nodemcu-firmware/app/modules/tmr.c

527 lines
15 KiB
C
Raw Normal View History

2015-06-29 21:19:24 +02:00
/*guys, srsly, turn on warnings in the makefile*/
#if defined(__GNUC__)
#pragma GCC diagnostic warning "-Wall"
#pragma GCC diagnostic warning "-Wextra"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
/*-------------------------------------
NEW TIMER API
---------------------------------------
tmr.wdclr() -- not changed
tmr.now() -- not changed
tmr.time() -- not changed
tmr.delay() -- not changed
tmr.alarm() -- not changed
tmr.stop() -- changed, see below. use tmr.unregister for old functionality
tmr.register(id, interval, mode, function)
2015-06-29 23:15:30 +02:00
bind function with timer and set the interval in ms
2015-06-29 21:19:24 +02:00
the mode can be:
tmr.ALARM_SINGLE for a single run alarm
tmr.ALARM_SEMI for a multiple single run alarm
tmr.ALARM_AUTO for a repating alarm
tmr.register does NOT start the timer
tmr.alarm is a tmr.register & tmr.start macro
tmr.unregister(id)
2015-06-29 23:15:30 +02:00
stop alarm, unbind function and clean up memory
2015-06-29 21:19:24 +02:00
not needed for ALARM_SINGLE, as it unregisters itself
tmr.start(id)
ret: bool
start a alarm, returns true on success
tmr.stop(id)
ret: bool
stops a alarm, returns true on success
this call dose not free any memory, to do so use tmr.unregister
stopped alarms can be started with start
2015-06-29 23:15:30 +02:00
tmr.interval(id, interval)
set alarm interval, running alarm will be restarted
2015-06-29 21:19:24 +02:00
tmr.state(id)
ret: (bool, int) or nil
returns alarm status (true=started/false=stopped) and mode
nil if timer is unregistered
2015-06-29 23:15:30 +02:00
tmr.softwd(int)
set a negative value to stop the timer
any other value starts the timer, when the
countdown reaches zero, the device restarts
the timer units are seconds
2015-06-29 21:19:24 +02:00
*/
#include "module.h"
#include "lauxlib.h"
#include "platform.h"
#include "c_types.h"
#include "user_interface.h"
#include "swTimer/swTimer.h"
2015-06-29 21:19:24 +02:00
#define TIMER_MODE_OFF 3
#define TIMER_MODE_SINGLE 0
#define TIMER_MODE_SEMI 2
#define TIMER_MODE_AUTO 1
#define TIMER_IDLE_FLAG (1<<7)
2015-06-29 21:19:24 +02:00
#define STRINGIFY_VAL(x) #x
#define STRINGIFY(x) STRINGIFY_VAL(x)
// assuming system_timer_reinit() has *not* been called
#define MAX_TIMEOUT_DEF 6870947 //SDK 1.5.3 limit (0x68D7A3)
static const uint32 MAX_TIMEOUT=MAX_TIMEOUT_DEF;
static const char* MAX_TIMEOUT_ERR_STR = "Range: 1-"STRINGIFY(MAX_TIMEOUT_DEF);
2015-06-29 21:19:24 +02:00
typedef struct{
os_timer_t os;
sint32_t lua_ref, self_ref;
2015-06-29 21:19:24 +02:00
uint32_t interval;
uint8_t mode;
}timer_struct_t;
typedef timer_struct_t* timer_t;
// The previous implementation extended the rtc counter to 64 bits, and then
// applied rtc2sec with the current calibration value to that 64 bit value.
// This means that *ALL* clock ticks since bootup are counted with the *current*
// clock period. In extreme cases (long uptime, sudden temperature change), this
// could result in tmr.time() going backwards....
// This implementation instead applies rtc2usec to short time intervals only (the
// longest being around 1 second), and then accumulates the resulting microseconds
// in a 64 bit counter. That's guaranteed to be monotonic, and should be a lot closer
// to representing an actual uptime.
