2019-12-28 14:10:11 +01:00
|
|
|
//------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// Model Railroading with Arduino - NmraDcc.cpp
|
|
|
|
//
|
2021-02-03 23:23:52 +01:00
|
|
|
// Copyright (c) 2008 - 2020 Alex Shepherd
|
2019-12-28 14:10:11 +01:00
|
|
|
//
|
2021-02-03 23:23:52 +01:00
|
|
|
// This library is free software; you can redistribute it and/or
|
|
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
|
|
// License as published by the Free Software Foundation; either
|
|
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
|
|
//
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
// Lesser General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
|
|
// License along with this library; if not, write to the Free Software
|
|
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
2019-12-28 14:10:11 +01:00
|
|
|
//
|
|
|
|
//------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// file: NmraDcc.cpp
|
|
|
|
// author: Alex Shepherd
|
|
|
|
// webpage: http://mrrwa.org/
|
|
|
|
// history: 2008-03-20 Initial Version
|
|
|
|
// 2011-06-26 Migrated into Arduino library from OpenDCC codebase
|
|
|
|
// 2014 Added getAddr to NmraDcc Geoff Bunza
|
|
|
|
// 2015-11-06 Martin Pischky (martin@pischky.de):
|
|
|
|
// Experimental Version to support 14 speed steps
|
|
|
|
// and new signature of notifyDccSpeed and notifyDccFunc
|
|
|
|
// 2015-12-16 Version without use of Timer0 by Franz-Peter Müller
|
|
|
|
// 2016-07-16 handle glitches on DCC line
|
2021-02-03 23:23:52 +01:00
|
|
|
// 2016-08-20 added ESP8266 support by Sven (littleyoda)
|
|
|
|
// 2017-01-19 added STM32F1 support by Franz-Peter
|
2019-12-28 14:10:11 +01:00
|
|
|
// 2017-11-29 Ken West (kgw4449@gmail.com):
|
|
|
|
// Minor fixes to pass NMRA Baseline Conformance Tests.
|
|
|
|
// 2018-12-17 added ESP32 support by Trusty (thierry@lapajaparis.net)
|
|
|
|
// 2019-02-17 added ESP32 specific changes by Hans Tanner
|
2021-02-03 23:23:52 +01:00
|
|
|
// 2020-05-15 changes to pass NMRA Tests ( always search for preamble )
|
2019-12-28 14:10:11 +01:00
|
|
|
//------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// purpose: Provide a simplified interface to decode NMRA DCC packets
|
2021-02-03 23:23:52 +01:00
|
|
|
// and build DCC Mobile and Stationary Decoders
|
2019-12-28 14:10:11 +01:00
|
|
|
//
|
|
|
|
//------------------------------------------------------------------------
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
#include "NmraDcc.h"
|
|
|
|
#include "EEPROM.h"
|
2019-12-28 14:10:11 +01:00
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
// Uncomment to print DEBUG messages
|
|
|
|
// #define DEBUG_PRINT
|
2019-12-28 14:10:11 +01:00
|
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
|
|
// DCC Receive Routine
|
|
|
|
//
|
|
|
|
// Howto: uses two interrupts: a rising edge in DCC polarity triggers INTx
|
|
|
|
// in INTx handler, Timer0 CompareB with a delay of 80us is started.
|
|
|
|
// On Timer0 CompareB Match the level of DCC is evaluated and
|
|
|
|
// parsed.
|
|
|
|
//
|
|
|
|
// |<-----116us----->|
|
|
|
|
//
|
|
|
|
// DCC 1: _________XXXXXXXXX_________XXXXXXXXX_________
|
|
|
|
// ^-INTx
|
|
|
|
// |----87us--->|
|
|
|
|
// ^Timer-INT: reads zero
|
|
|
|
//
|
|
|
|
// DCC 0: _________XXXXXXXXXXXXXXXXXX__________________
|
|
|
|
// ^-INTx
|
|
|
|
// |----------->|
|
|
|
|
// ^Timer-INT: reads one
|
|
|
|
//
|
|
|
|
// new DCC Receive Routine without Timer0 ........................................................
|
|
|
|
//
|
|
|
|
// Howto: uses only one interrupt at the rising or falling edge of the DCC signal
|
|
|
|
// The time between two edges is measured to determine the bit value
|
|
|
|
// Synchronising to the edge of the first part of a bit is done after recognizing the start bit
|
|
|
|
// During synchronizing each part of a bit is detected ( Interruptmode 'change' )
|
|
|
|
//
|
|
|
|
// |<-----116us----->|
|
|
|
|
// DCC 1: _________XXXXXXXXX_________XXXXXXXXX_________
|
|
|
|
// |<--------146us------>|
|
|
|
|
// ^-INTx ^-INTx
|
2021-02-03 23:23:52 +01:00
|
|
|
// less than 146us: its a one-Bit
|
2019-12-28 14:10:11 +01:00
|
|
|
//
|
|
|
|
//
|
|
|
|
// |<-----------------232us----------->|
|
|
|
|
// DCC 0: _________XXXXXXXXXXXXXXXXXX__________________XXXXXXXX__________
|
|
|
|
// |<--------146us------->|
|
|
|
|
// ^-INTx ^-INTx
|
2021-02-03 23:23:52 +01:00
|
|
|
// greater than 146us: its a zero bit
|
2019-12-28 14:10:11 +01:00
|
|
|
//
|
|
|
|
//
|
|
|
|
//
|
|
|
|
//
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
//------------------------------------------------------------------------
|
|
|
|
// if this is commented out, bit synchronisation is only done after a wrong checksum
|
|
|
|
#define SYNC_ALWAYS
|
2019-12-28 14:10:11 +01:00
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
// if this is commented out, Zero-Bit_Stretching is not supported
|
|
|
|
// ( Bits longer than 2* MAX ONEBIT are treated as error )
|
|
|
|
#define SUPPORT_ZERO_BIT_STRETCHING
|
2019-12-28 14:10:11 +01:00
|
|
|
|
|
|
|
#define MAX_ONEBITFULL 146
|
|
|
|
#define MAX_PRAEAMBEL 146
|
|
|
|
#define MAX_ONEBITHALF 82
|
|
|
|
#define MIN_ONEBITFULL 82
|
|
|
|
#define MIN_ONEBITHALF 35
|
2021-02-03 23:23:52 +01:00
|
|
|
#define MAX_BITDIFF 24
|
|
|
|
|
|
|
|
|
|
|
|
// Debug-Ports
|
|
|
|
//#define debug // Testpulse for logic analyser
|
|
|
|
#ifdef debug
|
|
|
|
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
|
|
|
#define MODE_TP1 DDRF |= (1<<2) //pinA2
|
|
|
|
#define SET_TP1 PORTF |= (1<<2)
|
|
|
|
#define CLR_TP1 PORTF &= ~(1<<2)
|
|
|
|
#define MODE_TP2 DDRF |= (1<<3) //pinA3
|
|
|
|
#define SET_TP2 PORTF |= (1<<3)
|
|
|
|
#define CLR_TP2 PORTF &= ~(1<<3)
|
|
|
|
#define MODE_TP3 DDRF |= (1<<4) //pinA4
|
|
|
|
#define SET_TP3 PORTF |= (1<<4)
|
|
|
|
#define CLR_TP3 PORTF &= ~(1<<4)
|
|
|
|
#define MODE_TP4 DDRF |= (1<<5) //pinA5
|
|
|
|
#define SET_TP4 PORTF |= (1<<5)
|
|
|
|
#define CLR_TP4 PORTF &= ~(1<<5)
|
|
|
|
#elif defined(__AVR_ATmega32U4__)
|
|
|
|
#define MODE_TP1 DDRF |= (1<<4) //A3
|
|
|
|
#define SET_TP1 PORTF |= (1<<4)
|
|
|
|
#define CLR_TP1 PORTF &= ~(1<<4)
|
|
|
|
#define MODE_TP2 DDRF |= (1<<5) //A2
|
|
|
|
#define SET_TP2 PORTF |= (1<<5)
|
|
|
|
#define CLR_TP2 PORTF &= ~(1<<5)
|
|
|
|
#define MODE_TP3
|
|
|
|
#define SET_TP3
|
|
|
|
#define CLR_TP3
|
|
|
|
#define MODE_TP4
|
|
|
|
#define SET_TP4
|
|
|
|
#define CLR_TP4
|
|
|
|
#elif defined(__AVR_ATmega328P__)
|
|
|
|
#define MODE_TP1 DDRC |= (1<<1) //A1
|
|
|
|
#define SET_TP1 PORTC |= (1<<1)
|
|
|
|
#define CLR_TP1 PORTC &= ~(1<<1)
|
|
|
|
#define MODE_TP2 DDRC |= (1<<2) // A2
|
|
|
|
#define SET_TP2 PORTC |= (1<<2)
|
|
|
|
#define CLR_TP2 PORTC &= ~(1<<2)
|
|
|
|
#define MODE_TP3 DDRC |= (1<<3) //A3
|
|
|
|
#define SET_TP3 PORTC |= (1<<3)
|
|
|
|
#define CLR_TP3 PORTC &= ~(1<<3)
|
|
|
|
#define MODE_TP4 DDRC |= (1<<4) //A4
|
|
|
|
#define SET_TP4 PORTC |= (1<<4)
|
|
|
|
#define CLR_TP4 PORTC &= ~(1<<4)
|
|
|
|
#elif defined(__arm__) && (defined(__MK20DX128__) || defined(__MK20DX256__))
|
|
|
|
// Teensys 3.x
|
|
|
|
#define MODE_TP1 pinMode( A1,OUTPUT ) // A1= PortC, Bit0
|
|
|
|
#define SET_TP1 GPIOC_PSOR = 0x01
|
|
|
|
#define CLR_TP1 GPIOC_PCOR = 0x01
|
|
|
|
#define MODE_TP2 pinMode( A2,OUTPUT ) // A2= PortB Bit0
|
|
|
|
#define SET_TP2 GPIOB_PSOR = 0x01
|
|
|
|
#define CLR_TP2 GPIOB_PCOR = 0x01
|
|
|
|
#define MODE_TP3 pinMode( A3,OUTPUT ) // A3 = PortB Bit1
|
|
|
|
#define SET_TP3 GPIOB_PSOR = 0x02
|
|
|
|
#define CLR_TP3 GPIOB_PCOR = 0x02
|
|
|
|
#define MODE_TP4 pinMode( A4,OUTPUT ) // A4 = PortB Bit3
|
|
|
|
#define SET_TP4 GPIOB_PSOR = 0x08
|
|
|
|
#define CLR_TP4 GPIOB_PCOR = 0x08
|
|
|
|
#elif defined (__STM32F1__)
|
|
|
|
// STM32F103...
