commit
8044014f96
|
@ -37,7 +37,8 @@ SUBDIRS= \
|
|||
wofs \
|
||||
modules \
|
||||
spiffs \
|
||||
cjson
|
||||
cjson \
|
||||
crypto \
|
||||
|
||||
endif # } PDIR
|
||||
|
||||
|
@ -86,6 +87,7 @@ COMPONENTS_eagle.app.v6 = \
|
|||
wofs/wofs.a \
|
||||
spiffs/spiffs.a \
|
||||
cjson/libcjson.a \
|
||||
crypto/libcrypto.a \
|
||||
modules/libmodules.a
|
||||
|
||||
LINKFLAGS_eagle.app.v6 = \
|
||||
|
|
|
@ -0,0 +1,44 @@
|
|||
|
||||
#############################################################
|
||||
# Required variables for each makefile
|
||||
# Discard this section from all parent makefiles
|
||||
# Expected variables (with automatic defaults):
|
||||
# CSRCS (all "C" files in the dir)
|
||||
# SUBDIRS (all subdirs with a Makefile)
|
||||
# GEN_LIBS - list of libs to be generated ()
|
||||
# GEN_IMAGES - list of images to be generated ()
|
||||
# COMPONENTS_xxx - a list of libs/objs in the form
|
||||
# subdir/lib to be extracted and rolled up into
|
||||
# a generated lib/image xxx.a ()
|
||||
#
|
||||
ifndef PDIR
|
||||
GEN_LIBS = libcrypto.a
|
||||
endif
|
||||
|
||||
#############################################################
|
||||
# Configuration i.e. compile options etc.
|
||||
# Target specific stuff (defines etc.) goes in here!
|
||||
# Generally values applying to a tree are captured in the
|
||||
# makefile at its root level - these are then overridden
|
||||
# for a subtree within the makefile rooted therein
|
||||
#
|
||||
#DEFINES +=
|
||||
|
||||
#############################################################
|
||||
# Recursion Magic - Don't touch this!!
|
||||
#
|
||||
# Each subtree potentially has an include directory
|
||||
# corresponding to the common APIs applicable to modules
|
||||
# rooted at that subtree. Accordingly, the INCLUDE PATH
|
||||
# of a module can only contain the include directories up
|
||||
# its parent path, and not its siblings
|
||||
#
|
||||
# Required for each makefile to inherit from the parent
|
||||
#
|
||||
|
||||
INCLUDES := $(INCLUDES) -I $(PDIR)include
|
||||
INCLUDES += -I ./
|
||||
INCLUDES += -I ../libc
|
||||
PDIR := ../$(PDIR)
|
||||
sinclude $(PDIR)Makefile
|
||||
|
|
@ -0,0 +1,171 @@
|
|||
/*
|
||||
* Copyright (c) 2015, DiUS Computing Pty Ltd (jmattsson@dius.com.au)
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. Neither the name of the copyright holder nor the names of contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
*/
|
||||
#include "digests.h"
|
||||
#include "user_config.h"
|
||||
#include "rom.h"
|
||||
#include "lwip/mem.h"
|
||||
#include <string.h>
|
||||
#include <c_errno.h>
|
||||
|
||||
#ifdef MD2_ENABLE
|
||||
#include "ssl/ssl_crypto.h"
|
||||
#endif
|
||||
|
||||
#ifdef SHA2_ENABLE
|
||||
#include "sha2.h"
|
||||
#endif
|
||||
|
||||
typedef char ensure_int_and_size_t_same[(sizeof(int)==sizeof(size_t)) ? 0 : -1];
|
||||
|
||||
/* None of the functions match the prototype fully due to the void *, and in
|
||||
some cases also the int vs size_t len, so wrap declarations in a macro. */
|
||||
#define MECH(pfx, u, ds, bs) \
|
||||
{ #pfx, \
|
||||
(create_ctx_fn)pfx ## u ## Init, \
|
||||
(update_ctx_fn)pfx ## u ## Update, \
|
||||
(finalize_ctx_fn)pfx ## u ## Final, \
|
||||
sizeof(pfx ## _CTX), \
|
||||
ds, \
|
||||
bs }
|
||||
|
||||
static const digest_mech_info_t hash_mechs[] ICACHE_RODATA_ATTR =
|
||||
{
|
||||
#ifdef MD2_ENABLE
|
||||
MECH(MD2, _ , MD2_SIZE, 16),
|
||||
#endif
|
||||
MECH(MD5, , MD5_DIGEST_LENGTH, 64)
|
||||
,MECH(SHA1, , SHA1_DIGEST_LENGTH, 64)
|
||||
#ifdef SHA2_ENABLE
|
||||
,MECH(SHA256, _ , SHA256_DIGEST_LENGTH, SHA256_BLOCK_LENGTH)
|
||||
,MECH(SHA384, _ , SHA384_DIGEST_LENGTH, SHA384_BLOCK_LENGTH)
|
||||
,MECH(SHA512, _ , SHA512_DIGEST_LENGTH, SHA512_BLOCK_LENGTH)
|
||||
#endif
|
||||
};
|
||||
|
||||
#undef MECH
|
||||
|
||||
const digest_mech_info_t *ICACHE_FLASH_ATTR crypto_digest_mech (const char *mech)
|
||||
{
|
||||
if (!mech)
|
||||
return 0;
|
||||
|
||||
size_t i;
|
||||
for (i = 0; i < (sizeof (hash_mechs) / sizeof (digest_mech_info_t)); ++i)
|
||||
{
|
||||
const digest_mech_info_t *mi = hash_mechs + i;
|
||||
if (strcasecmp (mech, mi->name) == 0)
|
||||
return mi;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
const char crypto_hexbytes[] = "0123456789abcdef";
|
||||
|
||||
// note: supports in-place encoding
|
||||
void ICACHE_FLASH_ATTR crypto_encode_asciihex (const char *bin, size_t binlen, char *outbuf)
|
||||
{
|
||||
size_t aidx = binlen * 2 -1;
|
||||
int i;
|
||||
for (i = binlen -1; i >= 0; --i)
|
||||
{
|
||||
outbuf[aidx--] = crypto_hexbytes[bin[i] & 0xf];
|
||||
outbuf[aidx--] = crypto_hexbytes[bin[i] >> 4];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int ICACHE_FLASH_ATTR crypto_hash (const digest_mech_info_t *mi,
|
||||
const char *data, size_t data_len,
|
||||
uint8_t *digest)
|
||||
{
|
||||
if (!mi)
|
||||
return EINVAL;
|
||||
|
||||
void *ctx = os_malloc (mi->ctx_size);
|
||||
if (!ctx)
|
||||
return ENOMEM;
|
||||
|
||||
mi->create (ctx);
|
||||
mi->update (ctx, data, data_len);
|
||||
mi->finalize (digest, ctx);
|
||||
|
||||
os_free (ctx);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int ICACHE_FLASH_ATTR crypto_hmac (const digest_mech_info_t *mi,
|
||||
const char *data, size_t data_len,
|
||||
const char *key, size_t key_len,
|
||||
uint8_t *digest)
|
||||
{
|
||||
if (!mi)
|
||||
return EINVAL;
|
||||
|
||||
void *ctx = os_malloc (mi->ctx_size);
|
||||
if (!ctx)
|
||||
return ENOMEM;
|
||||
|
||||
// If key too long, it needs to be hashed before use
|
||||
if (key_len > mi->block_size)
|
||||
{
|
||||
mi->create (ctx);
|
||||
mi->update (ctx, key, key_len);
|
||||
mi->finalize (digest, ctx);
|
||||
key = digest;
|
||||
key_len = mi->block_size;
|
||||
}
|
||||
|
||||
const size_t bs = mi->block_size;
|
||||
uint8_t k_ipad[bs];
|
||||
uint8_t k_opad[bs];
|
||||
|
||||
os_memset (k_ipad, 0x36, bs);
|
||||
os_memset (k_opad, 0x5c, bs);
|
||||
size_t i;
|
||||
for (i = 0; i < key_len; ++i)
|
||||
{
|
||||
k_ipad[i] ^= key[i];
|
||||
k_opad[i] ^= key[i];
|
||||
}
|
||||
|
||||
mi->create (ctx);
|
||||
mi->update (ctx, k_ipad, bs);
|
||||
mi->update (ctx, data, data_len);
|
||||
mi->finalize (digest, ctx);
|
||||
|
||||
mi->create (ctx);
|
||||
mi->update (ctx, k_opad, bs);
|
||||
mi->update (ctx, digest, mi->digest_size);
|
||||
mi->finalize (digest, ctx);
|
||||
|
||||
os_free (ctx);
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,85 @@
|
|||
#ifndef _CRYPTO_DIGESTS_H_
|
||||
#define _CRYPTO_DIGESTS_H_
|
||||
|
||||
#include <c_types.h>
|
||||
|
||||
typedef void (*create_ctx_fn)(void *ctx);
|
||||
typedef void (*update_ctx_fn)(void *ctx, const uint8_t *msg, int len);
|
||||
typedef void (*finalize_ctx_fn)(uint8_t *digest, void *ctx);
|
||||
|
||||
/**
|
||||
* Description of a message digest mechanism.