static uint32_t rtc_time_cali=0;
static uint32_t last_rtc_time=0;
static uint64_t last_rtc_time_us=0;
2015-06-29 21:19:24 +02:00
static sint32_t soft_watchdog = -1;
static timer_struct_t alarm_timers[NUM_TMR];
static os_timer_t rtc_timer;
static void alarm_timer_common(void* arg){
timer_t tmr = (timer_t)arg;
lua_State* L = lua_getstate();
if(tmr->lua_ref == LUA_NOREF)
2015-06-29 21:19:24 +02:00
return;
lua_rawgeti(L, LUA_REGISTRYINDEX, tmr->lua_ref);
if (tmr->self_ref == LUA_REFNIL) {
uint32_t id = tmr - alarm_timers;
lua_pushinteger(L, id);
} else {
lua_rawgeti(L, LUA_REGISTRYINDEX, tmr->self_ref);
}
2015-06-29 21:19:24 +02:00
//if the timer was set to single run we clean up after it
if(tmr->mode == TIMER_MODE_SINGLE){
luaL_unref(L, LUA_REGISTRYINDEX, tmr->lua_ref);
2015-06-29 21:19:24 +02:00
tmr->lua_ref = LUA_NOREF;
tmr->mode = TIMER_MODE_OFF;
}else if(tmr->mode == TIMER_MODE_SEMI){
tmr->mode |= TIMER_IDLE_FLAG;
}
if (tmr->mode != TIMER_MODE_AUTO && tmr->self_ref != LUA_REFNIL) {
luaL_unref(L, LUA_REGISTRYINDEX, tmr->self_ref);
tmr->self_ref = LUA_NOREF;
}
lua_call(L, 1, 0);
2015-06-29 21:19:24 +02:00
}
// Lua: tmr.delay( us )
static int tmr_delay( lua_State* L ){
sint32_t us = luaL_checkinteger(L, 1);
if(us <= 0)
return luaL_error(L, "wrong arg range");
while(us >= 1000000){
us -= 1000000;
os_delay_us(1000000);
system_soft_wdt_feed ();
2015-06-29 21:19:24 +02:00
}
if(us>0){
os_delay_us(us);
system_soft_wdt_feed ();
2015-06-29 21:19:24 +02:00
}
return 0;
}
// Lua: tmr.now() , return system timer in us
static int tmr_now(lua_State* L){
uint32_t now = 0x7FFFFFFF & system_get_time();
lua_pushinteger(L, now);
return 1;
}
static timer_t tmr_get( lua_State *L, int stack ) {
// Deprecated: static 0-6 timers control by index.
luaL_argcheck(L, (lua_isuserdata(L, stack) || lua_isnumber(L, stack)), 1, "timer object or numerical ID expected");
if (lua_isuserdata(L, stack)) {
return (timer_t)luaL_checkudata(L, stack, "tmr.timer");
} else {
uint32_t id = luaL_checkinteger(L, 1);
luaL_argcheck(L, platform_tmr_exists(id), 1, "invalid timer index");
return &alarm_timers[id];
}
return 0;
}
// Lua: tmr.register( id / ref, interval, mode, function )
2015-06-29 21:19:24 +02:00
static int tmr_register(lua_State* L){
timer_t tmr = tmr_get(L, 1);
uint32_t interval = luaL_checkinteger(L, 2);
2015-06-29 21:19:24 +02:00
uint8_t mode = luaL_checkinteger(L, 3);
luaL_argcheck(L, (interval > 0 && interval <= MAX_TIMEOUT), 2, MAX_TIMEOUT_ERR_STR);
luaL_argcheck(L, (mode == TIMER_MODE_SINGLE || mode == TIMER_MODE_SEMI || mode == TIMER_MODE_AUTO), 3, "Invalid mode");
luaL_argcheck(L, (lua_type(L, 4) == LUA_TFUNCTION || lua_type(L, 4) == LUA_TLIGHTFUNCTION), 4, "Must be function");
2015-06-29 21:19:24 +02:00
//get the lua function reference
lua_pushvalue(L, 4);
sint32_t ref = luaL_ref(L, LUA_REGISTRYINDEX);
if(!(tmr->mode & TIMER_IDLE_FLAG) && tmr->mode != TIMER_MODE_OFF)
os_timer_disarm(&tmr->os);
2015-06-29 21:19:24 +02:00
//there was a bug in this part, the second part of the following condition was missing
if(tmr->lua_ref != LUA_NOREF && tmr->lua_ref != ref)
luaL_unref(L, LUA_REGISTRYINDEX, tmr->lua_ref);
tmr->lua_ref = ref;
tmr->mode = mode|TIMER_IDLE_FLAG;
tmr->interval = interval;
os_timer_setfn(&tmr->os, alarm_timer_common, tmr);
2015-06-29 21:19:24 +02:00
return 0;
}
// Lua: tmr.start( id / ref )
2015-06-29 21:19:24 +02:00
static int tmr_start(lua_State* L){
timer_t tmr = tmr_get(L, 1);
if (tmr->self_ref == LUA_NOREF) {
lua_pushvalue(L, 1);
tmr->self_ref = luaL_ref(L, LUA_REGISTRYINDEX);
}
2015-06-29 21:19:24 +02:00
//we return false if the timer is not idle
if(!(tmr->mode&TIMER_IDLE_FLAG)){
lua_pushboolean(L, 0);
}else{
tmr->mode &= ~TIMER_IDLE_FLAG;
os_timer_arm(&tmr->os, tmr->interval, tmr->mode==TIMER_MODE_AUTO);
2015-06-29 21:19:24 +02:00