|
|
|
|
#define MODE_TP1 pinMode( PB12,OUTPUT ) // TP1= PB12
|
|
|
|
#define SET_TP1 gpio_write_bit( GPIOB,12, HIGH );
|
|
|
|
#define CLR_TP1 gpio_write_bit( GPIOB,12, LOW );
|
|
|
|
#define MODE_TP2 pinMode( PB13,OUTPUT ) // TP2= PB13
|
|
|
|
#define SET_TP2 gpio_write_bit( GPIOB,13, HIGH );
|
|
|
|
#define CLR_TP2 gpio_write_bit( GPIOB,13, LOW );
|
|
|
|
#define MODE_TP3 pinMode( PB14,OUTPUT ) // TP3 = PB14
|
|
|
|
#define SET_TP3 gpio_write_bit( GPIOB,14, HIGH );
|
|
|
|
#define CLR_TP3 gpio_write_bit( GPIOB,14, LOW );
|
|
|
|
#define MODE_TP4 pinMode( PB15,OUTPUT ) // TP4 = PB15
|
|
|
|
#define SET_TP4 gpio_write_bit( GPIOB,15, HIGH );
|
|
|
|
#define CLR_TP4 gpio_write_bit( GPIOB,15, LOW );
|
|
|
|
#elif defined(ESP8266)
|
|
|
|
#define MODE_TP1 pinMode( D5,OUTPUT ) ; // GPIO 14
|
|
|
|
#define SET_TP1 GPOS = (1 << D5);
|
|
|
|
#define CLR_TP1 GPOC = (1 << D5);
|
|
|
|
#define MODE_TP2 pinMode( D6,OUTPUT ) ; // GPIO 12
|
|
|
|
#define SET_TP2 GPOS = (1 << D6);
|
|
|
|
#define CLR_TP2 GPOC = (1 << D6);
|
|
|
|
#define MODE_TP3 pinMode( D7,OUTPUT ) ; // GPIO 13
|
|
|
|
#define SET_TP3 GPOS = (1 << D7);
|
|
|
|
#define CLR_TP3 GPOC = (1 << D7);
|
|
|
|
#define MODE_TP4 pinMode( D8,OUTPUT ) ; // GPIO 15
|
|
|
|
#define SET_TP4 GPOS = (1 << D8);
|
|
|
|
#define CLR_TP4 GPOC = (1 << D8);
|
|
|
|
#elif defined(ESP32)
|
|
|
|
#define MODE_TP1 pinMode( 33,OUTPUT ) ; // GPIO 33
|
|
|
|
#define SET_TP1 GPOS = (1 << 33);
|
|
|
|
#define CLR_TP1 GPOC = (1 << 33);
|
|
|
|
#define MODE_TP2 pinMode( 25,OUTPUT ) ; // GPIO 25
|
|
|
|
#define SET_TP2 GPOS = (1 << 25);
|
|
|
|
#define CLR_TP2 GPOC = (1 << 25);
|
|
|
|
#define MODE_TP3 pinMode( 26,OUTPUT ) ; // GPIO 26
|
|
|
|
#define SET_TP3 GPOS = (1 << 26);
|
|
|
|
#define CLR_TP3 GPOC = (1 << 26);
|
|
|
|
#define MODE_TP4 pinMode( 27,OUTPUT ) ; // GPIO 27
|
|
|
|
#define SET_TP4 GPOS = (1 << 27);
|
|
|
|
#define CLR_TP4 GPOC = (1 << 27);
|
|
|
|
|
|
|
|
|
|
|
|
//#elif defined(__AVR_ATmega128__) ||defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
|
|
|
|
#else
|
|
|
|
#define MODE_TP1
|
|
|
|
#define SET_TP1
|
|
|
|
#define CLR_TP1
|
|
|
|
#define MODE_TP2
|
|
|
|
#define SET_TP2
|
|
|
|
#define CLR_TP2
|
|
|
|
#define MODE_TP3
|
|
|
|
#define SET_TP3
|
|
|
|
#define CLR_TP3
|
|
|
|
#define MODE_TP4
|
|
|
|
#define SET_TP4
|
|
|
|
#define CLR_TP4
|
2019-12-28 14:10:11 +01:00
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
#endif
|
2019-12-28 14:10:11 +01:00
|
|
|
#else
|
|
|
|
#define MODE_TP1
|
|
|
|
#define SET_TP1
|
|
|
|
#define CLR_TP1
|
|
|
|
#define MODE_TP2
|
|
|
|
#define SET_TP2
|
|
|
|
#define CLR_TP2
|
|
|
|
#define MODE_TP3
|
|
|
|
#define SET_TP3
|
|
|
|
#define CLR_TP3
|
|
|
|
#define MODE_TP4
|
|
|
|
#define SET_TP4
|
|
|
|
#define CLR_TP4
|
2021-02-03 23:23:52 +01:00
|
|
|
|
|
|
|
#endif
|
|
|
|
#ifdef DEBUG_PRINT
|
|
|
|
#define DB_PRINT( x, ... ) { char dbgbuf[80]; sprintf_P( dbgbuf, (const char*) F( x ) , ##__VA_ARGS__ ) ; Serial.println( dbgbuf ); }
|
|
|
|
#define DB_PRINT_( x, ... ) { char dbgbuf[80]; sprintf_P( dbgbuf, (const char*) F( x ) , ##__VA_ARGS__ ) ; Serial.print( dbgbuf ); }
|
|
|
|
#else
|
|
|
|
#define DB_PRINT( x, ... ) ;
|
|
|
|
#define DB_PRINT_( x, ... ) ;
|
2019-12-28 14:10:11 +01:00
|
|
|
#endif
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
#ifdef DCC_DBGVAR
|
|
|
|
struct countOf_t countOf;
|
|
|
|
#endif
|
2019-12-28 14:10:11 +01:00
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
#if defined ( __STM32F1__ )
|
|
|
|
static ExtIntTriggerMode ISREdge;
|
|
|
|
#elif defined ( ESP32 )
|
|
|
|
static byte ISREdge; // Holder of the Next Edge we're looking for: RISING or FALLING
|
|
|
|
static byte ISRWatch; // Interrupt Handler Edge Filter
|
|
|
|
#else
|
|
|
|
static byte ISREdge; // Holder of the Next Edge we're looking for: RISING or FALLING
|
|
|
|
static byte ISRWatch; // Interrupt Handler Edge Filter
|
|
|
|
#endif
|
|
|
|
byte ISRLevel; // expected Level at DCC input during ISR ( to detect glitches )
|
|
|
|
byte ISRChkMask; // Flag if Level must be checked
|
|
|
|
static word bitMax, bitMin;
|
2019-12-28 14:10:11 +01:00
|
|
|
|
|
|
|
typedef enum
|
|
|
|
{
|
|
|
|
WAIT_PREAMBLE = 0,
|
|
|
|
WAIT_START_BIT,
|
2021-02-03 23:23:52 +01:00
|
|
|
#ifndef SYNC_ALWAYS
|
|
|
|
WAIT_START_BIT_FULL,
|
|
|
|
#endif
|
2019-12-28 14:10:11 +01:00
|
|
|
WAIT_DATA,
|
|
|
|
WAIT_END_BIT
|
|
|
|
}
|
|
|
|
DccRxWaitState ;
|
|
|
|
|
|
|
|
typedef enum
|
|
|
|
{
|
|
|
|
OPS_INS_RESERVED = 0,
|
|
|
|
OPS_INS_VERIFY_BYTE,
|
|
|
|
OPS_INS_BIT_MANIPULATION,
|
|
|
|
OPS_INS_WRITE_BYTE
|
|
|
|
}
|
|
|
|
OpsInstructionType;
|
|
|
|
|
|
|
|
struct DccRx_t
|
|
|
|
{
|
|
|
|
DccRxWaitState State ;
|
2021-02-03 23:23:52 +01:00
|
|
|
uint8_t DataReady ;
|
2019-12-28 14:10:11 +01:00
|
|
|
uint8_t BitCount ;
|
|
|
|
uint8_t TempByte ;
|
2021-02-03 23:23:52 +01:00
|
|
|
uint8_t chkSum;
|
2019-12-28 14:10:11 +01:00
|
|
|
DCC_MSG PacketBuf;
|
|
|
|
DCC_MSG PacketCopy;
|
|
|
|
}
|
|
|
|
DccRx ;
|
|
|
|
|
|
|
|
typedef struct
|
|
|
|
{
|
|
|
|
uint8_t Flags ;
|
|
|
|
uint8_t OpsModeAddressBaseCV ;
|
|
|
|
uint8_t inServiceMode ;
|
|
|
|
long LastServiceModeMillis ;
|
|
|
|
uint8_t PageRegister ; // Used for Paged Operations in Service Mode Programming
|
|
|
|
uint8_t DuplicateCount ;
|
|
|
|
DCC_MSG LastMsg ;
|
2021-02-03 23:23:52 +01:00
|
|
|
uint8_t ExtIntNum;
|
|
|
|
uint8_t ExtIntPinNum;
|
|
|
|
volatile uint8_t *ExtIntPort; // use port and bitmask to read input at AVR in ISR
|
|
|
|
uint8_t ExtIntMask; // digitalRead is too slow on AVR
|
|
|
|
int16_t myDccAddress; // Cached value of DCC Address from CVs
|
2019-12-28 14:10:11 +01:00
|
|
|
uint8_t inAccDecDCCAddrNextReceivedMode;
|
2021-02-03 23:23:52 +01:00
|
|
|
uint8_t cv29Value;
|
2019-12-28 14:10:11 +01:00
|
|
|
#ifdef DCC_DEBUG
|
2021-02-03 23:23:52 +01:00
|
|
|
uint8_t IntCount;
|
|
|
|
uint8_t TickCount;
|
|
|
|
uint8_t NestedIrqCount;
|
2019-12-28 14:10:11 +01:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
DCC_PROCESSOR_STATE ;
|
|
|
|
|
|
|
|
DCC_PROCESSOR_STATE DccProcState ;
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
#ifdef ESP32
|
|
|
|
portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED;
|
2019-12-28 14:10:11 +01:00
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
void IRAM_ATTR ExternalInterruptHandler(void)
|
|
|
|
#elif defined(ESP8266)
|
|
|
|
void ICACHE_RAM_ATTR ExternalInterruptHandler(void)
|
|
|
|
#else
|
|
|
|
void ExternalInterruptHandler(void)
|
|
|
|
#endif
|
2019-12-28 14:10:11 +01:00
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
SET_TP3;
|
|
|
|
|
|
|
|
#ifdef ESP32
|
|
|
|
// switch (ISRWatch)
|
|
|
|
// {
|
|
|
|
// case RISING: if (digitalRead(DccProcState.ExtIntPinNum)) break;
|
|
|
|
// case FALLING: if (digitalRead(DccProcState.ExtIntPinNum)) return; break;
|
|
|
|
// }
|
|
|
|
// First compare the edge we're looking for to the pin state
|
|
|
|
switch (ISRWatch)
|
|
|
|
{
|
|
|
|
case CHANGE:
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RISING:
|
|
|
|
if (digitalRead(DccProcState.ExtIntPinNum) != HIGH)
|
|
|
|
return;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case FALLING:
|
|
|
|
if (digitalRead(DccProcState.ExtIntPinNum) != LOW)
|
|
|
|
return;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
// Bit evaluation without Timer 0 ------------------------------
|
|
|
|
uint8_t DccBitVal;
|
|
|
|
static int8_t bit1, bit2 ;
|
|
|
|
static unsigned int lastMicros = 0;
|
|
|
|
static byte halfBit, DCC_IrqRunning, preambleBitCount;
|
|
|
|
unsigned int actMicros, bitMicros;
|
|
|
|
#ifdef ALLOW_NESTED_IRQ
|
|
|
|
if ( DCC_IrqRunning ) {
|
|
|
|
// nested DCC IRQ - obviously there are glitches
|
|
|
|
// ignore this interrupt and increment glitchcounter
|
|
|
|
CLR_TP3;
|
|
|
|
#ifdef DCC_DEBUG
|
|
|
|
DccProcState.NestedIrqCount++;
|
|
|
|
#endif
|
|
|
|
SET_TP3;
|
|
|
|
return; //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> abort IRQ
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
actMicros = micros();
|
|
|
|
bitMicros = actMicros-lastMicros;
|
2019-12-28 14:10:11 +01:00
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
CLR_TP3; SET_TP3;
|
|
|
|
#ifdef __AVR_MEGA__
|
|
|
|
if ( bitMicros < bitMin || ( DccRx.State != WAIT_START_BIT && (*DccProcState.ExtIntPort & DccProcState.ExtIntMask) != (ISRLevel) ) ) {
|
|
|
|
#else
|
|
|
|
if ( bitMicros < bitMin || ( DccRx.State != WAIT_START_BIT && digitalRead( DccProcState.ExtIntPinNum ) != (ISRLevel) ) ) {
|
|
|
|
#endif
|
|
|
|
// too short - my be false interrupt due to glitch or false protocol or level does not match RISING / FALLING edge -> ignore this IRQ
|
|
|
|
CLR_TP3;
|
|
|
|
SET_TP4; /*delayMicroseconds(1); */ CLR_TP4;
|
|
|
|
return; //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> abort IRQ
|
|
|
|
}
|
|
|
|
CLR_TP3; SET_TP3;
|
2019-12-28 14:10:11 +01:00
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
lastMicros = actMicros;
|
|
|
|
#ifndef SUPPORT_ZERO_BIT_STRETCHING
