) ;
2021-02-03 23:23:52 +01:00
2019-12-28 14:10:11 +01:00
// Basic Accessory Decoders (9-bit) & Extended Accessory Decoders (11-bit)
else if( pDccMsg->Data[0] < 192 )
#else
else if( ( pDccMsg->Data[0] >= 128 ) && ( pDccMsg->Data[0] < 192 ) )
#endif
{
if( DccProcState.Flags & FLAGS_DCC_ACCESSORY_DECODER )
{
int16_t BoardAddress ;
int16_t OutputAddress ;
uint8_t TurnoutPairIndex ;
2021-02-03 23:23:52 +01:00
#ifdef DEBUG_PRINT
SerialPrintPacketHex(F( "eDP: AccCmd: "), pDccMsg);
2019-12-28 14:10:11 +01:00
#endif
BoardAddress = ( ( (~pDccMsg->Data[1]) & 0b01110000 ) << 2 ) | ( pDccMsg->Data[0] & 0b00111111 ) ;
TurnoutPairIndex = (pDccMsg->Data[1] & 0b00000110) >> 1;
2021-02-03 23:23:52 +01:00
DB_PRINT("eDP: BAddr:%d, Index:%d", BoardAddress, TurnoutPairIndex);
2019-12-28 14:10:11 +01:00
// First check for Legacy Accessory Decoder Configuration Variable Access Instruction
// as it's got a different format to the others
if((pDccMsg->Size == 5) && ((pDccMsg->Data[1] & 0b10001100) == 0b00001100))
{
2021-02-03 23:23:52 +01:00
DB_PRINT( "eDP: Legacy Accessory Decoder CV Access Command");
2019-12-28 14:10:11 +01:00
// Check if this command is for our address or the broadcast address
if((BoardAddress != getMyAddr()) && ( BoardAddress < 511 ))
{
2021-02-03 23:23:52 +01:00
DB_PRINT("eDP: Board Address Not Matched");
2019-12-28 14:10:11 +01:00
return;
}
uint16_t cvAddress = ((pDccMsg->Data[1] & 0b00000011) << 8) + pDccMsg->Data[2] + 1;
2021-02-03 23:23:52 +01:00
uint8_t cvValue = pDccMsg->Data[3];
DB_PRINT("eDP: CV:%d Value:%d", cvAddress, cvValue );
if(validCV( cvAddress, 1 ))
2019-12-28 14:10:11 +01:00
writeCV(cvAddress, cvValue);
2021-02-03 23:23:52 +01:00
return;
2019-12-28 14:10:11 +01:00
}
OutputAddress = (((BoardAddress - 1) << 2 ) | TurnoutPairIndex) + 1 ; //decoder output addresses start with 1, packet address range starts with 0
// ( according to NMRA 9.2.2 )
2021-02-03 23:23:52 +01:00
DB_PRINT("eDP: OAddr:%d", OutputAddress);
2019-12-28 14:10:11 +01:00
if( DccProcState.inAccDecDCCAddrNextReceivedMode)
{
2021-02-03 23:23:52 +01:00
if( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE )
{
DB_PRINT("eDP: Set OAddr:%d", OutputAddress);
//uint16_t storedOutputAddress = OutputAddress + 1; // The value stored in CV1 & 9 for Output Addressing Mode is + 1
writeCV(CV_ACCESSORY_DECODER_ADDRESS_LSB, (uint8_t)(OutputAddress % 256));
writeCV(CV_ACCESSORY_DECODER_ADDRESS_MSB, (uint8_t)(OutputAddress / 256));
if( notifyDccAccOutputAddrSet )
notifyDccAccOutputAddrSet(OutputAddress);
}
else
{
DB_PRINT("eDP: Set BAddr:%d", BoardAddress);
writeCV(CV_ACCESSORY_DECODER_ADDRESS_LSB, (uint8_t)(BoardAddress % 64));
writeCV(CV_ACCESSORY_DECODER_ADDRESS_MSB, (uint8_t)(BoardAddress / 64));