lua_pushboolean(L, 1);
}
return 1;
}
// Lua: tmr.alarm( id / ref, interval, repeat, function )
2015-06-29 21:19:24 +02:00
static int tmr_alarm(lua_State* L){
tmr_register(L);
return tmr_start(L);
}
// Lua: tmr.stop( id / ref )
2015-06-29 21:19:24 +02:00
static int tmr_stop(lua_State* L){
timer_t tmr = tmr_get(L, 1);
if (tmr->self_ref != LUA_REFNIL) {
luaL_unref(L, LUA_REGISTRYINDEX, tmr->self_ref);
tmr->self_ref = LUA_NOREF;
}
2015-06-29 21:19:24 +02:00
//we return false if the timer is idle (of not registered)
if(!(tmr->mode & TIMER_IDLE_FLAG) && tmr->mode != TIMER_MODE_OFF){
tmr->mode |= TIMER_IDLE_FLAG;
os_timer_disarm(&tmr->os);
2015-06-29 21:19:24 +02:00
lua_pushboolean(L, 1);
}else{
lua_pushboolean(L, 0);
}
return 1;
}
#ifdef ENABLE_TIMER_SUSPEND
static int tmr_suspend(lua_State* L){
timer_t tmr = tmr_get(L, 1);
if((tmr->mode & TIMER_IDLE_FLAG) == 1){
return luaL_error(L, "timer not armed");
}
int retval = swtmr_suspend(&tmr->os);
if(retval != SWTMR_OK){
return luaL_error(L, swtmr_errorcode2str(retval));
}
else{
lua_pushboolean(L, true);
}
return 1;
}
static int tmr_resume(lua_State* L){
timer_t tmr = tmr_get(L, 1);
if(swtmr_suspended_test(&tmr->os) == FALSE){
return luaL_error(L, "timer not suspended");
}
int retval = swtmr_resume(&tmr->os);
if(retval != SWTMR_OK){
return luaL_error(L, swtmr_errorcode2str(retval));
}
else{
lua_pushboolean(L, true);
}
return 1;
}
static int tmr_suspend_all (lua_State *L)
{
sint32 retval = swtmr_suspend(NULL);
// lua_pushnumber(L, swtmr_suspend(NULL));
if(retval!=SWTMR_OK){
return luaL_error(L, swtmr_errorcode2str(retval));
}
else{
lua_pushboolean(L, true);
}
return 1;
}
static int tmr_resume_all (lua_State *L)
{
sint32 retval = swtmr_resume(NULL);
if(retval!=SWTMR_OK){
return luaL_error(L, swtmr_errorcode2str(retval));
}
else{
lua_pushboolean(L, true);
}
return 1;
}
#endif
// Lua: tmr.unregister( id / ref )
2015-06-29 21:19:24 +02:00
static int tmr_unregister(lua_State* L){
timer_t tmr = tmr_get(L, 1);
if (tmr->self_ref != LUA_REFNIL) {
luaL_unref(L, LUA_REGISTRYINDEX, tmr->self_ref);
tmr->self_ref = LUA_NOREF;
}
2015-06-29 21:19:24 +02:00
if(!(tmr->mode & TIMER_IDLE_FLAG) && tmr->mode != TIMER_MODE_OFF)
os_timer_disarm(&tmr->os);
2015-06-29 21:19:24 +02:00
if(tmr->lua_ref != LUA_NOREF)
luaL_unref(L, LUA_REGISTRYINDEX, tmr->lua_ref);
tmr->lua_ref = LUA_NOREF;
tmr->mode = TIMER_MODE_OFF;
return 0;
}
// Lua: tmr.interval( id / ref, interval )
2015-06-29 23:15:30 +02:00
static int tmr_interval(lua_State* L){
timer_t tmr = tmr_get(L, 1);
uint32_t interval = luaL_checkinteger(L, 2);
luaL_argcheck(L, (interval > 0 && interval <= MAX_TIMEOUT), 2, MAX_TIMEOUT_ERR_STR);
2015-06-29 23:15:30 +02:00
if(tmr->mode != TIMER_MODE_OFF){
tmr->interval = interval;
if(!(tmr->mode&TIMER_IDLE_FLAG)){
os_timer_disarm(&tmr->os);
os_timer_arm(&tmr->os, tmr->interval, tmr->mode==TIMER_MODE_AUTO);
2015-06-29 23:15:30 +02:00
}
}
return 0;
}
// Lua: tmr.state( id / ref )
2015-06-29 21:19:24 +02:00
static int tmr_state(lua_State* L){
timer_t tmr = tmr_get(L, 1);
2015-06-29 21:19:24 +02:00
if(tmr->mode == TIMER_MODE_OFF){
lua_pushnil(L);
return 1;
}
lua_pushboolean(L, (tmr->mode & TIMER_IDLE_FLAG) == 0);
lua_pushinteger(L, tmr->mode & (~TIMER_IDLE_FLAG));
#ifdef ENABLE_TIMER_SUSPEND
lua_pushboolean(L, swtmr_suspended_test(&tmr->os));
#else
lua_pushnil(L);
#endif
return 3;
2015-06-29 21:19:24 +02:00
}
/*I left the led comments 'couse I don't know
why they are here*/
// extern void update_key_led();
2015-06-29 21:19:24 +02:00
// Lua: tmr.wdclr()
static int tmr_wdclr( lua_State* L ){
system_soft_wdt_feed ();
2015-06-29 21:19:24 +02:00
// update_key_led();
return 0;
}
//system_rtc_clock_cali_proc() returns
//a fixed point value (12 bit fraction part)
//it tells how many rtc clock ticks represent 1us.