|
|
|
|
//if ( bitMicros > MAX_ZEROBITFULL ) {
|
|
|
|
if ( bitMicros > (bitMax*2) ) {
|
|
|
|
// too long - my be false protocol -> start over
|
|
|
|
DccRx.State = WAIT_PREAMBLE ;
|
|
|
|
DccRx.BitCount = 0 ;
|
|
|
|
preambleBitCount = 0;
|
|
|
|
// SET_TP2; CLR_TP2;
|
|
|
|
bitMax = MAX_PRAEAMBEL;
|
|
|
|
bitMin = MIN_ONEBITFULL;
|
|
|
|
#if defined ( __STM32F1__ )
|
|
|
|
detachInterrupt( DccProcState.ExtIntNum );
|
|
|
|
#endif
|
|
|
|
#ifdef ESP32
|
|
|
|
ISRWatch = ISREdge;
|
|
|
|
#else
|
|
|
|
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge );
|
|
|
|
#endif
|
|
|
|
// enable level-checking
|
|
|
|
ISRChkMask = DccProcState.ExtIntMask;
|
|
|
|
ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ;
|
|
|
|
CLR_TP3;
|
|
|
|
//CLR_TP3;
|
|
|
|
return; //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> abort IRQ
|
|
|
|
}
|
|
|
|
CLR_TP3;
|
|
|
|
SET_TP3;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
DccBitVal = ( bitMicros < bitMax );
|
|
|
|
|
|
|
|
#ifdef ALLOW_NESTED_IRQ
|
|
|
|
DCC_IrqRunning = true;
|
|
|
|
interrupts(); // time critical is only the micros() command,so allow nested irq's
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef DCC_DEBUG
|
|
|
|
DccProcState.TickCount++;
|
|
|
|
#endif
|
2019-12-28 14:10:11 +01:00
|
|
|
switch( DccRx.State )
|
|
|
|
{
|
|
|
|
case WAIT_PREAMBLE:
|
2021-02-03 23:23:52 +01:00
|
|
|
// We don't have to do anything special - looking for a preamble condition is done always
|
|
|
|
SET_TP2;
|
|
|
|
break;
|
|
|
|
|
|
|
|
#ifndef SYNC_ALWAYS
|
|
|
|
case WAIT_START_BIT_FULL:
|
|
|
|
// wait for startbit without level checking
|
|
|
|
if ( !DccBitVal ) {
|
|
|
|
// we got the startbit
|
|
|
|
CLR_TP2;CLR_TP1;
|
|
|
|
DccRx.State = WAIT_DATA ;
|
2019-12-28 14:10:11 +01:00
|
|
|
CLR_TP1;
|
2021-02-03 23:23:52 +01:00
|
|
|
// initialize packet buffer
|
|
|
|
DccRx.PacketBuf.Size = 0;
|
|
|
|
/*for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ )
|
|
|
|
DccRx.PacketBuf.Data[i] = 0;*/
|
|
|
|
DccRx.PacketBuf.PreambleBits = preambleBitCount;
|
|
|
|
DccRx.BitCount = 0 ;
|
|
|
|
DccRx.chkSum = 0 ;
|
|
|
|
DccRx.TempByte = 0 ;
|
|
|
|
//SET_TP1;
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
break;
|
2021-02-03 23:23:52 +01:00
|
|
|
#endif
|
2019-12-28 14:10:11 +01:00
|
|
|
case WAIT_START_BIT:
|
|
|
|
// we are looking for first half "0" bit after preamble
|
|
|
|
switch ( halfBit ) {
|
2021-02-03 23:23:52 +01:00
|
|
|
case 0:
|
2019-12-28 14:10:11 +01:00
|
|
|
// check first part
|
|
|
|
if ( DccBitVal ) {
|
|
|
|
// is still 1-bit (Preamble)
|
|
|
|
halfBit=1;
|
|
|
|
bit1=bitMicros;
|
|
|
|
} else {
|
|
|
|
// was "0" half bit, maybe the startbit
|
2021-02-03 23:23:52 +01:00
|
|
|
halfBit = 4;
|
|
|
|
}
|
2019-12-28 14:10:11 +01:00
|
|
|
break;
|
2021-02-03 23:23:52 +01:00
|
|
|
case 1: // previous halfbit was '1'
|
2019-12-28 14:10:11 +01:00
|
|
|
if ( DccBitVal ) {
|
|
|
|
// its a '1' halfBit -> we are still in the preamble
|
|
|
|
halfBit = 0;
|
|
|
|
bit2=bitMicros;
|
2021-02-03 23:23:52 +01:00
|
|
|
preambleBitCount++;
|
2019-12-28 14:10:11 +01:00
|
|
|
if( abs(bit2-bit1) > MAX_BITDIFF ) {
|
|
|
|
// the length of the 2 halfbits differ too much -> wrong protokoll
|
|
|
|
DccRx.State = WAIT_PREAMBLE;
|
|
|
|
bitMax = MAX_PRAEAMBEL;
|
|
|
|
bitMin = MIN_ONEBITFULL;
|
2021-02-03 23:23:52 +01:00
|
|
|
preambleBitCount = 0;
|
|
|
|
// SET_TP2; CLR_TP2;
|
|
|
|
#if defined ( __STM32F1__ )
|
|
|
|
detachInterrupt( DccProcState.ExtIntNum );
|
|
|
|
#endif
|
|
|
|
#ifdef ESP32
|
|
|
|
ISRWatch = ISREdge;
|
|
|
|
#else
|
|
|
|
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge );
|
|
|
|
// enable level checking ( with direct port reading @ AVR )
|
|
|
|
ISRChkMask = DccProcState.ExtIntMask;
|
|
|
|
ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ;
|
|
|
|
#endif
|
|
|
|
SET_TP3;
|
2019-12-28 14:10:11 +01:00
|
|
|
CLR_TP4;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// first '0' half detected in second halfBit
|
|
|
|
// wrong sync or not a DCC protokoll
|
|
|
|
CLR_TP3;
|
2021-02-03 23:23:52 +01:00
|
|
|
halfBit = 3;
|
2019-12-28 14:10:11 +01:00
|
|
|
SET_TP3;
|
|
|
|
}
|
|
|
|
break;
|
2021-02-03 23:23:52 +01:00
|
|
|
case 3: // previous halfbit was '0' in second halfbit
|
2019-12-28 14:10:11 +01:00
|
|
|
if ( DccBitVal ) {
|
|
|
|
// its a '1' halfbit -> we got only a half '0' bit -> cannot be DCC
|
|
|
|
DccRx.State = WAIT_PREAMBLE;
|
|
|
|
bitMax = MAX_PRAEAMBEL;
|
|
|
|
bitMin = MIN_ONEBITFULL;
|
2021-02-03 23:23:52 +01:00
|
|
|
preambleBitCount = 0;
|
|
|
|
// SET_TP2; CLR_TP2;
|
2019-12-28 14:10:11 +01:00
|
|
|
} else {
|
|
|
|
// we got two '0' halfbits -> it's the startbit
|
|
|
|
// but sync is NOT ok, change IRQ edge.
|
2021-02-03 23:23:52 +01:00
|
|
|
CLR_TP2;CLR_TP1;
|
|
|
|
if ( ISREdge == RISING ) ISREdge = FALLING; else ISREdge = RISING;
|
2019-12-28 14:10:11 +01:00
|
|
|
DccRx.State = WAIT_DATA ;
|
2021-02-03 23:23:52 +01:00
|
|
|
CLR_TP1;
|
2019-12-28 14:10:11 +01:00
|
|
|
bitMax = MAX_ONEBITFULL;
|
|
|
|
bitMin = MIN_ONEBITFULL;
|
|
|
|
DccRx.PacketBuf.Size = 0;
|
2021-02-03 23:23:52 +01:00
|
|
|
/*for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ )
|
|
|
|
DccRx.PacketBuf.Data[i] = 0;*/
|
|
|
|
DccRx.PacketBuf.PreambleBits = preambleBitCount;
|
2019-12-28 14:10:11 +01:00
|
|
|
DccRx.BitCount = 0 ;
|
2021-02-03 23:23:52 +01:00
|
|
|
DccRx.chkSum = 0 ;
|
2019-12-28 14:10:11 +01:00
|
|
|
DccRx.TempByte = 0 ;
|
2021-02-03 23:23:52 +01:00
|
|
|
//SET_TP1;
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
2021-02-03 23:23:52 +01:00
|
|
|
//SET_TP4;
|
|
|
|
|
|
|
|
#if defined ( __STM32F1__ )
|
|
|
|
detachInterrupt( DccProcState.ExtIntNum );
|
|
|
|
#endif
|
|
|
|
#ifdef ESP32
|
|
|
|
ISRWatch = ISREdge;
|
|
|
|
#else
|
|
|
|
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge );
|
|
|
|
#endif
|
|
|
|
// enable level-checking
|
|
|
|
ISRChkMask = DccProcState.ExtIntMask;
|
|
|
|
ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ;
|
|
|
|
//CLR_TP4;
|
2019-12-28 14:10:11 +01:00
|
|
|
break;
|
2021-02-03 23:23:52 +01:00
|
|
|
case 4: // previous (first) halfbit was 0
|
2019-12-28 14:10:11 +01:00
|
|
|
// if this halfbit is 0 too, we got the startbit
|
|
|
|
if ( DccBitVal ) {
|
|
|
|
// second halfbit is 1 -> unknown protokoll
|
|
|
|
DccRx.State = WAIT_PREAMBLE;
|
|
|
|
bitMax = MAX_PRAEAMBEL;
|
|
|
|
bitMin = MIN_ONEBITFULL;
|
2021-02-03 23:23:52 +01:00
|
|
|
preambleBitCount = 0;
|
|
|
|
CLR_TP2;CLR_TP1;
|
2019-12-28 14:10:11 +01:00
|
|
|
DccRx.BitCount = 0;
|
|
|
|
} else {
|
|
|
|
// we got the startbit
|
2021-02-03 23:23:52 +01:00
|
|
|
CLR_TP2;CLR_TP1;
|
2019-12-28 14:10:11 +01:00
|
|
|
DccRx.State = WAIT_DATA ;
|
2021-02-03 23:23:52 +01:00
|
|
|
CLR_TP1;
|
2019-12-28 14:10:11 +01:00
|
|
|
bitMax = MAX_ONEBITFULL;
|
|
|
|
bitMin = MIN_ONEBITFULL;
|
2021-02-03 23:23:52 +01:00
|
|
|
// initialize packet buffer
|
2019-12-28 14:10:11 +01:00
|
|
|
DccRx.PacketBuf.Size = 0;
|
2021-02-03 23:23:52 +01:00
|
|
|
/*for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ )
|
|
|
|
DccRx.PacketBuf.Data[i] = 0;*/
|
|
|
|
DccRx.PacketBuf.PreambleBits = preambleBitCount;
|
2019-12-28 14:10:11 +01:00
|
|
|
DccRx.BitCount = 0 ;
|
2021-02-03 23:23:52 +01:00
|
|
|
DccRx.chkSum = 0 ;
|
2019-12-28 14:10:11 +01:00
|
|
|
DccRx.TempByte = 0 ;
|
2021-02-03 23:23:52 +01:00
|
|
|
//SET_TP1;
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
2021-02-03 23:23:52 +01:00
|
|
|
|
|
|
|
//SET_TP4;
|
|
|
|
|
|
|
|
#if defined ( __STM32F1__ )
|
|
|
|
detachInterrupt( DccProcState.ExtIntNum );
|
|
|
|
#endif
|
|
|
|
#ifdef ESP32
|
|
|
|
ISRWatch = ISREdge;
|
|
|
|
#else
|
|
|
|
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge );
|
|
|
|
#endif
|
|
|
|
// enable level-checking
|
|
|
|
ISRChkMask = DccProcState.ExtIntMask;
|
|
|
|
ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ;
|
|
|
|
|
|
|
|
//CLR_TP4;
|
2019-12-28 14:10:11 +01:00
|
|
|
break;
|
|
|
|
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case WAIT_DATA:
|
2021-02-03 23:23:52 +01:00
|
|
|
CLR_TP2;
|
2019-12-28 14:10:11 +01:00
|
|
|
DccRx.BitCount++;
|
|
|
|
DccRx.TempByte = ( DccRx.TempByte << 1 ) ;
|
|
|
|
if( DccBitVal )
|
|
|
|
DccRx.TempByte |= 1 ;
|
|
|
|
|
|
|
|
if( DccRx.BitCount == 8 )
|
|
|
|
{
|
|
|
|
if( DccRx.PacketBuf.Size == MAX_DCC_MESSAGE_LEN ) // Packet is too long - abort
|
|
|
|
{
|
|
|
|
DccRx.State = WAIT_PREAMBLE ;
|
|
|
|
bitMax = MAX_PRAEAMBEL;
|
|
|
|
bitMin = MIN_ONEBITFULL;
|
|
|
|
DccRx.BitCount = 0 ;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
DccRx.State = WAIT_END_BIT ;
|
|
|
|
DccRx.PacketBuf.Data[ DccRx.PacketBuf.Size++ ] = DccRx.TempByte ;
|
2021-02-03 23:23:52 +01:00
|
|
|
DccRx.chkSum ^= DccRx.TempByte;
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case WAIT_END_BIT:
|
2021-02-03 23:23:52 +01:00
|
|
|
SET_TP2;CLR_TP2;
|
2019-12-28 14:10:11 +01:00
|
|
|
DccRx.BitCount++;
|
2021-02-03 23:23:52 +01:00
|
|
|
if( DccBitVal ) { // End of packet?