|
||||
*
|
||||
* Typical usage (if not using the crypto_xxxx() functions below):
|
||||
* digest_mech_info_t *mi = crypto_digest_mech (chosen_algorithm);
|
||||
* void *ctx = os_malloc (mi->ctx_size);
|
||||
* mi->create (ctx);
|
||||
* mi->update (ctx, data, len);
|
||||
* ...
|
||||
* uint8_t *digest = os_malloc (mi->digest_size);
|
||||
* mi->finalize (digest, ctx);
|
||||
* ...
|
||||
* os_free (ctx);
|
||||
* os_free (digest);
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
/* Note: All entries are 32bit to enable placement using ICACHE_RODATA_ATTR.*/
|
||||
const char * name;
|
||||
create_ctx_fn create;
|
||||
update_ctx_fn update;
|
||||
finalize_ctx_fn finalize;
|
||||
uint32_t ctx_size;
|
||||
uint32_t digest_size;
|
||||
uint32_t block_size;
|
||||
} digest_mech_info_t;
|
||||
|
||||
|
||||
/**
|
||||
* Looks up the mech data for a specified digest algorithm.
|
||||
* @param mech The name of the algorithm, e.g. "MD5", "SHA256"
|
||||
* @returns The mech data, or null if the mech is unknown.
|
||||
*/
|
||||
const digest_mech_info_t *crypto_digest_mech (const char *mech);
|
||||
|
||||
/**
|
||||
* Wrapper function for performing a one-in-all hashing operation.
|
||||
* @param mi A mech from @c crypto_digest_mech(). A null pointer @c mi
|
||||
* is harmless, but will of course result in an error return.
|
||||
* @param data The data to create a digest for.
|
||||
* @param data_len Number of bytes at @c data to digest.
|
||||
* @param digest Output buffer, must be at least @c mi->digest_size in size.
|
||||
* @return 0 on success, non-zero on error.
|
||||
*/
|
||||
int crypto_hash (const digest_mech_info_t *mi, const char *data, size_t data_len, uint8_t *digest);
|
||||
|
||||
|
||||
/**
|
||||
* Generate a HMAC signature.
|
||||
* @param mi A mech from @c crypto_digest_mech(). A null pointer @c mi
|
||||
* is harmless, but will of course result in an error return.
|
||||
* @param data The data to generate a signature for.
|
||||
* @param data_len Number of bytes at @c data to process.
|
||||
* @param key The key to use.
|
||||
* @param key_len Number of bytes the @c key comprises.
|
||||
* @param digest Output buffer, must be at least @c mi->digest_size in size.
|
||||
* @return 0 on success, non-zero on error.
|
||||
*/
|
||||
int crypto_hmac (const digest_mech_info_t *mi, const char *data, size_t data_len, const char *key, size_t key_len, uint8_t *digest);
|
||||
|
||||
/**
|
||||
* Perform ASCII Hex encoding. Does not null-terminate the buffer.
|
||||
*
|
||||
* @param bin The buffer to ascii-hex encode.
|
||||
* @param bin_len Number of bytes in @c bin to encode.
|
||||
* @param outbuf Output buffer, must be at least @c bin_len*2 bytes in size.
|
||||
* Note that in-place encoding is supported, and as such
|
||||
* bin==outbuf is safe, provided the buffer is large enough.
|
||||
*/
|
||||
void crypto_encode_asciihex (const char *bin, size_t bin_len, char *outbuf);
|
||||
|
||||
|
||||
/** Text string "0123456789abcdef" */
|
||||
const char crypto_hexbytes[17];
|
||||
|
||||
#endif
|
|
@ -0,0 +1,913 @@
|
|||
/*
|
||||
* FILE: sha2.c
|
||||
* AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
|
||||
*
|
||||
* Copyright (c) 2000-2001, Aaron D. Gifford
|
||||
* Copyright (c) 2015, DiUS Computing Pty Ltd (jmattsson@dius.com.au)
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. Neither the name of the copyright holder nor the names of contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "user_config.h"
|
||||
|
||||
#ifdef SHA2_ENABLE
|
||||
#include "sha2.h"
|
||||
#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
|
||||
#define assert(x) do {} while (0)
|
||||
|
||||
/*
|
||||
* ASSERT NOTE:
|
||||
* Some sanity checking code is included using assert(). On my FreeBSD
|
||||
* system, this additional code can be removed by compiling with NDEBUG
|
||||
* defined. Check your own systems manpage on assert() to see how to
|
||||
* compile WITHOUT the sanity checking code on your system.
|
||||
*
|
||||
* UNROLLED TRANSFORM LOOP NOTE:
|
||||
* You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
|
||||
* loop version for the hash transform rounds (defined using macros
|
||||
* later in this file). Either define on the command line, for example:
|
||||
*
|
||||
* cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
|
||||
*
|
||||
* or define below:
|
||||
*
|
||||
* #define SHA2_UNROLL_TRANSFORM
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
typedef uint8_t sha2_byte; /* Exactly 1 byte */
|
||||
typedef uint32_t sha2_word32; /* Exactly 4 bytes */
|
||||
typedef uint64_t sha2_word64; /* Exactly 8 bytes */
|
||||
|
||||
|
||||
/*** SHA-256/384/512 Various Length Definitions ***********************/
|
||||
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
|
||||
#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
|
||||
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
|
||||
|
||||
|
||||
/*** ENDIAN REVERSAL MACROS *******************************************/
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
#define REVERSE32(w,x) { \
|
||||
sha2_word32 tmp = (w); \
|
||||
tmp = (tmp >> 16) | (tmp << 16); \
|
||||
(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
|
||||
}
|
||||
#define REVERSE64(w,x) { \
|
||||
sha2_word64 tmp = (w); \
|
||||
tmp = (tmp >> 32) | (tmp << 32); \
|
||||
tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
|
||||
((tmp & 0x00ff00ff00ff00ffULL) << 8); \
|
||||
(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
|
||||
((tmp & 0x0000ffff0000ffffULL) << 16); \
|
||||
}
|
||||
#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
|
||||
|
||||
/*
|
||||
* Macro for incrementally adding the unsigned 64-bit integer n to the
|
||||
* unsigned 128-bit integer (represented using a two-element array of
|
||||
* 64-bit words):
|
||||
*/
|
||||
#define ADDINC128(w,n) { \
|
||||
(w)[0] += (sha2_word64)(n); \
|
||||
if ((w)[0] < (n)) { \
|
||||
(w)[1]++; \
|
||||
} \
|
||||
}
|
||||
|
||||
/*
|
||||
* Macros for copying blocks of memory and for zeroing out ranges
|
||||
* of memory. Using these macros makes it easy to switch from
|
||||
* using memset()/memcpy() and using bzero()/bcopy().