if( notifyDccAccBoardAddrSet )
notifyDccAccBoardAddrSet(BoardAddress);
}
DccProcState.inAccDecDCCAddrNextReceivedMode = 0; // Reset the mode now that we have set the address
2019-12-28 14:10:11 +01:00
}
// If we're filtering addresses, does the address match our address or is it a broadcast address? If NOT then return
if( DccProcState.Flags & FLAGS_MY_ADDRESS_ONLY )
{
if( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE ) {
2021-02-03 23:23:52 +01:00
DB_PRINT(" AddrChk: OAddr:%d, BAddr:%d, myAddr:%d Chk=%d", OutputAddress, BoardAddress, getMyAddr(), OutputAddress != getMyAddr() );
2019-12-28 14:10:11 +01:00
if ( OutputAddress != getMyAddr() && OutputAddress < 2045 ) {
2021-02-03 23:23:52 +01:00
DB_PRINT(" eDP: OAddr:%d, myAddr:%d - no match", OutputAddress, getMyAddr() );
2019-12-28 14:10:11 +01:00
return;
}
} else {
if( ( BoardAddress != getMyAddr() ) && ( BoardAddress < 511 ) ) {
2021-02-03 23:23:52 +01:00
DB_PRINT(" eDP: BAddr:%d, myAddr:%d - no match", BoardAddress, getMyAddr() );
2019-12-28 14:10:11 +01:00
return;
}
}
2021-02-03 23:23:52 +01:00
DB_PRINT("eDP: Address Matched");
2019-12-28 14:10:11 +01:00
}
2021-02-03 23:23:52 +01:00
if((pDccMsg->Size == 4) && ((pDccMsg->Data[1] & 0b10001001) == 1)) // Extended Accessory Decoder Control Packet Format
{
// According to the NMRA Dcc Spec the Signal State should only use the lower 5 Bits,
// however some manufacturers seem to allow/use all 8 bits, so we'll relax that constraint for now
uint8_t state = pDccMsg->Data[2] ;
DB_PRINT("eDP: OAddr:%d Extended State:%0X", OutputAddress, state);
if( notifyDccSigOutputState )
notifyDccSigOutputState(OutputAddress, state);
// old callback ( for compatibility with 1.4.2, not to be used in new designs )
if( notifyDccSigState )
notifyDccSigState( OutputAddress, TurnoutPairIndex, pDccMsg->Data[2] ) ;
}
else if(pDccMsg->Size == 3) // Basic Accessory Decoder Packet Format
{
uint8_t direction = pDccMsg->Data[1] & 0b00000001;
uint8_t outputPower = (pDccMsg->Data[1] & 0b00001000) >> 3;
// old callback ( for compatibility with 1.4.2, not to be used in new designs )
if ( notifyDccAccState )
notifyDccAccState( OutputAddress, BoardAddress, pDccMsg->Data[1] & 0b00000111, outputPower );
if( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE )
2019-12-28 14:10:11 +01:00
{
2021-02-03 23:23:52 +01:00
DB_PRINT("eDP: OAddr:%d Turnout Dir:%d Output Power:%d", OutputAddress, direction, outputPower);
if( notifyDccAccTurnoutOutput )
notifyDccAccTurnoutOutput( OutputAddress, direction, outputPower );
2019-12-28 14:10:11 +01:00
}
2021-02-03 23:23:52 +01:00
else
{
DB_PRINT("eDP: Turnout Pair Index:%d Dir:%d Output Power: ", TurnoutPairIndex, direction, outputPower);