|
|
|
|
CLR_TP3; SET_TP4;
|
2019-12-28 14:10:11 +01:00
|
|
|
DccRx.State = WAIT_PREAMBLE ;
|
2021-02-03 23:23:52 +01:00
|
|
|
DccRx.BitCount = 0 ;
|
2019-12-28 14:10:11 +01:00
|
|
|
bitMax = MAX_PRAEAMBEL;
|
|
|
|
bitMin = MIN_ONEBITFULL;
|
2021-02-03 23:23:52 +01:00
|
|
|
SET_TP1;
|
|
|
|
if ( DccRx.chkSum == 0 ) {
|
|
|
|
// Packet is valid
|
|
|
|
#ifdef ESP32
|
|
|
|
portENTER_CRITICAL_ISR(&mux);
|
|
|
|
#endif
|
|
|
|
DccRx.PacketCopy = DccRx.PacketBuf ;
|
|
|
|
DccRx.DataReady = 1 ;
|
|
|
|
#ifdef ESP32
|
|
|
|
portEXIT_CRITICAL_ISR(&mux);
|
|
|
|
#endif
|
|
|
|
// SET_TP2; CLR_TP2;
|
|
|
|
preambleBitCount = 0 ;
|
|
|
|
} else {
|
|
|
|
// Wrong checksum
|
|
|
|
CLR_TP1;
|
|
|
|
#ifdef DCC_DBGVAR
|
|
|
|
DB_PRINT("Cerr");
|
|
|
|
countOf.Err++;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
SET_TP3; CLR_TP4;
|
|
|
|
} else { // Get next Byte
|
2019-12-28 14:10:11 +01:00
|
|
|
// KGW - Abort immediately if packet is too long.
|
|
|
|
if( DccRx.PacketBuf.Size == MAX_DCC_MESSAGE_LEN ) // Packet is too long - abort
|
|
|
|
{
|
|
|
|
DccRx.State = WAIT_PREAMBLE ;
|
|
|
|
bitMax = MAX_PRAEAMBEL;
|
|
|
|
bitMin = MIN_ONEBITFULL;
|
|
|
|
DccRx.BitCount = 0 ;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
DccRx.State = WAIT_DATA ;
|
|
|
|
|
|
|
|
DccRx.BitCount = 0 ;
|
|
|
|
DccRx.TempByte = 0 ;
|
|
|
|
}
|
2021-02-03 23:23:52 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// unless we're already looking for the start bit
|
|
|
|
// we always search for a preamble ( ( 10 or more consecutive 1 bits )
|
|
|
|
// if we found it within a packet, the packet decoding is aborted because
|
|
|
|
// that much one bits cannot be valid in a packet.
|
|
|
|
if ( DccRx.State != WAIT_START_BIT ) {
|
|
|
|
if( DccBitVal )
|
|
|
|
{
|
|
|
|
preambleBitCount++;
|
|
|
|
//SET_TP2;
|
|
|
|
if( preambleBitCount > 10 ) {
|
|
|
|
CLR_TP2;
|
|
|
|
#ifndef SYNC_ALWAYS
|
|
|
|
if ( DccRx.chkSum == 0 ) {
|
|
|
|
// sync must be correct if chksum was ok, no need to check sync
|
|
|
|
DccRx.State = WAIT_START_BIT_FULL;
|
|
|
|
} else {
|
|
|
|
#endif
|
|
|
|
DccRx.State = WAIT_START_BIT ;
|
|
|
|
SET_TP2;
|
|
|
|
// While waiting for the start bit, detect halfbit lengths. We will detect the correct
|
|
|
|
// sync and detect whether we see a false (e.g. motorola) protocol
|
|
|
|
|
|
|
|
#if defined ( __STM32F1__ )
|
|
|
|
detachInterrupt( DccProcState.ExtIntNum );
|
|
|
|
#endif
|
|
|
|
#ifdef ESP32
|
|
|
|
ISRWatch = CHANGE;
|
|
|
|
#else
|
|
|
|
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, CHANGE);
|
|
|
|
#endif
|
|
|
|
ISRChkMask = 0; // AVR level check is always true with this settings
|
|
|
|
ISRLevel = 0; // ( there cannot be false edge IRQ's with CHANGE )
|
|
|
|
halfBit = 0;
|
|
|
|
bitMax = MAX_ONEBITHALF;
|
|
|
|
bitMin = MIN_ONEBITHALF;
|
|
|
|
//CLR_TP1;
|
|
|
|
#ifndef SYNC_ALWAYS
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
CLR_TP1;
|
|
|
|
preambleBitCount = 0 ;
|
|
|
|
// SET_TP2; CLR_TP2;
|
|
|
|
}
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
#ifdef ALLOW_NESTED_IRQ
|
|
|
|
DCC_IrqRunning = false;
|
|
|
|
#endif
|
|
|
|
//CLR_TP1;
|
2019-12-28 14:10:11 +01:00
|
|
|
CLR_TP3;
|
2021-02-03 23:23:52 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void ackCV(void)
|
|
|
|
{
|
|
|
|
if( notifyCVAck )
|
|
|
|
{
|
|
|
|
DB_PRINT("ackCV: Send Basic ACK");
|
|
|
|
notifyCVAck() ;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ackAdvancedCV(void)
|
|
|
|
{
|
|
|
|
if( notifyAdvancedCVAck && (DccProcState.cv29Value & CV29_RAILCOM_ENABLE) )
|
|
|
|
{
|
|
|
|
DB_PRINT("ackAdvancedCV: Send RailCom ACK");
|
|
|
|
notifyAdvancedCVAck() ;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
uint8_t readEEPROM( unsigned int CV )
|
|
|
|
{
|
|
|
|
return EEPROM.read(CV) ;
|
|
|
|
}
|
|
|
|
|
|
|
|
void writeEEPROM( unsigned int CV, uint8_t Value )
|
|
|
|
{
|
|
|
|
EEPROM.write(CV, Value) ;
|
|
|
|
#if defined(ESP8266)
|
|
|
|
EEPROM.commit();
|
|
|
|
#endif
|
|
|
|
#if defined(ESP32)
|
|
|
|
EEPROM.commit();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
bool readyEEPROM()
|
|
|
|
{
|
|
|
|
#if defined ARDUINO_ARCH_MEGAAVR
|
|
|
|
return bit_is_clear(NVMCTRL.STATUS,NVMCTRL_EEBUSY_bp);
|
|
|
|
#elif defined __AVR_MEGA__
|
|
|
|
return eeprom_is_ready();
|
|
|
|
#else
|
|
|
|
return true;
|
|
|
|
#endif
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t validCV( uint16_t CV, uint8_t Writable )
|
|
|
|
{
|
|
|
|
if( notifyCVResetFactoryDefault && (CV == CV_MANUFACTURER_ID ) && Writable )
|
2021-02-03 23:23:52 +01:00
|
|
|
notifyCVResetFactoryDefault();
|
|
|
|
|
2019-12-28 14:10:11 +01:00
|
|
|
if( notifyCVValid )
|
|
|
|
return notifyCVValid( CV, Writable ) ;
|
2021-02-03 23:23:52 +01:00
|
|
|
|
|
|
|
uint8_t Valid = 1 ;
|
|
|
|
|
|
|
|
if( CV > MAXCV )
|
|
|
|
Valid = 0 ;
|
|
|
|
|
|
|
|
if( Writable && ( ( CV ==CV_VERSION_ID ) || (CV == CV_MANUFACTURER_ID ) ) )
|
|
|
|
Valid = 0 ;
|
|
|
|
|
|
|
|
return Valid ;
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t readCV( unsigned int CV )
|
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
uint8_t Value ;
|
|
|
|
|
2019-12-28 14:10:11 +01:00
|
|
|
if( notifyCVRead )
|
|
|
|
return notifyCVRead( CV ) ;
|
2021-02-03 23:23:52 +01:00
|
|
|
|
|
|
|
Value = readEEPROM(CV);
|
|
|
|
return Value ;
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t writeCV( unsigned int CV, uint8_t Value)
|
|
|
|
{
|
|
|
|
switch( CV )
|
|
|
|
{
|
|
|
|
case CV_29_CONFIG:
|
|
|
|
// copy addressmode Bit to Flags
|
2021-02-03 23:23:52 +01:00
|
|
|
Value = Value & ~CV29_RAILCOM_ENABLE; // Bidi (RailCom) Bit must not be enabled,
|
|
|
|
// because you cannot build a Bidi decoder with this lib.