|
||||
*
|
||||
* Please define either SHA2_USE_MEMSET_MEMCPY or define
|
||||
* SHA2_USE_BZERO_BCOPY depending on which function set you
|
||||
* choose to use:
|
||||
*/
|
||||
#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
|
||||
/* Default to memset()/memcpy() if no option is specified */
|
||||
#define SHA2_USE_MEMSET_MEMCPY 1
|
||||
#endif
|
||||
#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
|
||||
/* Abort with an error if BOTH options are defined */
|
||||
#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
|
||||
#endif
|
||||
|
||||
#ifdef SHA2_USE_MEMSET_MEMCPY
|
||||
#define MEMSET_BZERO(p,l) memset((p), 0, (l))
|
||||
#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
|
||||
#endif
|
||||
#ifdef SHA2_USE_BZERO_BCOPY
|
||||
#define MEMSET_BZERO(p,l) bzero((p), (l))
|
||||
#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
|
||||
#endif
|
||||
|
||||
|
||||
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
|
||||
/*
|
||||
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
|
||||
*
|
||||
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and
|
||||
* S is a ROTATION) because the SHA-256/384/512 description document
|
||||
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
|
||||
* same "backwards" definition.
|
||||
*/
|
||||
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
|
||||
#define R(b,x) ((x) >> (b))
|
||||
/* 32-bit Rotate-right (used in SHA-256): */
|
||||
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
|
||||
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
|
||||
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
|
||||
|
||||
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
|
||||
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
|
||||
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
||||
|
||||
/* Four of six logical functions used in SHA-256: */
|
||||
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
|
||||
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
|
||||
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
|
||||
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
|
||||
|
||||
/* Four of six logical functions used in SHA-384 and SHA-512: */
|
||||
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
|
||||
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
|
||||
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
|
||||
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
|
||||
|
||||
/*** INTERNAL FUNCTION PROTOTYPES *************************************/
|
||||
/* NOTE: These should not be accessed directly from outside this
|
||||
* library -- they are intended for private internal visibility/use
|
||||
* only.
|
||||
*/
|
||||
void SHA512_Last(SHA512_CTX*);
|
||||
void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
|
||||
void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
|
||||
|
||||
|
||||
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
|
||||
/* Hash constant words K for SHA-256: */
|
||||
const static sha2_word32 K256[64] ICACHE_RODATA_ATTR = {
|
||||
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
|
||||
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
|
||||
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
|
||||
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
|
||||
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
|
||||
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
|
||||
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
|
||||
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
|
||||
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
|
||||
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
|
||||
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
|
||||
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
|
||||
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
|
||||
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
|
||||
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
|
||||
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
|
||||
};
|
||||
|
||||
/* Initial hash value H for SHA-256: */
|
||||
const static sha2_word32 sha256_initial_hash_value[8] ICACHE_RODATA_ATTR = {
|
||||
0x6a09e667UL,
|
||||
0xbb67ae85UL,
|
||||
0x3c6ef372UL,
|
||||
0xa54ff53aUL,
|
||||
0x510e527fUL,
|
||||
0x9b05688cUL,
|
||||
0x1f83d9abUL,
|
||||
0x5be0cd19UL
|
||||
};
|
||||
|
||||
/* Hash constant words K for SHA-384 and SHA-512: */
|
||||
const static sha2_word64 K512[80] ICACHE_RODATA_ATTR = {
|
||||
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
|
||||
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
|
||||
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
|
||||
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
|
||||
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
|
||||
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
|
||||
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
|
||||
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
|
||||
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
|
||||
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
|
||||
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
|
||||
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
|
||||
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
|
||||
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
|
||||
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
|
||||
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
|
||||
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
|
||||
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
|
||||
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
|
||||
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
|
||||
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
|
||||
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
|
||||
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
|
||||
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
|
||||
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
|
||||
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
|
||||
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
|
||||
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
|
||||
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
|
||||
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
|
||||
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
|
||||
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
|
||||
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
|
||||
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
|
||||
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
|
||||
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
|
||||
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
|
||||
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
|
||||
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
|
||||
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
|
||||
};
|
||||
|
||||
/* Initial hash value H for SHA-384 */
|
||||
const static sha2_word64 sha384_initial_hash_value[8] ICACHE_RODATA_ATTR = {
|
||||
0xcbbb9d5dc1059ed8ULL,
|
||||
0x629a292a367cd507ULL,
|
||||
0x9159015a3070dd17ULL,
|
||||
0x152fecd8f70e5939ULL,
|
||||
0x67332667ffc00b31ULL,
|
||||
0x8eb44a8768581511ULL,
|
||||
0xdb0c2e0d64f98fa7ULL,
|
||||
0x47b5481dbefa4fa4ULL
|
||||
};
|
||||
|
||||
/* Initial hash value H for SHA-512 */
|
||||
const static sha2_word64 sha512_initial_hash_value[8] ICACHE_RODATA_ATTR = {
|
||||
0x6a09e667f3bcc908ULL,
|
||||
0xbb67ae8584caa73bULL,
|
||||
0x3c6ef372fe94f82bULL,
|
||||
0xa54ff53a5f1d36f1ULL,
|
||||
0x510e527fade682d1ULL,
|
||||
0x9b05688c2b3e6c1fULL,
|
||||
0x1f83d9abfb41bd6bULL,
|
||||
0x5be0cd19137e2179ULL
|
||||
};
|
||||
|
||||
|
||||
/*** SHA-256: *********************************************************/
|
||||
void ICACHE_FLASH_ATTR SHA256_Init(SHA256_CTX* context) {