//the high 64 bits of the uint64_t multiplication
//are unnedded (I did the math)
static uint32_t rtc2usec(uint64_t rtc){
return (rtc*rtc_time_cali)>>12;
2015-06-29 21:19:24 +02:00
}
// This returns the number of microseconds uptime. Note that it relies on the rtc clock,
// which is notoriously temperature dependent
inline static uint64_t rtc_timer_update(bool do_calibration){
if (do_calibration || rtc_time_cali==0)
rtc_time_cali=system_rtc_clock_cali_proc();
2015-06-29 21:19:24 +02:00
uint32_t current = system_get_rtc_time();
uint32_t since_last=current-last_rtc_time; // This will transparently deal with wraparound
uint32_t us_since_last=rtc2usec(since_last);
uint64_t now=last_rtc_time_us+us_since_last;
// Only update if at least 100ms has passed since we last updated.
// This prevents the rounding errors in rtc2usec from accumulating
if (us_since_last>=100000)
{
last_rtc_time=current;
last_rtc_time_us=now;
}
return now;
2015-06-29 21:19:24 +02:00
}
void rtc_callback(void *arg){
rtc_timer_update(true);
2015-06-29 21:19:24 +02:00
if(soft_watchdog > 0){
soft_watchdog--;
if(soft_watchdog == 0)
system_restart();
}
}
// Lua: tmr.time() , return rtc time in second
static int tmr_time( lua_State* L ){
uint64_t us=rtc_timer_update(false);
lua_pushinteger(L, us/1000000);
2015-06-29 21:19:24 +02:00
return 1;
}
// Lua: tmr.softwd( value )
static int tmr_softwd( lua_State* L ){
soft_watchdog = luaL_checkinteger(L, 1);
return 0;
2014-12-29 02:29:19 +01:00
}
// Lua: tmr.create()
static int tmr_create( lua_State *L ) {
timer_t ud = (timer_t)lua_newuserdata(L, sizeof(timer_struct_t));
if (!ud) return luaL_error(L, "not enough memory");
luaL_getmetatable(L, "tmr.timer");
lua_setmetatable(L, -2);
ud->lua_ref = LUA_NOREF;
ud->self_ref = LUA_NOREF;
ud->mode = TIMER_MODE_OFF;
os_timer_disarm(&ud->os);
return 1;
}
#if defined(SWTMR_DEBUG)
static void tmr_printRegistry(lua_State* L){
swtmr_print_registry();
}
static void tmr_printSuspended(lua_State* L){
swtmr_print_suspended();
}
static void tmr_printTimerlist(lua_State* L){
swtmr_print_timer_list();
}
#endif
// Module function map
static const LUA_REG_TYPE tmr_dyn_map[] = {
{ LSTRKEY( "register" ), LFUNCVAL( tmr_register ) },
{ LSTRKEY( "alarm" ), LFUNCVAL( tmr_alarm ) },
{ LSTRKEY( "start" ), LFUNCVAL( tmr_start ) },
{ LSTRKEY( "stop" ), LFUNCVAL( tmr_stop ) },
{ LSTRKEY( "unregister" ), LFUNCVAL( tmr_unregister ) },
{ LSTRKEY( "state" ), LFUNCVAL( tmr_state ) },
{ LSTRKEY( "interval" ), LFUNCVAL( tmr_interval) },
#ifdef ENABLE_TIMER_SUSPEND
{ LSTRKEY( "suspend" ), LFUNCVAL( tmr_suspend ) },
{ LSTRKEY( "resume" ), LFUNCVAL( tmr_resume ) },