|
|
|
|
DccProcState.cv29Value = Value;
|
2019-12-28 14:10:11 +01:00
|
|
|
DccProcState.Flags = ( DccProcState.Flags & ~FLAGS_CV29_BITS) | (Value & FLAGS_CV29_BITS);
|
|
|
|
// no break, because myDccAdress must also be reset
|
2021-02-03 23:23:52 +01:00
|
|
|
case CV_ACCESSORY_DECODER_ADDRESS_LSB: // Also same CV for CV_MULTIFUNCTION_PRIMARY_ADDRESS
|
2019-12-28 14:10:11 +01:00
|
|
|
case CV_ACCESSORY_DECODER_ADDRESS_MSB:
|
|
|
|
case CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB:
|
|
|
|
case CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB:
|
2021-02-03 23:23:52 +01:00
|
|
|
DccProcState.myDccAddress = -1; // Assume any CV Write Operation might change the Address
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
if( notifyCVWrite )
|
|
|
|
return notifyCVWrite( CV, Value ) ;
|
2021-02-03 23:23:52 +01:00
|
|
|
|
|
|
|
if( readEEPROM( CV ) != Value )
|
|
|
|
{
|
|
|
|
writeEEPROM( CV, Value ) ;
|
|
|
|
|
|
|
|
if( notifyCVChange )
|
|
|
|
notifyCVChange( CV, Value) ;
|
|
|
|
|
|
|
|
if( notifyDccCVChange && !(DccProcState.Flags & FLAGS_SETCV_CALLED) )
|
|
|
|
notifyDccCVChange( CV, Value );
|
|
|
|
}
|
|
|
|
|
|
|
|
return readEEPROM( CV ) ;
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
uint16_t getMyAddr(void)
|
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
if( DccProcState.myDccAddress != -1 ) // See if we can return the cached value
|
|
|
|
return( DccProcState.myDccAddress );
|
2019-12-28 14:10:11 +01:00
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
if( DccProcState.cv29Value & CV29_ACCESSORY_DECODER ) // Accessory Decoder?
|
2019-12-28 14:10:11 +01:00
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
if( DccProcState.cv29Value & CV29_OUTPUT_ADDRESS_MODE )
|
2019-12-28 14:10:11 +01:00
|
|
|
DccProcState.myDccAddress = ( readCV( CV_ACCESSORY_DECODER_ADDRESS_MSB ) << 8 ) | readCV( CV_ACCESSORY_DECODER_ADDRESS_LSB );
|
|
|
|
else
|
|
|
|
DccProcState.myDccAddress = ( ( readCV( CV_ACCESSORY_DECODER_ADDRESS_MSB ) & 0b00000111) << 6 ) | ( readCV( CV_ACCESSORY_DECODER_ADDRESS_LSB ) & 0b00111111) ;
|
|
|
|
}
|
|
|
|
else // Multi-Function Decoder?
|
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
if( DccProcState.cv29Value & CV29_EXT_ADDRESSING ) // Two Byte Address?
|
2019-12-28 14:10:11 +01:00
|
|
|
DccProcState.myDccAddress = ( ( readCV( CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB ) - 192 ) << 8 ) | readCV( CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB ) ;
|
|
|
|
|
|
|
|
else
|
|
|
|
DccProcState.myDccAddress = readCV( 1 ) ;
|
|
|
|
}
|
2021-02-03 23:23:52 +01:00
|
|
|
|
2019-12-28 14:10:11 +01:00
|
|
|
return DccProcState.myDccAddress ;
|
|
|
|
}
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
void processDirectCVOperation( uint8_t Cmd, uint16_t CVAddr, uint8_t Value, void (*ackFunction)() )
|
2019-12-28 14:10:11 +01:00
|
|
|
{
|
|
|
|
// is it a Byte Operation
|
|
|
|
if( Cmd & 0x04 )
|
|
|
|
{
|
|
|
|
// Perform the Write Operation
|
|
|
|
if( Cmd & 0x08 )
|
|
|
|
{
|
|
|
|
if( validCV( CVAddr, 1 ) )
|
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT("CV: %d Byte Write: %02X", CVAddr, Value)
|
|
|
|
if( writeCV( CVAddr, Value ) == Value )
|
|
|
|
ackFunction();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
else // Perform the Verify Operation
|
|
|
|
{
|
|
|
|
if( validCV( CVAddr, 0 ) )
|
|
|
|
{
|
|
|
|
DB_PRINT("CV: %d Byte Read: %02X", CVAddr, Value)
|
|
|
|
if( readCV( CVAddr ) == Value )
|
|
|
|
ackFunction();
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Perform the Bit-Wise Operation
|
|
|
|
else
|
|
|
|
{
|
|
|
|
uint8_t BitMask = (1 << (Value & 0x07) ) ;
|
|
|
|
uint8_t BitValue = Value & 0x08 ;
|
|
|
|
uint8_t BitWrite = Value & 0x10 ;
|
|
|
|
|
|
|
|
uint8_t tempValue = readCV( CVAddr ) ; // Read the Current CV Value
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT("CV: %d Current Value: %02X Bit-Wise Mode: %s Mask: %02X Value: %02X", CVAddr, tempValue, BitWrite ? "Write":"Read", BitMask, BitValue);
|
|
|
|
|
2019-12-28 14:10:11 +01:00
|
|
|
// Perform the Bit Write Operation
|
|
|
|
if( BitWrite )
|
|
|
|
{
|
|
|
|
if( validCV( CVAddr, 1 ) )
|
|
|
|
{
|
|
|
|
if( BitValue )
|
|
|
|
tempValue |= BitMask ; // Turn the Bit On
|
|
|
|
|
|
|
|
else
|
|
|
|
tempValue &= ~BitMask ; // Turn the Bit Off
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
if( writeCV( CVAddr, tempValue ) == tempValue )
|
|
|
|
ackFunction() ;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Perform the Bit Verify Operation
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if( validCV( CVAddr, 0 ) )
|
|
|
|
{
|
|
|
|
if( BitValue )
|
|
|
|
{
|
|
|
|
if( tempValue & BitMask )
|
|
|
|
ackFunction() ;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if( !( tempValue & BitMask) )
|
|
|
|
ackFunction() ;
|
|
|
|
}
|
|
|
|
}
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
/////////////////////////////////////////////////////////////////////////
|
2019-12-28 14:10:11 +01:00
|
|
|
#ifdef NMRA_DCC_PROCESS_MULTIFUNCTION
|
|
|
|
void processMultiFunctionMessage( uint16_t Addr, DCC_ADDR_TYPE AddrType, uint8_t Cmd, uint8_t Data1, uint8_t Data2 )
|
|
|
|
{
|
|
|
|
uint8_t speed ;
|
|
|
|
uint16_t CVAddr ;
|
|
|
|
DCC_DIRECTION dir ;
|
|
|
|
DCC_SPEED_STEPS speedSteps ;
|
|
|
|
|
|
|
|
uint8_t CmdMasked = Cmd & 0b11100000 ;
|
|
|
|
|
|
|
|
// If we are an Accessory Decoder
|
|
|
|
if( DccProcState.Flags & FLAGS_DCC_ACCESSORY_DECODER )
|
|
|
|
{
|
|
|
|
// and this isn't an Ops Mode Write or we are NOT faking the Multifunction Ops mode address in CV 33+34 or
|
|
|
|
// it's not our fake address, then return
|
|
|
|
if( ( CmdMasked != 0b11100000 ) || ( DccProcState.OpsModeAddressBaseCV == 0 ) )
|
|
|
|
return ;
|
|
|
|
|
|
|
|
uint16_t FakeOpsAddr = readCV( DccProcState.OpsModeAddressBaseCV ) | ( readCV( DccProcState.OpsModeAddressBaseCV + 1 ) << 8 ) ;
|
|
|
|
uint16_t OpsAddr = Addr & 0x3FFF ;
|
|
|
|
|
|
|
|
if( OpsAddr != FakeOpsAddr )
|
|
|
|
return ;
|
|
|
|
}
|
|
|
|
|
|
|
|
// We are looking for FLAGS_MY_ADDRESS_ONLY but it does not match and it is not a Broadcast Address then return
|
|
|
|
else if( ( DccProcState.Flags & FLAGS_MY_ADDRESS_ONLY ) && ( Addr != getMyAddr() ) && ( Addr != 0 ) )
|
|
|
|
return ;
|
|
|
|
|
|
|
|
switch( CmdMasked )
|
|
|
|
{
|
|
|
|
case 0b00000000: // Decoder Control
|
|
|
|
switch( Cmd & 0b00001110 )
|
|
|
|
{
|
|
|
|
case 0b00000000:
|
2021-02-03 23:23:52 +01:00
|
|
|
if( notifyDccReset)
|
|
|
|
notifyDccReset( Cmd & 0b00000001 ) ;
|
2019-12-28 14:10:11 +01:00
|
|
|
break ;
|
|
|
|
|
|
|
|
case 0b00000010: // Factory Test
|
|
|
|
break ;
|
|
|
|
|
|
|
|
case 0b00000110: // Set Decoder Flags
|
|
|
|
break ;
|
|
|
|
|
|
|
|
case 0b00001010: // Set Advanced Addressing
|
|
|
|
break ;
|
|
|
|
|
|
|
|
case 0b00001110: // Decoder Acknowledgment
|
|
|
|
break ;
|
|
|
|
|
|
|
|
default: // Reserved
|
|
|
|
;
|
|
|
|
}
|
|
|
|
break ;
|
|
|
|
|
|
|
|
case 0b00100000: // Advanced Operations
|
|
|
|
switch( Cmd & 0b00011111 )
|
|
|
|
{
|
|
|
|
case 0b00011111:
|
|
|
|
if( notifyDccSpeed )
|
|
|
|
{
|
|
|
|
switch( Data1 & 0b01111111 )
|
|
|
|
{
|
|
|
|
case 0b00000000: // 0=STOP
|
|
|
|
speed = 1 ; // => 1
|
|
|
|
break ;
|
|
|
|
|
|
|
|
case 0b00000001: // 1=EMERGENCY_STOP
|
|
|
|
speed = 0 ; // => 0
|
|
|
|
break ;
|
|
|
|
|
|
|
|
default: // 2..127
|
|
|
|
speed = (Data1 & 0b01111111) ;
|
|
|
|
}
|
|
|
|
dir = (DCC_DIRECTION) ((Data1 & 0b10000000) >> 7) ;
|
|
|
|
notifyDccSpeed( Addr, AddrType, speed, dir, SPEED_STEP_128 ) ;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 0b01000000:
|
|
|
|
case 0b01100000:
|
|
|
|
//TODO should we cache this info in DCC_PROCESSOR_STATE.Flags ?