|
||||
if (context == (SHA256_CTX*)0) {
|
||||
return;
|
||||
}
|
||||
MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
|
||||
MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
|
||||
context->bitcount = 0;
|
||||
}
|
||||
|
||||
#ifdef SHA2_UNROLL_TRANSFORM
|
||||
|
||||
/* Unrolled SHA-256 round macros: */
|
||||
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN_
|
||||
|
||||
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
|
||||
REVERSE32(*data++, W256[j]); \
|
||||
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
|
||||
K256[j] + W256[j]; \
|
||||
(d) += T1; \
|
||||
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
|
||||
j++
|
||||
|
||||
|
||||
#else /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN_ */
|
||||
|
||||
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
|
||||
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
|
||||
K256[j] + (W256[j] = *data++); \
|
||||
(d) += T1; \
|
||||
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
|
||||
j++
|
||||
|
||||
#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN_ */
|
||||
|
||||
#define ROUND256(a,b,c,d,e,f,g,h) \
|
||||
s0 = W256[(j+1)&0x0f]; \
|
||||
s0 = sigma0_256(s0); \
|
||||
s1 = W256[(j+14)&0x0f]; \
|
||||
s1 = sigma1_256(s1); \
|
||||
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
|
||||
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
|
||||
(d) += T1; \
|
||||
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
|
||||
j++
|
||||
|
||||
void ICACHE_FLASH_ATTR SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
|
||||
sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
|
||||
sha2_word32 T1, *W256;
|
||||
int j;
|
||||
|
||||
W256 = (sha2_word32*)context->buffer;
|
||||
|
||||
/* Initialize registers with the prev. intermediate value */
|
||||
a = context->state[0];
|
||||
b = context->state[1];
|
||||
c = context->state[2];
|
||||
d = context->state[3];
|
||||
e = context->state[4];
|
||||
f = context->state[5];
|
||||
g = context->state[6];
|
||||
h = context->state[7];
|
||||
|
||||
j = 0;
|
||||
do {
|
||||
/* Rounds 0 to 15 (unrolled): */
|
||||
ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
|
||||
ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
|
||||
ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
|
||||
ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
|
||||
ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
|
||||
ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
|
||||
ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
|
||||
ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
|
||||
} while (j < 16);
|
||||
|
||||
/* Now for the remaining rounds to 64: */
|
||||
do {
|
||||
ROUND256(a,b,c,d,e,f,g,h);
|
||||
ROUND256(h,a,b,c,d,e,f,g);
|
||||
ROUND256(g,h,a,b,c,d,e,f);
|
||||
ROUND256(f,g,h,a,b,c,d,e);
|
||||
ROUND256(e,f,g,h,a,b,c,d);
|
||||
ROUND256(d,e,f,g,h,a,b,c);
|
||||
ROUND256(c,d,e,f,g,h,a,b);
|
||||
ROUND256(b,c,d,e,f,g,h,a);
|
||||
} while (j < 64);
|
||||
|
||||
/* Compute the current intermediate hash value */
|
||||
context->state[0] += a;
|
||||
context->state[1] += b;
|
||||
context->state[2] += c;
|
||||
context->state[3] += d;
|
||||
context->state[4] += e;
|
||||
context->state[5] += f;
|
||||
context->state[6] += g;
|
||||
context->state[7] += h;
|
||||
|
||||
/* Clean up */
|
||||
a = b = c = d = e = f = g = h = T1 = 0;
|
||||
}
|
||||
|
||||
#else /* SHA2_UNROLL_TRANSFORM */
|
||||
|
||||
void ICACHE_FLASH_ATTR SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
|
||||
sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
|
||||
sha2_word32 T1, T2, *W256;
|
||||
int j;
|
||||
|
||||
W256 = (sha2_word32*)context->buffer;
|
||||
|
||||
/* Initialize registers with the prev. intermediate value */
|
||||
a = context->state[0];
|
||||
b = context->state[1];
|
||||
c = context->state[2];
|
||||
d = context->state[3];
|
||||
e = context->state[4];
|
||||
f = context->state[5];
|
||||
g = context->state[6];
|
||||
h = context->state[7];
|
||||
|
||||
j = 0;
|
||||
do {
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
/* Copy data while converting to host byte order */
|
||||
REVERSE32(*data++,W256[j]);
|
||||
/* Apply the SHA-256 compression function to update a..h */
|
||||
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
|
||||
#else /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN_ */
|
||||
/* Apply the SHA-256 compression function to update a..h with copy */
|
||||
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
|
||||
#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN_ */
|
||||
T2 = Sigma0_256(a) + Maj(a, b, c);
|
||||
h = g;
|
||||
g = f;
|
||||
f = e;
|
||||
e = d + T1;
|
||||
d = c;
|
||||
c = b;
|
||||
b = a;
|
||||
a = T1 + T2;
|
||||
|
||||
j++;
|
||||
} while (j < 16);
|
||||
|
||||
do {
|
||||
/* Part of the message block expansion: */
|
||||
s0 = W256[(j+1)&0x0f];
|
||||
s0 = sigma0_256(s0);
|
||||
s1 = W256[(j+14)&0x0f];
|
||||
s1 = sigma1_256(s1);
|
||||
|
||||
/* Apply the SHA-256 compression function to update a..h */
|
||||
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
|
||||
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
|
||||
T2 = Sigma0_256(a) + Maj(a, b, c);
|
||||
h = g;
|
||||
g = f;
|
||||
f = e;
|
||||
e = d + T1;
|
||||
d = c;
|
||||
c = b;
|
||||
b = a;
|
||||
a = T1 + T2;
|
||||
|
||||
j++;
|
||||
} while (j < 64);
|
||||
|
||||
/* Compute the current intermediate hash value */
|
||||
context->state[0] += a;
|
||||
context->state[1] += b;
|
||||
context->state[2] += c;
|
||||
context->state[3] += d;
|
||||
context->state[4] += e;
|
||||
context->state[5] += f;
|
||||
context->state[6] += g;
|
||||
context->state[7] += h;
|
||||
|
||||
/* Clean up */
|
||||
a = b = c = d = e = f = g = h = T1 = T2 = 0;
|
||||
}
|
||||
|
||||
#endif /* SHA2_UNROLL_TRANSFORM */
|
||||
|
||||
void ICACHE_FLASH_ATTR SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
|
||||
unsigned int freespace, usedspace;
|
||||
|
||||
if (len == 0) {
|
||||
/* Calling with no data is valid - we do nothing */
|
||||
return;
|
||||
}
|
||||
|
||||
/* Sanity check: */
|
||||
assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
|
||||
|
||||
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
|
||||
if (usedspace > 0) {
|
||||
/* Calculate how much free space is available in the buffer */
|
||||
freespace = SHA256_BLOCK_LENGTH - usedspace;
|
||||
|
||||
if (len >= freespace) {
|
||||
/* Fill the buffer completely and process it */
|
||||
MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
|
||||
context->bitcount += freespace << 3;
|
||||
len -= freespace;
|
||||
data += freespace;
|
||||
SHA256_Transform(context, (sha2_word32*)context->buffer);
|
||||
} else {
|
||||
/* The buffer is not yet full */
|
||||
MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
|
||||
context->bitcount += len << 3;
|
||||
/* Clean up: */
|
||||
usedspace = freespace = 0;
|
||||
return;
|
||||
}
|
||||
}
|
||||
while (len >= SHA256_BLOCK_LENGTH) {
|
||||
/* Process as many complete blocks as we can */
|
||||
SHA256_Transform(context, (sha2_word32*)data);
|
||||
context->bitcount += SHA256_BLOCK_LENGTH << 3;
|
||||
len -= SHA256_BLOCK_LENGTH;
|
||||
data += SHA256_BLOCK_LENGTH;
|
||||
}
|
||||
if (len > 0) {
|
||||
/* There's left-overs, so save 'em */
|
||||
MEMCPY_BCOPY(context->buffer, data, len);
|
||||
context->bitcount += len << 3;
|
||||
}
|
||||
/* Clean up: */
|
||||
usedspace = freespace = 0;
|
||||
}
|
||||
|
||||
void ICACHE_FLASH_ATTR SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
|
||||
sha2_word32 *d = (sha2_word32*)digest;
|
||||
unsigned int usedspace;
|
||||
|
||||
/* Sanity check: */
|
||||
assert(context != (SHA256_CTX*)0);
|
||||
|
||||
/* If no digest buffer is passed, we don't bother doing this: */
|
||||
if (digest != (sha2_byte*)0) {
|
||||