if( notifyDccAccTurnoutBoard )
notifyDccAccTurnoutBoard( BoardAddress, TurnoutPairIndex, direction, outputPower );
}
}
else if(pDccMsg->Size == 6) // Accessory Decoder OPS Mode Programming
{
DB_PRINT("eDP: OPS Mode CV Programming Command");
// Check for unsupported OPS Mode Addressing mode
if(((pDccMsg->Data[1] & 0b10001001) != 1) && ((pDccMsg->Data[1] & 0b10001111) != 0x80))
{
DB_PRINT("eDP: Unsupported OPS Mode CV Addressing Mode");
return;
}
// Check if this command is for our address or the broadcast address
2019-12-28 14:10:11 +01:00
if(DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE)
{
2021-02-03 23:23:52 +01:00
DB_PRINT("eDP: Check Output Address:%d", OutputAddress);
2019-12-28 14:10:11 +01:00
if((OutputAddress != getMyAddr()) && ( OutputAddress < 2045 ))
{
2021-02-03 23:23:52 +01:00
DB_PRINT("eDP: Output Address Not Matched");
return;
2019-12-28 14:10:11 +01:00
}
}
else
{
2021-02-03 23:23:52 +01:00
DB_PRINT("eDP: Check Board Address:%d", BoardAddress);
2019-12-28 14:10:11 +01:00
if((BoardAddress != getMyAddr()) && ( BoardAddress < 511 ))
{
2021-02-03 23:23:52 +01:00
DB_PRINT("eDP: Board Address Not Matched");
return;
2019-12-28 14:10:11 +01:00
}
}
2021-02-03 23:23:52 +01:00
uint16_t cvAddress = ((pDccMsg->Data[2] & 0b00000011) << 8) + pDccMsg->Data[3] + 1;
uint8_t cvValue = pDccMsg->Data[4];
OpsInstructionType insType = (OpsInstructionType)((pDccMsg->Data[2] & 0b00001100) >> 2) ;
DB_PRINT("eDP: OPS Mode Instruction:%d", insType);
switch(insType)
{
case OPS_INS_RESERVED:
case OPS_INS_VERIFY_BYTE:
DB_PRINT("eDP: Unsupported OPS Mode Instruction:%d", insType);
break; // We only support Write Byte or Bit Manipulation
case OPS_INS_WRITE_BYTE:
DB_PRINT("eDP: CV:%d Value:%d", cvAddress, cvValue);
if(validCV( cvAddress, 1 ))
writeCV(cvAddress, cvValue);
break;
// 111CDBBB
// Where BBB represents the bit position within the CV,
// D contains the value of the bit to be verified or written,
// and C describes whether the operation is a verify bit or a write bit operation.
// C = "1" WRITE BIT
// C = "0" VERIFY BIT
case OPS_INS_BIT_MANIPULATION:
// Make sure its a Write Bit Manipulation
if((cvValue & 0b00010000) && validCV(cvAddress, 1 ))
{
uint8_t currentValue = readCV(cvAddress);
uint8_t newValueMask = 1 << (cvValue & 0b00000111);
if(cvValue & 0b00001000)
writeCV(cvAddress, currentValue | newValueMask);
else
writeCV(cvAddress, currentValue & ~newValueMask);
}
break;
}
2019-12-28 14:10:11 +01:00
}
}
}
#ifdef NMRA_DCC_PROCESS_MULTIFUNCTION
// Multi Function Decoders (14-bit address)
else if( pDccMsg->Data[0] < 232 )
{
uint16_t Address ;
Address = ( ( pDccMsg->Data[0] - 192 ) << 8 ) | pDccMsg->Data[1];
//TODO should we convert Address to 1 .. 10239 ?