|
|
|
|
#ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE
|
2021-02-03 23:23:52 +01:00
|
|
|
speedSteps = (DccProcState.cv29Value & CV29_F0_LOCATION) ? SPEED_STEP_28 : SPEED_STEP_14 ;
|
2019-12-28 14:10:11 +01:00
|
|
|
#else
|
|
|
|
speedSteps = SPEED_STEP_28 ;
|
|
|
|
#endif
|
|
|
|
if( notifyDccSpeed )
|
|
|
|
{
|
|
|
|
switch( Cmd & 0b00011111 )
|
|
|
|
{
|
|
|
|
case 0b00000000: // 0 0000 = STOP
|
|
|
|
case 0b00010000: // 1 0000 = STOP
|
|
|
|
speed = 1 ; // => 1
|
|
|
|
break ;
|
|
|
|
|
|
|
|
case 0b00000001: // 0 0001 = EMERGENCY STOP
|
|
|
|
case 0b00010001: // 1 0001 = EMERGENCY STOP
|
|
|
|
speed = 0 ; // => 0
|
|
|
|
break ;
|
|
|
|
|
|
|
|
default:
|
|
|
|
#ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE
|
|
|
|
if( speedSteps == SPEED_STEP_14 )
|
|
|
|
{
|
|
|
|
speed = (Cmd & 0b00001111) ; // => 2..15
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
#endif
|
|
|
|
speed = (((Cmd & 0b00001111) << 1 ) | ((Cmd & 0b00010000) >> 4)) - 2 ; // => 2..29
|
|
|
|
#ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
dir = (DCC_DIRECTION) ((Cmd & 0b00100000) >> 5) ;
|
|
|
|
notifyDccSpeed( Addr, AddrType, speed, dir, speedSteps ) ;
|
|
|
|
}
|
|
|
|
if( notifyDccSpeedRaw )
|
2021-02-03 23:23:52 +01:00
|
|
|
notifyDccSpeedRaw(Addr, AddrType, Cmd );
|
2019-12-28 14:10:11 +01:00
|
|
|
|
|
|
|
#ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE
|
|
|
|
if( notifyDccFunc && (speedSteps == SPEED_STEP_14) )
|
|
|
|
{
|
|
|
|
// function light is controlled by this package
|
|
|
|
uint8_t fn0 = (Cmd & 0b00010000) ;
|
|
|
|
notifyDccFunc( Addr, AddrType, FN_0, fn0 ) ;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 0b10000000: // Function Group 0..4
|
|
|
|
if( notifyDccFunc )
|
|
|
|
{
|
|
|
|
// function light is controlled by this package (28 or 128 speed steps)
|
|
|
|
notifyDccFunc( Addr, AddrType, FN_0_4, Cmd & 0b00011111 ) ;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 0b10100000: // Function Group 5..8
|
|
|
|
if( notifyDccFunc)
|
|
|
|
{
|
|
|
|
if (Cmd & 0b00010000 )
|
|
|
|
notifyDccFunc( Addr, AddrType, FN_5_8, Cmd & 0b00001111 ) ;
|
|
|
|
else
|
|
|
|
notifyDccFunc( Addr, AddrType, FN_9_12, Cmd & 0b00001111 ) ;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 0b11000000: // Feature Expansion Instruction
|
2021-02-03 23:23:52 +01:00
|
|
|
switch(Cmd & 0b00011111)
|
|
|
|
{
|
|
|
|
case 0b00011110:
|
|
|
|
if( notifyDccFunc )
|
|
|
|
notifyDccFunc( Addr, AddrType, FN_13_20, Data1 ) ;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 0b00011111:
|
|
|
|
if( notifyDccFunc )
|
|
|
|
notifyDccFunc( Addr, AddrType, FN_21_28, Data1 ) ;
|
|
|
|
break;
|
|
|
|
}
|
2019-12-28 14:10:11 +01:00
|
|
|
break;
|
|
|
|
|
|
|
|
case 0b11100000: // CV Access
|
|
|
|
CVAddr = ( ( ( Cmd & 0x03 ) << 8 ) | Data1 ) + 1 ;
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
processDirectCVOperation( Cmd, CVAddr, Data2, ackAdvancedCV) ;
|
2019-12-28 14:10:11 +01:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef NMRA_DCC_PROCESS_SERVICEMODE
|
|
|
|
void processServiceModeOperation( DCC_MSG * pDccMsg )
|
|
|
|
{
|
|
|
|
uint16_t CVAddr ;
|
|
|
|
uint8_t Value ;
|
|
|
|
if( pDccMsg->Size == 3) // 3 Byte Packets are for Address Only, Register and Paged Mode
|
|
|
|
{
|
|
|
|
uint8_t RegisterAddr ;
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT("CV Address, Register & Paged Mode Operation");
|
2019-12-28 14:10:11 +01:00
|
|
|
RegisterAddr = pDccMsg->Data[0] & 0x07 ;
|
|
|
|
Value = pDccMsg->Data[1] ;
|
|
|
|
|
|
|
|
if( RegisterAddr == 5 )
|
|
|
|
{
|
|
|
|
DccProcState.PageRegister = Value ;
|
2021-02-03 23:23:52 +01:00
|
|
|
ackCV();
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if( RegisterAddr == 4 )
|
|
|
|
CVAddr = CV_29_CONFIG ;
|
|
|
|
|
|
|
|
else if( ( RegisterAddr <= 3 ) && ( DccProcState.PageRegister > 0 ) )
|
|
|
|
CVAddr = ( ( DccProcState.PageRegister - 1 ) * 4 ) + RegisterAddr + 1 ;
|
|
|
|
|
|
|
|
else
|
|
|
|
CVAddr = RegisterAddr + 1 ;
|
|
|
|
|
|
|
|
if( pDccMsg->Data[0] & 0x08 ) // Perform the Write Operation
|
|
|
|
{
|
|
|
|
if( validCV( CVAddr, 1 ) )
|
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
if( writeCV( CVAddr, Value ) == Value )
|
|
|
|
ackCV();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
else // Perform the Verify Operation
|
|
|
|
{
|
|
|
|
if( validCV( CVAddr, 0 ) )
|
|
|
|
{
|
|
|
|
if( readCV( CVAddr ) == Value )
|
|
|
|
ackCV();
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
else if( pDccMsg->Size == 4) // 4 Byte Packets are for Direct Byte & Bit Mode
|
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT("CV Direct Byte and Bit Mode Mode Operation");
|
2019-12-28 14:10:11 +01:00
|
|
|
CVAddr = ( ( ( pDccMsg->Data[0] & 0x03 ) << 8 ) | pDccMsg->Data[1] ) + 1 ;
|
|
|
|
Value = pDccMsg->Data[2] ;
|
2021-02-03 23:23:52 +01:00
|
|
|
|
|
|
|
processDirectCVOperation( pDccMsg->Data[0] & 0b00001100, CVAddr, Value, ackCV) ;
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
/////////////////////////////////////////////////////////////////////////
|
2019-12-28 14:10:11 +01:00
|
|
|
void resetServiceModeTimer(uint8_t inServiceMode)
|
|
|
|
{
|
|
|
|
if (notifyServiceMode && inServiceMode != DccProcState.inServiceMode)
|
|
|
|
{
|
|
|
|
notifyServiceMode(inServiceMode);
|
|
|
|
}
|
|
|
|
// Set the Service Mode
|
|
|
|
DccProcState.inServiceMode = inServiceMode ;
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
DccProcState.LastServiceModeMillis = inServiceMode ? millis() : 0 ;
|
2019-12-28 14:10:11 +01:00
|
|
|
if (notifyServiceMode && inServiceMode != DccProcState.inServiceMode)
|
|
|
|
{
|
|
|
|
notifyServiceMode(inServiceMode);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
/////////////////////////////////////////////////////////////////////////
|
2019-12-28 14:10:11 +01:00
|
|
|
void clearDccProcState(uint8_t inServiceMode)
|
|
|
|
{
|
|
|
|
resetServiceModeTimer( inServiceMode ) ;
|
|
|
|
|
|
|
|
// Set the Page Register to it's default of 1 only on the first Reset
|
|
|
|
DccProcState.PageRegister = 1 ;
|
|
|
|
|
|
|
|
// Clear the LastMsg buffer and DuplicateCount in preparation for possible CV programming
|
|
|
|
DccProcState.DuplicateCount = 0 ;
|
|
|
|
memset( &DccProcState.LastMsg, 0, sizeof( DCC_MSG ) ) ;
|
|
|
|
}
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef DEBUG_PRINT
|
|
|
|
void SerialPrintPacketHex(const __FlashStringHelper *strLabel, DCC_MSG * pDccMsg)
|
2019-12-28 14:10:11 +01:00
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
Serial.print( strLabel );
|
|
|
|
|
|
|
|
for( uint8_t i = 0; i < pDccMsg->Size; i++ )
|
|
|
|
{
|
|
|
|
if( pDccMsg->Data[i] <= 9)
|
|
|
|
Serial.print('0');
|
|
|
|
|
|
|
|
Serial.print( pDccMsg->Data[i], HEX );
|
|
|
|
Serial.write( ' ' );
|
|
|
|
}
|
|
|
|
Serial.println();
|
|
|
|
}
|
|
|
|
#endif
|
2019-12-28 14:10:11 +01:00
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
void execDccProcessor( DCC_MSG * pDccMsg )
|
|
|
|
{
|
2019-12-28 14:10:11 +01:00
|
|
|
if( ( pDccMsg->Data[0] == 0 ) && ( pDccMsg->Data[1] == 0 ) )
|
|
|
|
{
|
|
|
|
if( notifyDccReset )
|
|
|
|
notifyDccReset( 0 ) ;
|
2021-02-03 23:23:52 +01:00
|
|
|
|
2019-12-28 14:10:11 +01:00
|
|
|
#ifdef NMRA_DCC_PROCESS_SERVICEMODE
|
|
|
|
// If this is the first Reset then perform some one-shot actions as we maybe about to enter service mode
|
|
|
|
if( DccProcState.inServiceMode )
|
|
|
|
resetServiceModeTimer( 1 ) ;
|
|
|
|
else
|
|
|
|
clearDccProcState( 1 );
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
else
|
|
|
|
{
|
|
|
|
#ifdef NMRA_DCC_PROCESS_SERVICEMODE
|
|
|
|
if( DccProcState.inServiceMode && ( pDccMsg->Data[0] >= 112 ) && ( pDccMsg->Data[0] < 128 ) )
|
|
|
|
{
|
|
|
|
resetServiceModeTimer( 1 ) ;
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
//Only check the DCC Packet "Size" and "Data" fields and ignore the "PreambleBits" as they can be different to the previous packet
|
|
|
|
if(pDccMsg->Size != DccProcState.LastMsg.Size || memcmp( pDccMsg->Data, &DccProcState.LastMsg.Data, pDccMsg->Size ) != 0 )
|
2019-12-28 14:10:11 +01:00
|
|
|
{
|
|
|
|
DccProcState.DuplicateCount = 0 ;
|
|
|
|
memcpy( &DccProcState.LastMsg, pDccMsg, sizeof( DCC_MSG ) ) ;
|
|
|
|
}
|
2021-02-03 23:23:52 +01:00
|
|
|
// Wait until you see 2 identical packets before acting on a Service Mode Packet
|
2019-12-28 14:10:11 +01:00
|
|
|
else
|
|
|
|
{
|
|
|
|
DccProcState.DuplicateCount++ ;
|
|
|
|
processServiceModeOperation( pDccMsg ) ;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if( DccProcState.inServiceMode )
|
2021-02-03 23:23:52 +01:00
|
|
|
clearDccProcState( 0 );
|
2019-12-28 14:10:11 +01:00
|
|
|
#endif
|
|
|
|
|
|
|
|
// Idle Packet
|
|
|
|
if( ( pDccMsg->Data[0] == 0b11111111 ) && ( pDccMsg->Data[1] == 0 ) )
|
|
|
|
{
|
|
|
|
if( notifyDccIdle )
|
|
|
|
notifyDccIdle() ;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef NMRA_DCC_PROCESS_MULTIFUNCTION
|
|
|
|
// Multi Function Decoders (7-bit address)
|
|
|
|
else if( pDccMsg->Data[0] < 128 )
|
|
|