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
/* Convert FROM host byte order */
|
||||
REVERSE64(context->bitcount,context->bitcount);
|
||||
#endif
|
||||
if (usedspace > 0) {
|
||||
/* Begin padding with a 1 bit: */
|
||||
context->buffer[usedspace++] = 0x80;
|
||||
|
||||
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
|
||||
/* Set-up for the last transform: */
|
||||
MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
|
||||
} else {
|
||||
if (usedspace < SHA256_BLOCK_LENGTH) {
|
||||
MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
|
||||
}
|
||||
/* Do second-to-last transform: */
|
||||
SHA256_Transform(context, (sha2_word32*)context->buffer);
|
||||
|
||||
/* And set-up for the last transform: */
|
||||
MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
|
||||
}
|
||||
} else {
|
||||
/* Set-up for the last transform: */
|
||||
MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
|
||||
|
||||
/* Begin padding with a 1 bit: */
|
||||
*context->buffer = 0x80;
|
||||
}
|
||||
/* Set the bit count: */
|
||||
*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
|
||||
|
||||
/* Final transform: */
|
||||
SHA256_Transform(context, (sha2_word32*)context->buffer);
|
||||
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
{
|
||||
/* Convert TO host byte order */
|
||||
int j;
|
||||
for (j = 0; j < 8; j++) {
|
||||
REVERSE32(context->state[j],context->state[j]);
|
||||
*d++ = context->state[j];
|
||||
}
|
||||
}
|
||||
#else
|
||||
MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Clean up state data: */
|
||||
MEMSET_BZERO(context, sizeof(SHA256_CTX));
|
||||
usedspace = 0;
|
||||
}
|
||||
|
||||
|
||||
/*** SHA-512: *********************************************************/
|
||||
void ICACHE_FLASH_ATTR SHA512_Init(SHA512_CTX* context) {
|
||||
if (context == (SHA512_CTX*)0) {
|
||||
return;
|
||||
}
|
||||
MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
|
||||
MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
|
||||
context->bitcount[0] = context->bitcount[1] = 0;
|
||||
}
|
||||
|
||||
#ifdef SHA2_UNROLL_TRANSFORM
|
||||
|
||||
/* Unrolled SHA-512 round macros: */
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN_
|
||||
|
||||
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
|
||||
REVERSE64(*data++, W512[j]); \
|
||||
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
|
||||
K512[j] + W512[j]; \
|
||||
(d) += T1, \
|
||||
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
|
||||
j++
|
||||
|
||||
|
||||
#else /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN_ */
|
||||
|
||||
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
|
||||
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
|
||||
K512[j] + (W512[j] = *data++); \
|
||||
(d) += T1; \
|
||||
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
|
||||
j++
|
||||
|
||||
#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN_ */
|
||||
|
||||
#define ROUND512(a,b,c,d,e,f,g,h) \
|
||||
s0 = W512[(j+1)&0x0f]; \
|
||||
s0 = sigma0_512(s0); \
|
||||
s1 = W512[(j+14)&0x0f]; \
|
||||
s1 = sigma1_512(s1); \
|
||||
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
|
||||
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
|
||||
(d) += T1; \
|
||||
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
|
||||
j++
|
||||
|
||||
void ICACHE_FLASH_ATTR SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
|
||||
sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
|
||||
sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
|
||||
int j;
|
||||
|
||||
/* Initialize registers with the prev. intermediate value */
|
||||
a = context->state[0];
|
||||
b = context->state[1];
|
||||
c = context->state[2];
|
||||
d = context->state[3];
|
||||
e = context->state[4];
|
||||
f = context->state[5];
|
||||
g = context->state[6];
|
||||
h = context->state[7];
|
||||
|
||||
j = 0;
|
||||
do {
|
||||
ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
|
||||
ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
|
||||
ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
|
||||
ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
|
||||
ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
|
||||
ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
|
||||
ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
|
||||
ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
|
||||
} while (j < 16);
|
||||
|
||||
/* Now for the remaining rounds up to 79: */
|
||||
do {
|
||||
ROUND512(a,b,c,d,e,f,g,h);
|
||||
ROUND512(h,a,b,c,d,e,f,g);
|
||||
ROUND512(g,h,a,b,c,d,e,f);
|
||||
ROUND512(f,g,h,a,b,c,d,e);
|
||||
ROUND512(e,f,g,h,a,b,c,d);
|
||||
ROUND512(d,e,f,g,h,a,b,c);
|
||||
ROUND512(c,d,e,f,g,h,a,b);
|
||||
ROUND512(b,c,d,e,f,g,h,a);
|
||||
} while (j < 80);
|
||||
|
||||
/* Compute the current intermediate hash value */
|
||||
context->state[0] += a;
|
||||
context->state[1] += b;
|
||||
context->state[2] += c;
|
||||
context->state[3] += d;
|
||||
context->state[4] += e;
|
||||
context->state[5] += f;
|
||||
context->state[6] += g;
|
||||
context->state[7] += h;
|
||||
|
||||
/* Clean up */
|
||||
a = b = c = d = e = f = g = h = T1 = 0;
|
||||
}
|
||||
|
||||
#else /* SHA2_UNROLL_TRANSFORM */
|
||||
|
||||
void ICACHE_FLASH_ATTR SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
|
||||
sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
|
||||
sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
|
||||
int j;
|
||||
|
||||
/* Initialize registers with the prev. intermediate value */
|
||||
a = context->state[0];
|
||||
b = context->state[1];
|
||||
c = context->state[2];
|
||||
d = context->state[3];
|
||||
e = context->state[4];
|
||||
f = context->state[5];
|
||||
g = context->state[6];
|
||||
h = context->state[7];
|
||||
|
||||
j = 0;
|
||||
do {
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
/* Convert TO host byte order */
|
||||
REVERSE64(*data++, W512[j]);
|
||||
/* Apply the SHA-512 compression function to update a..h */
|
||||
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
|
||||
#else /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN_ */
|
||||
/* Apply the SHA-512 compression function to update a..h with copy */
|
||||
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
|
||||
#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN_ */
|
||||
T2 = Sigma0_512(a) + Maj(a, b, c);
|
||||
h = g;
|
||||
g = f;
|
||||
f = e;
|
||||
e = d + T1;
|
||||
d = c;
|
||||
c = b;
|
||||
b = a;
|
||||
a = T1 + T2;
|
||||
|
||||
j++;
|
||||
} while (j < 16);
|
||||
|
||||
do {
|
||||
/* Part of the message block expansion: */
|
||||
s0 = W512[(j+1)&0x0f];
|
||||
s0 = sigma0_512(s0);
|
||||
s1 = W512[(j+14)&0x0f];
|
||||
s1 = sigma1_512(s1);
|
||||
|
||||
/* Apply the SHA-512 compression function to update a..h */
|
||||
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
|
||||
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
|
||||
T2 = Sigma0_512(a) + Maj(a, b, c);
|
||||
h = g;
|
||||
g = f;
|
||||
f = e;
|
||||
e = d + T1;
|
||||
d = c;
|
||||
c = b;
|
||||
b = a;
|
||||
a = T1 + T2;
|
||||
|
||||
j++;
|
||||
} while (j < 80);
|
||||
|
||||
/* Compute the current intermediate hash value */
|
||||
context->state[0] += a;
|
||||
context->state[1] += b;
|
||||
context->state[2] += c;
|
||||
context->state[3] += d;
|
||||
context->state[4] += e;
|
||||
context->state[5] += f;
|
||||
context->state[6] += g;
|
||||
context->state[7] += h;
|
||||
|
||||
/* Clean up */
|
||||
a = b = c = d = e = f = g = h = T1 = T2 = 0;
|
||||
}
|
||||
|
||||
#endif /* SHA2_UNROLL_TRANSFORM */
|
||||
|
||||
void ICACHE_FLASH_ATTR SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
|
||||
unsigned int freespace, usedspace;
|
||||
|
||||
if (len == 0) {
|
||||
/* Calling with no data is valid - we do nothing */
|
||||
return;
|
||||
}
|
||||
|
||||
/* Sanity check: */
|
||||
assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
|
||||
|
||||
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
|
||||
if (usedspace > 0) {
|
||||
/* Calculate how much free space is available in the buffer */
|
||||
freespace = SHA512_BLOCK_LENGTH - usedspace;
|
||||
|
||||
if (len >= freespace) {
|
||||
/* Fill the buffer completely and process it */
|
||||
MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
|
||||
ADDINC128(context->bitcount, freespace << 3);
|
||||
len -= freespace;
|
||||
data += freespace;
|
||||
SHA512_Transform(context, (sha2_word64*)context->buffer);
|
||||
} else {
|
||||
/* The buffer is not yet full */
|
||||
MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
|
||||
ADDINC128(context->bitcount, len << 3);
|
||||
/* Clean up: */
|
||||
usedspace = freespace = 0;
|
||||
return;
|
||||
}
|
||||
}
|
||||
while (len >= SHA512_BLOCK_LENGTH) {
|
||||
/* Process as many complete blocks as we can */
|
||||
SHA512_Transform(context, (sha2_word64*)data);
|
||||
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
|
||||
len -= SHA512_BLOCK_LENGTH;
|
||||
data += SHA512_BLOCK_LENGTH;
|
||||
}
|
||||
if (len > 0) {
|
||||
/* There's left-overs, so save 'em */
|
||||
MEMCPY_BCOPY(context->buffer, data, len);
|
||||
ADDINC128(context->bitcount, len << 3);
|
||||
}
|
||||
/* Clean up: */
|
||||
usedspace = freespace = 0;
|
||||
}
|
||||
|
||||
void ICACHE_FLASH_ATTR SHA512_Last(SHA512_CTX* context) {
|
||||
unsigned int usedspace;
|
||||
|
||||
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
/* Convert FROM host byte order */
|
||||
REVERSE64(context->bitcount[0],context->bitcount[0]);
|
||||
REVERSE64(context->bitcount[1],context->bitcount[1]);
|
||||
#endif
|
||||
if (usedspace > 0) {
|
||||
/* Begin padding with a 1 bit: */
|
||||
context->buffer[usedspace++] = 0x80;
|
||||
|
||||
if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
|
||||
/* Set-up for the last transform: */
|
||||
MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
|
||||
} else {
|
||||
if (usedspace < SHA512_BLOCK_LENGTH) {
|
||||
MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
|
||||
}
|
||||
/* Do second-to-last transform: */
|
||||
SHA512_Transform(context, (sha2_word64*)context->buffer);
|
||||
|
||||
/* And set-up for the last transform: */
|
||||
MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
|
||||
}
|
||||
} else {
|
||||
/* Prepare for final transform: */
|
||||
MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
|
||||
|
||||
/* Begin padding with a 1 bit: */
|
||||
*context->buffer = 0x80;
|
||||
}
|
||||
/* Store the length of input data (in bits): */
|
||||
*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
|
||||
*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
|
||||
|
||||
/* Final transform: */
|
||||
SHA512_Transform(context, (sha2_word64*)context->buffer);
|
||||
}
|
||||
|
||||
void ICACHE_FLASH_ATTR SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
|
||||
sha2_word64 *d = (sha2_word64*)digest;
|
||||
|
||||
/* Sanity check: */
|
||||
assert(context != (SHA512_CTX*)0);
|
||||
|
||||
/* If no digest buffer is passed, we don't bother doing this: */
|
||||
if (digest != (sha2_byte*)0) {
|
||||
SHA512_Last(context);
|
||||
|
||||
/* Save the hash data for output: */
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
{
|
||||
/* Convert TO host byte order */
|
||||
int j;
|
||||
for (j = 0; j < 8; j++) {
|
||||
REVERSE64(context->state[j],context->state[j]);
|
||||
*d++ = context->state[j];
|
||||
}
|
||||
}
|
||||
#else
|
||||
MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Zero out state data */
|
||||
MEMSET_BZERO(context, sizeof(SHA512_CTX));
|
||||
}
|
||||
|
||||
|
||||
/*** SHA-384: *********************************************************/
|
||||
void ICACHE_FLASH_ATTR SHA384_Init(SHA384_CTX* context) {
|
||||
if (context == (SHA384_CTX*)0) {
|
||||
return;
|
||||
}
|
||||
MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
|
||||
MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
|
||||
context->bitcount[0] = context->bitcount[1] = 0;
|
||||
}
|
||||
|
||||
void ICACHE_FLASH_ATTR SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
|
||||
SHA512_Update((SHA512_CTX*)context, data, len);
|
||||
}
|
||||
|
||||
void ICACHE_FLASH_ATTR SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
|
||||
sha2_word64 *d = (sha2_word64*)digest;
|
||||
|
||||
/* Sanity check: */
|
||||
assert(context != (SHA384_CTX*)0);
|
||||
|
||||
/* If no digest buffer is passed, we don't bother doing this: */
|
||||
if (digest != (sha2_byte*)0) {
|
||||
SHA512_Last((SHA512_CTX*)context);
|
||||
|
||||
/* Save the hash data for output: */
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
{
|
||||
/* Convert TO host byte order */
|
||||
int j;
|
||||
for (j = 0; j < 6; j++) {
|
||||
REVERSE64(context->state[j],context->state[j]);
|
||||
*d++ = context->state[j];
|
||||
}
|
||||
}
|
||||
#else
|
||||
MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Zero out state data */
|
||||
MEMSET_BZERO(context, sizeof(SHA384_CTX));
|
||||
}
|
||||
|
||||
#endif // SHA2_ENABLE
|
|
@ -0,0 +1,47 @@
|
|||
#ifndef __SHA2_H__
|
||||
#define __SHA2_H__
|
||||
|
||||
#include <c_types.h>
|
||||
|
||||
/**************************************************************************
|
||||
* SHA256/384/512 declarations
|
||||
**************************************************************************/
|
||||
|
||||
#define SHA256_BLOCK_LENGTH 64
|
||||
#define SHA256_DIGEST_LENGTH 32
|
||||
|
||||
typedef struct
|
||||
{
|
||||
uint32_t state[8];
|
||||
uint64_t bitcount;
|
||||
uint8_t buffer[SHA256_BLOCK_LENGTH];
|
||||
} SHA256_CTX;
|
||||
|
||||
|
||||
void SHA256_Init(SHA256_CTX *);
|
||||
void SHA256_Update(SHA256_CTX *, const uint8_t *msg, size_t len);
|
||||
void SHA256_Final(uint8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
|
||||
|
||||
#define SHA384_BLOCK_LENGTH 128
|
||||
#define SHA384_DIGEST_LENGTH 48
|
||||
|
||||
typedef struct
|
||||
{
|
||||
uint64_t state[8];
|
||||
uint64_t bitcount[2];
|
||||
uint8_t buffer[SHA384_BLOCK_LENGTH];
|
||||
} SHA384_CTX;
|
||||
|
||||
void SHA384_Init(SHA384_CTX*);
|
||||
void SHA384_Update(SHA384_CTX*, const uint8_t *msg, size_t len);
|
||||
void SHA384_Final(uint8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
|
||||
|
||||
#define SHA512_BLOCK_LENGTH 128
|
||||
#define SHA512_DIGEST_LENGTH 64
|
||||
typedef SHA384_CTX SHA512_CTX;
|
||||
|
||||
void SHA512_Init(SHA512_CTX*);
|
||||
void SHA512_Update(SHA512_CTX*, const uint8_t *msg, size_t len);
|
||||
void SHA512_Final(uint8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
|
||||
|
||||
#endif
|
|
@ -0,0 +1,39 @@
|
|||
// Headers to the various functions in the rom (as we discover them)
|
||||
|
||||
// SHA1 is assumed to match the netbsd sha1.h headers
|
||||
#define SHA1_DIGEST_LENGTH 20
|
||||
#define SHA1_DIGEST_STRING_LENGTH 41
|
||||
|
||||
typedef struct {
|
||||
uint32_t state[5];
|
||||
uint32_t count[2];
|
||||
uint8_t buffer[64];
|
||||
} SHA1_CTX;
|
||||
|
||||
extern void SHA1Transform(uint32_t[5], const uint8_t[64]);
|
||||
extern void SHA1Init(SHA1_CTX *);
|
||||
extern void SHA1Final(uint8_t[SHA1_DIGEST_LENGTH], SHA1_CTX *);
|
||||
extern void SHA1Update(SHA1_CTX *, const uint8_t *, unsigned int);
|
||||
|
||||
|
||||
// MD5 is assumed to match the NetBSD md5.h header
|
||||
#define MD5_DIGEST_LENGTH 16
|
||||
typedef struct
|
||||
{
|
||||
uint32_t state[5];
|
||||
uint32_t count[2];
|
||||
uint8_t buffer[64];
|
||||
} MD5_CTX;
|
||||
|
||||
extern void MD5Init(MD5_CTX *);
|
||||
extern void MD5Update(MD5_CTX *, const unsigned char *, unsigned int);
|
||||
extern void MD5Final(unsigned char[MD5_DIGEST_LENGTH], MD5_CTX *);
|
||||
|
||||
// base64_encode/decode derived by Cal
|
||||
// Appears to match base64.h from netbsd wpa utils.