processMultiFunctionMessage( Address, DCC_ADDR_LONG, pDccMsg->Data[2], pDccMsg->Data[3], pDccMsg->Data[4] ) ;
}
#endif
#ifdef NMRA_DCC_PROCESS_SERVICEMODE
}
#endif
}
}
2021-02-03 23:23:52 +01:00
////////////////////////////////////////////////////////////////////////
NmraDcc::NmraDcc()
2019-12-28 14:10:11 +01:00
{
2021-02-03 23:23:52 +01:00
}
#ifdef digitalPinToInterrupt
void NmraDcc::pin( uint8_t ExtIntPinNum, uint8_t EnablePullup)
{
pin(digitalPinToInterrupt(ExtIntPinNum), ExtIntPinNum, EnablePullup);
}
#endif
void NmraDcc::pin( uint8_t ExtIntNum, uint8_t ExtIntPinNum, uint8_t EnablePullup)
{
#if defined ( __STM32F1__ )
// with STM32F1 the interuptnumber is equal the pin number
DccProcState.ExtIntNum = ExtIntPinNum;
// because STM32F1 has a NVIC we must set interuptpriorities
const nvic_irq_num irqNum2nvic[] = { NVIC_EXTI0, NVIC_EXTI1, NVIC_EXTI2, NVIC_EXTI3, NVIC_EXTI4,
NVIC_EXTI_9_5, NVIC_EXTI_9_5, NVIC_EXTI_9_5, NVIC_EXTI_9_5, NVIC_EXTI_9_5,
NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10 };
exti_num irqNum = (exti_num)(PIN_MAP[ExtIntPinNum].gpio_bit);
// DCC-Input IRQ must be able to interrupt other long low priority ( level15 ) IRQ's
nvic_irq_set_priority ( irqNum2nvic[irqNum], PRIO_DCC_IRQ);
2019-12-28 14:10:11 +01:00
2021-02-03 23:23:52 +01:00
// Systic must be able to interrupt DCC-IRQ to always get correct micros() values
nvic_irq_set_priority(NVIC_SYSTICK, PRIO_SYSTIC);
#else
DccProcState.ExtIntNum = ExtIntNum;
#endif
DccProcState.ExtIntPinNum = ExtIntPinNum;
#ifdef __AVR_MEGA__
// because digitalRead at AVR is slow, we will read the dcc input in the ISR
// by direct port access.
DccProcState.ExtIntPort = portInputRegister( digitalPinToPort(ExtIntPinNum) );
DccProcState.ExtIntMask = digitalPinToBitMask( ExtIntPinNum );
#else
DccProcState.ExtIntMask = 1;
#endif
pinMode( ExtIntPinNum, EnablePullup ? INPUT_PULLUP : INPUT );
}
////////////////////////////////////////////////////////////////////////
void NmraDcc::initAccessoryDecoder( uint8_t ManufacturerId, uint8_t VersionId, uint8_t Flags, uint8_t OpsModeAddressBaseCV )
{
init(ManufacturerId, VersionId, Flags | FLAGS_DCC_ACCESSORY_DECODER, OpsModeAddressBaseCV);
2019-12-28 14:10:11 +01:00
}
2021-02-03 23:23:52 +01:00
////////////////////////////////////////////////////////////////////////
void NmraDcc::init( uint8_t ManufacturerId, uint8_t VersionId, uint8_t Flags, uint8_t OpsModeAddressBaseCV )
2019-12-28 14:10:11 +01:00
{
2021-02-03 23:23:52 +01:00
#if defined(ESP8266)
EEPROM.begin(MAXCV);
#endif
#if defined(ESP32)
EEPROM.begin(MAXCV);
#endif
2019-12-28 14:10:11 +01:00
// Clear all the static member variables
memset( &DccRx, 0, sizeof( DccRx) );
MODE_TP1; // only for debugging and timing measurement
MODE_TP2;
MODE_TP3;
MODE_TP4;
bitMax = MAX_ONEBITFULL;
bitMin = MIN_ONEBITFULL;
2021-02-03 23:23:52 +01:00
2019-12-28 14:10:11 +01:00
DccProcState.Flags = Flags ;
DccProcState.OpsModeAddressBaseCV = OpsModeAddressBaseCV ;
DccProcState.myDccAddress = -1;
DccProcState.inAccDecDCCAddrNextReceivedMode = 0;
2021-02-03 23:23:52 +01:00
ISREdge = RISING;
// level checking to detect false IRQ's fired by glitches
ISRLevel = DccProcState.ExtIntMask;
ISRChkMask = DccProcState.ExtIntMask;
2019-12-28 14:10:11 +01:00
2021-02-03 23:23:52 +01:00
#ifdef ESP32
ISRWatch = ISREdge;
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, CHANGE);
#else
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, RISING);
#endif
2019-12-28 14:10:11 +01:00