|
processMultiFunctionMessage( pDccMsg->Data[0], DCC_ADDR_SHORT, pDccMsg->Data[1], pDccMsg->Data[2], pDccMsg->Data[3] ) ;
|
2021-02-03 23:23:52 +01:00
|
|
|
|
2019-12-28 14:10:11 +01:00
|
|
|
// Basic Accessory Decoders (9-bit) & Extended Accessory Decoders (11-bit)
|
|
|
|
else if( pDccMsg->Data[0] < 192 )
|
|
|
|
#else
|
|
|
|
else if( ( pDccMsg->Data[0] >= 128 ) && ( pDccMsg->Data[0] < 192 ) )
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
if( DccProcState.Flags & FLAGS_DCC_ACCESSORY_DECODER )
|
|
|
|
{
|
|
|
|
int16_t BoardAddress ;
|
|
|
|
int16_t OutputAddress ;
|
|
|
|
uint8_t TurnoutPairIndex ;
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
#ifdef DEBUG_PRINT
|
|
|
|
SerialPrintPacketHex(F( "eDP: AccCmd: "), pDccMsg);
|
2019-12-28 14:10:11 +01:00
|
|
|
#endif
|
|
|
|
|
|
|
|
BoardAddress = ( ( (~pDccMsg->Data[1]) & 0b01110000 ) << 2 ) | ( pDccMsg->Data[0] & 0b00111111 ) ;
|
|
|
|
TurnoutPairIndex = (pDccMsg->Data[1] & 0b00000110) >> 1;
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT("eDP: BAddr:%d, Index:%d", BoardAddress, TurnoutPairIndex);
|
2019-12-28 14:10:11 +01:00
|
|
|
|
|
|
|
// First check for Legacy Accessory Decoder Configuration Variable Access Instruction
|
|
|
|
// as it's got a different format to the others
|
|
|
|
if((pDccMsg->Size == 5) && ((pDccMsg->Data[1] & 0b10001100) == 0b00001100))
|
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT( "eDP: Legacy Accessory Decoder CV Access Command");
|
2019-12-28 14:10:11 +01:00
|
|
|
// Check if this command is for our address or the broadcast address
|
|
|
|
if((BoardAddress != getMyAddr()) && ( BoardAddress < 511 ))
|
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT("eDP: Board Address Not Matched");
|
2019-12-28 14:10:11 +01:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint16_t cvAddress = ((pDccMsg->Data[1] & 0b00000011) << 8) + pDccMsg->Data[2] + 1;
|
2021-02-03 23:23:52 +01:00
|
|
|
uint8_t cvValue = pDccMsg->Data[3];
|
|
|
|
DB_PRINT("eDP: CV:%d Value:%d", cvAddress, cvValue );
|
|
|
|
if(validCV( cvAddress, 1 ))
|
2019-12-28 14:10:11 +01:00
|
|
|
writeCV(cvAddress, cvValue);
|
2021-02-03 23:23:52 +01:00
|
|
|
return;
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
OutputAddress = (((BoardAddress - 1) << 2 ) | TurnoutPairIndex) + 1 ; //decoder output addresses start with 1, packet address range starts with 0
|
|
|
|
// ( according to NMRA 9.2.2 )
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT("eDP: OAddr:%d", OutputAddress);
|
2019-12-28 14:10:11 +01:00
|
|
|
|
|
|
|
if( DccProcState.inAccDecDCCAddrNextReceivedMode)
|
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
if( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE )
|
|
|
|
{
|
|
|
|
DB_PRINT("eDP: Set OAddr:%d", OutputAddress);
|
|
|
|
//uint16_t storedOutputAddress = OutputAddress + 1; // The value stored in CV1 & 9 for Output Addressing Mode is + 1
|
|
|
|
writeCV(CV_ACCESSORY_DECODER_ADDRESS_LSB, (uint8_t)(OutputAddress % 256));
|
|
|
|
writeCV(CV_ACCESSORY_DECODER_ADDRESS_MSB, (uint8_t)(OutputAddress / 256));
|
|
|
|
|
|
|
|
if( notifyDccAccOutputAddrSet )
|
|
|
|
notifyDccAccOutputAddrSet(OutputAddress);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
DB_PRINT("eDP: Set BAddr:%d", BoardAddress);
|
|
|
|
writeCV(CV_ACCESSORY_DECODER_ADDRESS_LSB, (uint8_t)(BoardAddress % 64));
|
|
|
|
writeCV(CV_ACCESSORY_DECODER_ADDRESS_MSB, (uint8_t)(BoardAddress / 64));
|
|
|
|
|
|
|
|
if( notifyDccAccBoardAddrSet )
|
|
|
|
notifyDccAccBoardAddrSet(BoardAddress);
|
|
|
|
}
|
|
|
|
|
|
|
|
DccProcState.inAccDecDCCAddrNextReceivedMode = 0; // Reset the mode now that we have set the address
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// If we're filtering addresses, does the address match our address or is it a broadcast address? If NOT then return
|
|
|
|
if( DccProcState.Flags & FLAGS_MY_ADDRESS_ONLY )
|
|
|
|
{
|
|
|
|
if( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE ) {
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT(" AddrChk: OAddr:%d, BAddr:%d, myAddr:%d Chk=%d", OutputAddress, BoardAddress, getMyAddr(), OutputAddress != getMyAddr() );
|
2019-12-28 14:10:11 +01:00
|
|
|
if ( OutputAddress != getMyAddr() && OutputAddress < 2045 ) {
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT(" eDP: OAddr:%d, myAddr:%d - no match", OutputAddress, getMyAddr() );
|
2019-12-28 14:10:11 +01:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if( ( BoardAddress != getMyAddr() ) && ( BoardAddress < 511 ) ) {
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT(" eDP: BAddr:%d, myAddr:%d - no match", BoardAddress, getMyAddr() );
|
2019-12-28 14:10:11 +01:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT("eDP: Address Matched");
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
if((pDccMsg->Size == 4) && ((pDccMsg->Data[1] & 0b10001001) == 1)) // Extended Accessory Decoder Control Packet Format
|
|
|
|
{
|
|
|
|
// According to the NMRA Dcc Spec the Signal State should only use the lower 5 Bits,
|
|
|
|
// however some manufacturers seem to allow/use all 8 bits, so we'll relax that constraint for now
|
|
|
|
uint8_t state = pDccMsg->Data[2] ;
|
|
|
|
DB_PRINT("eDP: OAddr:%d Extended State:%0X", OutputAddress, state);
|
|
|
|
if( notifyDccSigOutputState )
|
|
|
|
notifyDccSigOutputState(OutputAddress, state);
|
|
|
|
|
|
|
|
// old callback ( for compatibility with 1.4.2, not to be used in new designs )
|
|
|
|
if( notifyDccSigState )
|
|
|
|
notifyDccSigState( OutputAddress, TurnoutPairIndex, pDccMsg->Data[2] ) ;
|
|
|
|
}
|
|
|
|
|
|
|
|
else if(pDccMsg->Size == 3) // Basic Accessory Decoder Packet Format
|
|
|
|
{
|
|
|
|
uint8_t direction = pDccMsg->Data[1] & 0b00000001;
|
|
|
|
uint8_t outputPower = (pDccMsg->Data[1] & 0b00001000) >> 3;
|
|
|
|
|
|
|
|
// old callback ( for compatibility with 1.4.2, not to be used in new designs )
|
|
|
|
if ( notifyDccAccState )
|
|
|
|
notifyDccAccState( OutputAddress, BoardAddress, pDccMsg->Data[1] & 0b00000111, outputPower );
|
|
|
|
|
|
|
|
if( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE )
|
2019-12-28 14:10:11 +01:00
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT("eDP: OAddr:%d Turnout Dir:%d Output Power:%d", OutputAddress, direction, outputPower);
|
|
|
|
if( notifyDccAccTurnoutOutput )
|
|
|
|
notifyDccAccTurnoutOutput( OutputAddress, direction, outputPower );
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
2021-02-03 23:23:52 +01:00
|
|
|
else
|
|
|
|
{
|
|
|
|
DB_PRINT("eDP: Turnout Pair Index:%d Dir:%d Output Power: ", TurnoutPairIndex, direction, outputPower);
|
|
|
|
if( notifyDccAccTurnoutBoard )
|
|
|
|
notifyDccAccTurnoutBoard( BoardAddress, TurnoutPairIndex, direction, outputPower );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if(pDccMsg->Size == 6) // Accessory Decoder OPS Mode Programming
|
|
|
|
{
|
|
|
|
DB_PRINT("eDP: OPS Mode CV Programming Command");
|
|
|
|
// Check for unsupported OPS Mode Addressing mode
|
|
|
|
if(((pDccMsg->Data[1] & 0b10001001) != 1) && ((pDccMsg->Data[1] & 0b10001111) != 0x80))
|
|
|
|
{
|
|
|
|
DB_PRINT("eDP: Unsupported OPS Mode CV Addressing Mode");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if this command is for our address or the broadcast address
|
2019-12-28 14:10:11 +01:00
|
|
|
if(DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE)
|
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT("eDP: Check Output Address:%d", OutputAddress);
|
2019-12-28 14:10:11 +01:00
|
|
|
if((OutputAddress != getMyAddr()) && ( OutputAddress < 2045 ))
|
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT("eDP: Output Address Not Matched");
|
|
|
|
return;
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT("eDP: Check Board Address:%d", BoardAddress);
|
2019-12-28 14:10:11 +01:00
|
|
|
if((BoardAddress != getMyAddr()) && ( BoardAddress < 511 ))
|
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
DB_PRINT("eDP: Board Address Not Matched");
|
|
|
|
return;
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
uint16_t cvAddress = ((pDccMsg->Data[2] & 0b00000011) << 8) + pDccMsg->Data[3] + 1;
|
|
|
|
uint8_t cvValue = pDccMsg->Data[4];
|
|
|
|
|
|
|
|
OpsInstructionType insType = (OpsInstructionType)((pDccMsg->Data[2] & 0b00001100) >> 2) ;
|
|
|
|
|
|
|
|
DB_PRINT("eDP: OPS Mode Instruction:%d", insType);
|
|
|
|
switch(insType)
|
|
|
|
{
|
|
|
|
case OPS_INS_RESERVED:
|
|
|
|
case OPS_INS_VERIFY_BYTE:
|
|
|
|
DB_PRINT("eDP: Unsupported OPS Mode Instruction:%d", insType);
|
|
|
|
break; // We only support Write Byte or Bit Manipulation
|
|
|
|
|
|
|
|
case OPS_INS_WRITE_BYTE:
|
|
|
|
DB_PRINT("eDP: CV:%d Value:%d", cvAddress, cvValue);
|
|
|
|
if(validCV( cvAddress, 1 ))
|
|
|
|
writeCV(cvAddress, cvValue);
|
|
|
|
break;
|
|
|
|
|
|
|
|
// 111CDBBB
|
|
|
|
// Where BBB represents the bit position within the CV,
|
|
|
|
// D contains the value of the bit to be verified or written,
|
|
|
|
// and C describes whether the operation is a verify bit or a write bit operation.