#endif
{ LSTRKEY( "__gc" ), LFUNCVAL( tmr_unregister ) },
{ LSTRKEY( "__index" ), LROVAL( tmr_dyn_map ) },
{ LNILKEY, LNILVAL }
};
#if defined(SWTMR_DEBUG)
static const LUA_REG_TYPE tmr_dbg_map[] = {
{ LSTRKEY( "printRegistry" ), LFUNCVAL( tmr_printRegistry ) },
{ LSTRKEY( "printSuspended" ), LFUNCVAL( tmr_printSuspended ) },
{ LSTRKEY( "printTimerlist" ), LFUNCVAL( tmr_printTimerlist ) },
{ LNILKEY, LNILVAL }
};
#endif
static const LUA_REG_TYPE tmr_map[] = {
{ LSTRKEY( "delay" ), LFUNCVAL( tmr_delay ) },
{ LSTRKEY( "now" ), LFUNCVAL( tmr_now ) },
{ LSTRKEY( "wdclr" ), LFUNCVAL( tmr_wdclr ) },
{ LSTRKEY( "softwd" ), LFUNCVAL( tmr_softwd ) },
{ LSTRKEY( "time" ), LFUNCVAL( tmr_time ) },
{ LSTRKEY( "register" ), LFUNCVAL( tmr_register ) },
{ LSTRKEY( "alarm" ), LFUNCVAL( tmr_alarm ) },
{ LSTRKEY( "start" ), LFUNCVAL( tmr_start ) },
{ LSTRKEY( "stop" ), LFUNCVAL( tmr_stop ) },
#ifdef ENABLE_TIMER_SUSPEND
{ LSTRKEY( "suspend" ), LFUNCVAL( tmr_suspend ) },
{ LSTRKEY( "suspend_all" ), LFUNCVAL( tmr_suspend_all ) },
{ LSTRKEY( "resume" ), LFUNCVAL( tmr_resume ) },
{ LSTRKEY( "resume_all" ), LFUNCVAL( tmr_resume_all ) },
#endif
{ LSTRKEY( "unregister" ), LFUNCVAL( tmr_unregister ) },
{ LSTRKEY( "state" ), LFUNCVAL( tmr_state ) },
{ LSTRKEY( "interval" ), LFUNCVAL( tmr_interval ) },
{ LSTRKEY( "create" ), LFUNCVAL( tmr_create ) },
#if defined(SWTMR_DEBUG)
{ LSTRKEY( "debug" ), LROVAL( tmr_dbg_map ) },
#endif
2015-06-29 21:19:24 +02:00
{ LSTRKEY( "ALARM_SINGLE" ), LNUMVAL( TIMER_MODE_SINGLE ) },
{ LSTRKEY( "ALARM_SEMI" ), LNUMVAL( TIMER_MODE_SEMI ) },
{ LSTRKEY( "ALARM_AUTO" ), LNUMVAL( TIMER_MODE_AUTO ) },
2015-06-29 21:19:24 +02:00
{ LNILKEY, LNILVAL }
};
int luaopen_tmr( lua_State *L ){
2015-06-29 21:19:24 +02:00
int i;
luaL_rometatable(L, "tmr.timer", (void *)tmr_dyn_map);
2015-06-29 21:19:24 +02:00
for(i=0; i<NUM_TMR; i++){
alarm_timers[i].lua_ref = LUA_NOREF;
alarm_timers[i].self_ref = LUA_REFNIL;
2015-06-29 21:19:24 +02:00
alarm_timers[i].mode = TIMER_MODE_OFF;
//improve boot speed by using ets_timer_disarm instead of os_timer_disarm to avoid timer registry maintenance call.
2015-06-29 21:19:24 +02:00
ets_timer_disarm(&alarm_timers[i].os);
}
last_rtc_time=system_get_rtc_time(); // Right now is time 0
last_rtc_time_us=0;
//improve boot speed by using ets_timer_disarm instead of os_timer_disarm to avoid timer registry maintenance call.
2015-06-29 21:19:24 +02:00
ets_timer_disarm(&rtc_timer);
os_timer_setfn(&rtc_timer, rtc_callback, NULL);
os_timer_arm(&rtc_timer, 1000, 1);
return 0;
}
NODEMCU_MODULE(TMR, "tmr", tmr_map, luaopen_tmr);