// Set the Bits that control Multifunction or Accessory behaviour
// and if the Accessory decoder optionally handles Output Addressing
// we need to peal off the top two bits
2021-02-03 23:23:52 +01:00
DccProcState.cv29Value = writeCV( CV_29_CONFIG, ( readCV( CV_29_CONFIG ) & ~FLAGS_CV29_BITS ) | (Flags & FLAGS_CV29_BITS) ) ;
2019-12-28 14:10:11 +01:00
uint8_t doAutoFactoryDefault = 0;
if((Flags & FLAGS_AUTO_FACTORY_DEFAULT) && (readCV(CV_VERSION_ID) == 255) && (readCV(CV_MANUFACTURER_ID) == 255))
2021-02-03 23:23:52 +01:00
doAutoFactoryDefault = 1;
2019-12-28 14:10:11 +01:00
writeCV( CV_VERSION_ID, VersionId ) ;
writeCV( CV_MANUFACTURER_ID, ManufacturerId ) ;
clearDccProcState( 0 );
if(notifyCVResetFactoryDefault && doAutoFactoryDefault)
2021-02-03 23:23:52 +01:00
notifyCVResetFactoryDefault();
}
////////////////////////////////////////////////////////////////////////
uint8_t NmraDcc::getCV( uint16_t CV )
{
return readCV(CV);
}
////////////////////////////////////////////////////////////////////////
uint8_t NmraDcc::setCV( uint16_t CV, uint8_t Value)
{
DccProcState.Flags |= FLAGS_SETCV_CALLED;
uint8_t returnValue = writeCV(CV,Value);
DccProcState.Flags &= ~FLAGS_SETCV_CALLED;
return returnValue;
2019-12-28 14:10:11 +01:00
}
2021-02-03 23:23:52 +01:00
////////////////////////////////////////////////////////////////////////
uint16_t NmraDcc::getAddr(void)
2019-12-28 14:10:11 +01:00
{
2021-02-03 23:23:52 +01:00
return getMyAddr();
2019-12-28 14:10:11 +01:00
}
2021-02-03 23:23:52 +01:00
////////////////////////////////////////////////////////////////////////
uint8_t NmraDcc::isSetCVReady(void)
{
if(notifyIsSetCVReady)
return notifyIsSetCVReady();
return readyEEPROM();
}
////////////////////////////////////////////////////////////////////////
#ifdef DCC_DEBUG
uint8_t NmraDcc::getIntCount(void)
2019-12-28 14:10:11 +01:00
{
2021-02-03 23:23:52 +01:00
return DccProcState.IntCount;
}
////////////////////////////////////////////////////////////////////////
uint8_t NmraDcc::getTickCount(void)
{
return DccProcState.TickCount;
}
////////////////////////////////////////////////////////////////////////
uint8_t NmraDcc::getNestedIrqCount(void)
{
return DccProcState.NestedIrqCount;
}
////////////////////////////////////////////////////////////////////////
uint8_t NmraDcc::getState(void)
{
return DccRx.State;
}
////////////////////////////////////////////////////////////////////////
uint8_t NmraDcc::getBitCount(void)
{
return DccRx.BitCount;
}
#endif
////////////////////////////////////////////////////////////////////////
void NmraDcc::setAccDecDCCAddrNextReceived(uint8_t enable)
{
DccProcState.inAccDecDCCAddrNextReceivedMode = enable;
}
////////////////////////////////////////////////////////////////////////
uint8_t NmraDcc::process()
{
if( DccProcState.inServiceMode )
{
if( (millis() - DccProcState.LastServiceModeMillis ) > 20L )
{
clearDccProcState( 0 ) ;
}
}
if( DccRx.DataReady )
{
// We need to do this check with interrupts disabled
#ifdef ESP32
portENTER_CRITICAL(&mux);
#else
noInterrupts();
#endif
Msg = DccRx.PacketCopy ;
DccRx.DataReady = 0 ;
#ifdef ESP32
portEXIT_CRITICAL(&mux);
#else
interrupts();
#endif
// Checking of the XOR-byte is now done in the ISR already
#ifdef DCC_DBGVAR
countOf.Tel++;
#endif
// Clear trailing bytes
for ( byte i=Msg.Size; i< MAX_DCC_MESSAGE_LEN; i++ ) Msg.Data[i] = 0;
if( notifyDccMsg ) notifyDccMsg( &Msg );
execDccProcessor( &Msg );
return 1 ;
}
return 0 ;
};