|
|
|
|
// C = "1" WRITE BIT
|
|
|
|
// C = "0" VERIFY BIT
|
|
|
|
case OPS_INS_BIT_MANIPULATION:
|
|
|
|
// Make sure its a Write Bit Manipulation
|
|
|
|
if((cvValue & 0b00010000) && validCV(cvAddress, 1 ))
|
|
|
|
{
|
|
|
|
uint8_t currentValue = readCV(cvAddress);
|
|
|
|
uint8_t newValueMask = 1 << (cvValue & 0b00000111);
|
|
|
|
if(cvValue & 0b00001000)
|
|
|
|
writeCV(cvAddress, currentValue | newValueMask);
|
|
|
|
else
|
|
|
|
writeCV(cvAddress, currentValue & ~newValueMask);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef NMRA_DCC_PROCESS_MULTIFUNCTION
|
|
|
|
// Multi Function Decoders (14-bit address)
|
|
|
|
else if( pDccMsg->Data[0] < 232 )
|
|
|
|
{
|
|
|
|
uint16_t Address ;
|
|
|
|
Address = ( ( pDccMsg->Data[0] - 192 ) << 8 ) | pDccMsg->Data[1];
|
|
|
|
//TODO should we convert Address to 1 .. 10239 ?
|
|
|
|
processMultiFunctionMessage( Address, DCC_ADDR_LONG, pDccMsg->Data[2], pDccMsg->Data[3], pDccMsg->Data[4] ) ;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef NMRA_DCC_PROCESS_SERVICEMODE
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
NmraDcc::NmraDcc()
|
2019-12-28 14:10:11 +01:00
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef digitalPinToInterrupt
|
|
|
|
void NmraDcc::pin( uint8_t ExtIntPinNum, uint8_t EnablePullup)
|
|
|
|
{
|
|
|
|
pin(digitalPinToInterrupt(ExtIntPinNum), ExtIntPinNum, EnablePullup);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void NmraDcc::pin( uint8_t ExtIntNum, uint8_t ExtIntPinNum, uint8_t EnablePullup)
|
|
|
|
{
|
|
|
|
#if defined ( __STM32F1__ )
|
|
|
|
// with STM32F1 the interuptnumber is equal the pin number
|
|
|
|
DccProcState.ExtIntNum = ExtIntPinNum;
|
|
|
|
// because STM32F1 has a NVIC we must set interuptpriorities
|
|
|
|
const nvic_irq_num irqNum2nvic[] = { NVIC_EXTI0, NVIC_EXTI1, NVIC_EXTI2, NVIC_EXTI3, NVIC_EXTI4,
|
|
|
|
NVIC_EXTI_9_5, NVIC_EXTI_9_5, NVIC_EXTI_9_5, NVIC_EXTI_9_5, NVIC_EXTI_9_5,
|
|
|
|
NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10 };
|
|
|
|
exti_num irqNum = (exti_num)(PIN_MAP[ExtIntPinNum].gpio_bit);
|
|
|
|
|
|
|
|
// DCC-Input IRQ must be able to interrupt other long low priority ( level15 ) IRQ's
|
|
|
|
nvic_irq_set_priority ( irqNum2nvic[irqNum], PRIO_DCC_IRQ);
|
2019-12-28 14:10:11 +01:00
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
// Systic must be able to interrupt DCC-IRQ to always get correct micros() values
|
|
|
|
nvic_irq_set_priority(NVIC_SYSTICK, PRIO_SYSTIC);
|
|
|
|
#else
|
|
|
|
DccProcState.ExtIntNum = ExtIntNum;
|
|
|
|
#endif
|
|
|
|
DccProcState.ExtIntPinNum = ExtIntPinNum;
|
|
|
|
#ifdef __AVR_MEGA__
|
|
|
|
// because digitalRead at AVR is slow, we will read the dcc input in the ISR
|
|
|
|
// by direct port access.
|
|
|
|
DccProcState.ExtIntPort = portInputRegister( digitalPinToPort(ExtIntPinNum) );
|
|
|
|
DccProcState.ExtIntMask = digitalPinToBitMask( ExtIntPinNum );
|
|
|
|
#else
|
|
|
|
DccProcState.ExtIntMask = 1;
|
|
|
|
#endif
|
|
|
|
pinMode( ExtIntPinNum, EnablePullup ? INPUT_PULLUP : INPUT );
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
void NmraDcc::initAccessoryDecoder( uint8_t ManufacturerId, uint8_t VersionId, uint8_t Flags, uint8_t OpsModeAddressBaseCV )
|
|
|
|
{
|
|
|
|
init(ManufacturerId, VersionId, Flags | FLAGS_DCC_ACCESSORY_DECODER, OpsModeAddressBaseCV);
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
void NmraDcc::init( uint8_t ManufacturerId, uint8_t VersionId, uint8_t Flags, uint8_t OpsModeAddressBaseCV )
|
2019-12-28 14:10:11 +01:00
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
#if defined(ESP8266)
|
|
|
|
EEPROM.begin(MAXCV);
|
|
|
|
#endif
|
|
|
|
#if defined(ESP32)
|
|
|
|
EEPROM.begin(MAXCV);
|
|
|
|
#endif
|
2019-12-28 14:10:11 +01:00
|
|
|
// Clear all the static member variables
|
|
|
|
memset( &DccRx, 0, sizeof( DccRx) );
|
|
|
|
|
|
|
|
MODE_TP1; // only for debugging and timing measurement
|
|
|
|
MODE_TP2;
|
|
|
|
MODE_TP3;
|
|
|
|
MODE_TP4;
|
|
|
|
bitMax = MAX_ONEBITFULL;
|
|
|
|
bitMin = MIN_ONEBITFULL;
|
2021-02-03 23:23:52 +01:00
|
|
|
|
2019-12-28 14:10:11 +01:00
|
|
|
DccProcState.Flags = Flags ;
|
|
|
|
DccProcState.OpsModeAddressBaseCV = OpsModeAddressBaseCV ;
|
|
|
|
DccProcState.myDccAddress = -1;
|
|
|
|
DccProcState.inAccDecDCCAddrNextReceivedMode = 0;
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
ISREdge = RISING;
|
|
|
|
// level checking to detect false IRQ's fired by glitches
|
|
|
|
ISRLevel = DccProcState.ExtIntMask;
|
|
|
|
ISRChkMask = DccProcState.ExtIntMask;
|
2019-12-28 14:10:11 +01:00
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
#ifdef ESP32
|
|
|
|
ISRWatch = ISREdge;
|
|
|
|
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, CHANGE);
|
|
|
|
#else
|
|
|
|
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, RISING);
|
|
|
|
#endif
|
2019-12-28 14:10:11 +01:00
|
|
|
|
|
|
|
// Set the Bits that control Multifunction or Accessory behaviour
|
|
|
|
// and if the Accessory decoder optionally handles Output Addressing
|
|
|
|
// we need to peal off the top two bits
|
2021-02-03 23:23:52 +01:00
|
|
|
DccProcState.cv29Value = writeCV( CV_29_CONFIG, ( readCV( CV_29_CONFIG ) & ~FLAGS_CV29_BITS ) | (Flags & FLAGS_CV29_BITS) ) ;
|
2019-12-28 14:10:11 +01:00
|
|
|
|
|
|
|
uint8_t doAutoFactoryDefault = 0;
|
|
|
|
if((Flags & FLAGS_AUTO_FACTORY_DEFAULT) && (readCV(CV_VERSION_ID) == 255) && (readCV(CV_MANUFACTURER_ID) == 255))
|
2021-02-03 23:23:52 +01:00
|
|
|
doAutoFactoryDefault = 1;
|
2019-12-28 14:10:11 +01:00
|
|
|
|
|
|
|
writeCV( CV_VERSION_ID, VersionId ) ;
|
|
|
|
writeCV( CV_MANUFACTURER_ID, ManufacturerId ) ;
|
|
|
|
|
|
|
|
clearDccProcState( 0 );
|
|
|
|
|
|
|
|
if(notifyCVResetFactoryDefault && doAutoFactoryDefault)
|
2021-02-03 23:23:52 +01:00
|
|
|
notifyCVResetFactoryDefault();
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
uint8_t NmraDcc::getCV( uint16_t CV )
|
|
|
|
{
|
|
|
|
return readCV(CV);
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
uint8_t NmraDcc::setCV( uint16_t CV, uint8_t Value)
|
|
|
|
{
|
|
|
|
DccProcState.Flags |= FLAGS_SETCV_CALLED;
|
|
|
|
|
|
|
|
uint8_t returnValue = writeCV(CV,Value);
|
|
|
|
|
|
|
|
DccProcState.Flags &= ~FLAGS_SETCV_CALLED;
|
|
|
|
|
|
|
|
return returnValue;
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
uint16_t NmraDcc::getAddr(void)
|
2019-12-28 14:10:11 +01:00
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
return getMyAddr();
|
2019-12-28 14:10:11 +01:00
|
|
|
}
|
|
|
|
|
2021-02-03 23:23:52 +01:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
uint8_t NmraDcc::isSetCVReady(void)
|
|
|
|
{
|
|
|
|
if(notifyIsSetCVReady)
|
|
|
|
return notifyIsSetCVReady();
|
|
|
|
return readyEEPROM();
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef DCC_DEBUG
|
|
|
|
uint8_t NmraDcc::getIntCount(void)
|
2019-12-28 14:10:11 +01:00
|
|
|
{
|
2021-02-03 23:23:52 +01:00
|
|
|
return DccProcState.IntCount;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
uint8_t NmraDcc::getTickCount(void)
|
|
|
|
{
|
|
|
|
return DccProcState.TickCount;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
uint8_t NmraDcc::getNestedIrqCount(void)
|
|
|
|
{
|
|
|
|
return DccProcState.NestedIrqCount;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
uint8_t NmraDcc::getState(void)
|
|
|
|
{
|
|
|
|
return DccRx.State;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
uint8_t NmraDcc::getBitCount(void)
|
|
|
|
{
|
|
|
|
return DccRx.BitCount;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
void NmraDcc::setAccDecDCCAddrNextReceived(uint8_t enable)
|
|
|
|
{
|
|
|
|
DccProcState.inAccDecDCCAddrNextReceivedMode = enable;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
uint8_t NmraDcc::process()
|
|
|
|
{
|
|
|
|
if( DccProcState.inServiceMode )
|
|
|
|
{
|
|
|
|
if( (millis() - DccProcState.LastServiceModeMillis ) > 20L )
|
|
|
|
{
|
|
|
|
clearDccProcState( 0 ) ;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( DccRx.DataReady )
|
|
|
|
{
|
|
|
|
// We need to do this check with interrupts disabled
|
|
|
|
#ifdef ESP32
|
|
|
|
portENTER_CRITICAL(&mux);
|
|
|
|
#else
|
|
|
|
noInterrupts();
|
|
|
|
#endif
|
|
|
|
Msg = DccRx.PacketCopy ;
|
|
|
|
DccRx.DataReady = 0 ;
|
|
|
|
|
|
|
|
#ifdef ESP32
|
|
|
|
portEXIT_CRITICAL(&mux);
|
|
|
|
#else
|
|
|
|
interrupts();
|
|
|
|
#endif
|
|
|
|
// Checking of the XOR-byte is now done in the ISR already
|
|
|
|
#ifdef DCC_DBGVAR
|
|
|
|
countOf.Tel++;
|
|
|
|
#endif
|
|
|
|
// Clear trailing bytes
|
|
|
|
for ( byte i=Msg.Size; i< MAX_DCC_MESSAGE_LEN; i++ ) Msg.Data[i] = 0;
|
|
|
|
|
|
|
|
if( notifyDccMsg ) notifyDccMsg( &Msg );
|
|
|
|
|
|
|
|
execDccProcessor( &Msg );
|
|
|
|
return 1 ;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0 ;
|
|
|
|
};
|