|
||||
extern unsigned char * base64_encode(const unsigned char *src, size_t len, size_t *out_len);
|
||||
extern unsigned char * base64_decode(const unsigned char *src, size_t len, size_t *out_len);
|
||||
// Unfortunately it that seems to require the ROM memory management to be
|
||||
// initialized because it uses mem_malloc
|
||||
|
||||
extern void mem_init(void * start_addr);
|
|
@ -41,6 +41,8 @@
|
|||
|
||||
#define CLIENT_SSL_ENABLE
|
||||
#define GPIO_INTERRUPT_ENABLE
|
||||
//#define MD2_ENABLE
|
||||
#define SHA2_ENABLE
|
||||
|
||||
// #define BUILD_WOFS 1
|
||||
#define BUILD_SPIFFS 1
|
||||
|
|
|
@ -31,6 +31,7 @@
|
|||
#define LUA_USE_MODULES_U8G
|
||||
#define LUA_USE_MODULES_WS2812
|
||||
#define LUA_USE_MODULES_CJSON
|
||||
#define LUA_USE_MODULES_CRYPTO
|
||||
#endif /* LUA_USE_MODULES */
|
||||
|
||||
#endif /* __USER_MODULES_H__ */
|
||||
|
|
|
@ -0,0 +1,183 @@
|
|||
// Module for cryptography
|
||||
|
||||
//#include "lua.h"
|
||||
#include "lualib.h"
|
||||
#include "lauxlib.h"
|
||||
#include "platform.h"
|
||||
#include "auxmods.h"
|
||||
#include "lrotable.h"
|
||||
#include "c_types.h"
|
||||
#include "c_stdlib.h"
|
||||
#include "../crypto/digests.h"
|
||||
|
||||
#include "user_interface.h"
|
||||
|
||||
#include "rom.h"
|
||||
|
||||
/**
|
||||
* hash = crypto.sha1(input)
|
||||
*
|
||||
* Calculates raw SHA1 hash of input string.
|
||||
* Input is arbitrary string, output is raw 20-byte hash as string.
|
||||
*/
|
||||
static int crypto_sha1( lua_State* L )
|
||||
{
|
||||
SHA1_CTX ctx;
|
||||
uint8_t digest[20];
|
||||
// Read the string from lua (with length)
|
||||
int len;
|
||||
const char* msg = luaL_checklstring(L, 1, &len);
|
||||
// Use the SHA* functions in the rom
|
||||
SHA1Init(&ctx);
|
||||
SHA1Update(&ctx, msg, len);
|
||||
SHA1Final(digest, &ctx);
|
||||
|
||||
// Push the result as a lua string
|
||||
lua_pushlstring(L, digest, 20);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
static const char* bytes64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
||||
/**
|
||||
* encoded = crypto.toBase64(raw)
|
||||
*
|
||||
* Encodes raw binary string as base64 string.
|
||||
*/
|
||||
static int crypto_base64_encode( lua_State* L )
|
||||
{
|
||||
int len;
|
||||
const char* msg = luaL_checklstring(L, 1, &len);
|
||||
int blen = (len + 2) / 3 * 4;
|
||||
char* out = (char*)c_malloc(blen);
|
||||
int j = 0, i;
|
||||
for (i = 0; i < len; i += 3) {
|
||||
int a = msg[i];
|
||||
int b = (i + 1 < len) ? msg[i + 1] : 0;
|
||||
int c = (i + 2 < len) ? msg[i + 2] : 0;
|
||||
out[j++] = bytes64[a >> 2];
|
||||
out[j++] = bytes64[((a & 3) << 4) | (b >> 4)];
|
||||
out[j++] = (i + 1 < len) ? bytes64[((b & 15) << 2) | (c >> 6)] : 61;
|
||||
out[j++] = (i + 2 < len) ? bytes64[(c & 63)] : 61;
|
||||
}
|
||||
lua_pushlstring(L, out, j);
|
||||
c_free(out);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* encoded = crypto.toHex(raw)
|
||||
*
|
||||
* Encodes raw binary string as hex string.
|
||||
*/
|
||||
static int crypto_hex_encode( lua_State* L)
|
||||
{
|
||||
int len;
|
||||
const char* msg = luaL_checklstring(L, 1, &len);
|
||||
char* out = (char*)c_malloc(len * 2);
|
||||
int i, j = 0;
|
||||
for (i = 0; i < len; i++) {
|
||||
out[j++] = crypto_hexbytes[msg[i] >> 4];
|
||||
out[j++] = crypto_hexbytes[msg[i] & 0xf];
|
||||
}
|
||||
lua_pushlstring(L, out, len*2);
|
||||
c_free(out);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* masked = crypto.mask(message, mask)
|
||||
*
|
||||
* Apply a mask (repeated if shorter than message) as XOR to each byte.
|
||||
*/
|
||||
static int crypto_mask( lua_State* L )
|
||||
{
|
||||
int len, mask_len;
|
||||
const char* msg = luaL_checklstring(L, 1, &len);
|
||||
const char* mask = luaL_checklstring(L, 2, &mask_len);
|
||||
int i;
|
||||
char* copy = (char*)c_malloc(len);
|
||||
for (i = 0; i < len; i++) {
|
||||
copy[i] = msg[i] ^ mask[i % 4];
|
||||
}
|
||||
lua_pushlstring(L, copy, len);
|
||||
c_free(copy);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
static inline int bad_mech (lua_State *L) { return luaL_error (L, "unknown hash mech"); }
|
||||
static inline int bad_mem (lua_State *L) { return luaL_error (L, "insufficient memory"); }
|
||||
|
||||
|
||||
/* rawdigest = crypto.hash("MD5", str)
|
||||
* strdigest = crypto.toHex(rawdigest)
|
||||
*/
|
||||
static int crypto_lhash (lua_State *L)
|
||||
{
|
||||
const digest_mech_info_t *mi = crypto_digest_mech (luaL_checkstring (L, 1));
|
||||
if (!mi)
|
||||
return bad_mech (L);
|
||||
size_t len = 0;
|
||||
const char *data = luaL_checklstring (L, 2, &len);
|
||||
|
||||
uint8_t digest[mi->digest_size];
|
||||
if (crypto_hash (mi, data, len, digest) != 0)
|
||||
return bad_mem (L);
|
||||
|
||||
lua_pushlstring (L, digest, sizeof (digest));
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
/* rawsignature = crypto.hmac("SHA1", str, key)
|
||||
* strsignature = crypto.toHex(rawsignature)
|
||||
*/
|
||||
static int crypto_lhmac (lua_State *L)
|
||||
{
|
||||
const digest_mech_info_t *mi = crypto_digest_mech (luaL_checkstring (L, 1));
|
||||
if (!mi)
|
||||
return bad_mech (L);
|
||||
size_t len = 0;
|
||||
const char *data = luaL_checklstring (L, 2, &len);
|
||||
size_t klen = 0;
|
||||
const char *key = luaL_checklstring (L, 3, &klen);
|
||||
|
||||
uint8_t digest[mi->digest_size];
|
||||
if (crypto_hmac (mi, data, len, key, klen, digest) != 0)
|
||||
return bad_mem (L);
|
||||
|
||||
lua_pushlstring (L, digest, sizeof (digest));
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
// Module function map
|
||||
#define MIN_OPT_LEVEL 2
|
||||
#include "lrodefs.h"
|
||||
const LUA_REG_TYPE crypto_map[] =
|
||||
{
|
||||
{ LSTRKEY( "sha1" ), LFUNCVAL( crypto_sha1 ) },
|
||||
{ LSTRKEY( "toBase64" ), LFUNCVAL( crypto_base64_encode ) },
|
||||
{ LSTRKEY( "toHex" ), LFUNCVAL( crypto_hex_encode ) },
|
||||
{ LSTRKEY( "mask" ), LFUNCVAL( crypto_mask ) },
|
||||
{ LSTRKEY( "hash" ), LFUNCVAL( crypto_lhash ) },
|
||||
{ LSTRKEY( "hmac" ), LFUNCVAL( crypto_lhmac ) },
|
||||
|
||||
#if LUA_OPTIMIZE_MEMORY > 0
|
||||
|
||||
#endif
|
||||
{ LNILKEY, LNILVAL }
|
||||
};
|
||||
|
||||
LUALIB_API int luaopen_crypto( lua_State *L )
|
||||
{
|
||||
#if LUA_OPTIMIZE_MEMORY > 0
|
||||
return 0;
|
||||
#else // #if LUA_OPTIMIZE_MEMORY > 0
|
||||
luaL_register( L, AUXLIB_CRYPTO, crypto_map );
|
||||
// Add constants
|
||||
|
||||
return 1;
|
||||
#endif // #if LUA_OPTIMIZE_MEMORY > 0
|
||||
}
|
|
@ -149,6 +149,14 @@
|
|||
#define ROM_MODULES_CJSON
|
||||
#endif
|
||||
|
||||
#if defined(LUA_USE_MODULES_CRYPTO)
|
||||
#define MODULES_CRYPTO "crypto"
|
||||
#define ROM_MODULES_CRYPTO \
|
||||
_ROM(MODULES_CRYPTO, luaopen_crypto, crypto_map)
|
||||
#else
|
||||
#define ROM_MODULES_CRYPTO
|
||||
#endif
|
||||
|
||||
#define LUA_MODULES_ROM \
|
||||
ROM_MODULES_GPIO \
|
||||
ROM_MODULES_PWM \
|
||||
|
@ -167,7 +175,8 @@
|
|||
ROM_MODULES_OW \
|
||||
ROM_MODULES_BIT \
|
||||
ROM_MODULES_WS2812 \
|
||||
ROM_MODULES_CJSON
|
||||
ROM_MODULES_CJSON \
|
||||
ROM_MODULES_CRYPTO
|
||||
|
||||
#endif
|
||||
|
||||
|
|
|
@ -28,11 +28,17 @@ static void ICACHE_FLASH_ATTR send_ws_1(uint8_t gpio) {
|
|||
i = 6; while (i--) GPIO_REG_WRITE(GPIO_OUT_W1TC_ADDRESS, 1 << gpio);
|
||||
}
|
||||
|
||||
// Lua: ws2812.write(pin, "string")
|
||||
// Lua: ws2812.writergb(pin, "string")
|
||||
// Byte triples in the string are interpreted as R G B values and sent to the hardware as G R B.
|
||||
// ws2812.write(4, string.char(255, 0, 0)) uses GPIO2 and sets the first LED red.
|
||||
// ws2812.write(3, string.char(0, 0, 255):rep(10)) uses GPIO0 and sets ten LEDs blue.
|
||||
// ws2812.write(4, string.char(0, 255, 0, 255, 255, 255)) first LED green, second LED white.
|
||||
// WARNING: this function scrambles the input buffer :
|
||||
// a = string.char(255,0,128)
|
||||
// ws212.writergb(3,a)
|
||||
// =a.byte()
|
||||
// (0,255,128)
|
||||
|
||||
// ws2812.writergb(4, string.char(255, 0, 0)) uses GPIO2 and sets the first LED red.
|
||||
// ws2812.writergb(3, string.char(0, 0, 255):rep(10)) uses GPIO0 and sets ten LEDs blue.
|
||||
// ws2812.writergb(4, string.char(0, 255, 0, 255, 255, 255)) first LED green, second LED white.
|
||||
static int ICACHE_FLASH_ATTR ws2812_writergb(lua_State* L)
|
||||
{
|
||||
const uint8_t pin = luaL_checkinteger(L, 1);
|
||||
|
@ -78,11 +84,43 @@ static int ICACHE_FLASH_ATTR ws2812_writergb(lua_State* L)
|
|||
return 0;
|
||||
}
|
||||
|
||||
// Lua: ws2812.write(pin, "string")
|
||||
// Byte triples in the string are interpreted as G R B values.
|
||||
// This function does not corrupt your buffer.
|
||||
//
|
||||
// ws2812.write(4, string.char(0, 255, 0)) uses GPIO2 and sets the first LED red.
|
||||
// ws2812.write(3, string.char(0, 0, 255):rep(10)) uses GPIO0 and sets ten LEDs blue.
|
||||
// ws2812.write(4, string.char(255, 0, 0, 255, 255, 255)) first LED green, second LED white.
|
||||
static int ICACHE_FLASH_ATTR ws2812_writegrb(lua_State* L) {
|
||||
const uint8_t pin = luaL_checkinteger(L, 1);
|
||||
size_t length;
|
||||
const char *buffer = luaL_checklstring(L, 2, &length);
|
||||
|
||||
platform_gpio_mode(pin, PLATFORM_GPIO_OUTPUT, PLATFORM_GPIO_FLOAT);
|
||||
platform_gpio_write(pin, 0);
|
||||
os_delay_us(10);
|
||||
|
||||
os_intr_lock();
|
||||
const char * const end = buffer + length;
|
||||
while (buffer != end) {
|
||||
uint8_t mask = 0x80;
|
||||
while (mask) {
|
||||
(*buffer & mask) ? send_ws_1(pin_num[pin]) : send_ws_0(pin_num[pin]);
|
||||
mask >>= 1;
|
||||
}
|
||||
++buffer;
|
||||
}
|
||||
os_intr_unlock();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#define MIN_OPT_LEVEL 2
|
||||
#include "lrodefs.h"
|
||||
const LUA_REG_TYPE ws2812_map[] =
|
||||
{
|
||||
{ LSTRKEY( "writergb" ), LFUNCVAL( ws2812_writergb )},
|
||||
{ LSTRKEY( "write" ), LFUNCVAL( ws2812_writegrb )},
|
||||
{ LNILKEY, LNILVAL}
|
||||
};
|
||||
|
||||
|
|
|
@ -0,0 +1,43 @@
|
|||
--
|
||||
-- Light sensor on ADC(0), RGB LED connected to gpio12(6) Green, gpio13(7) Blue & gpio15(8) Red.
|
||||
-- This works out of the box on the typical ESP8266 evaluation boards with Battery Holder
|
||||
--
|
||||
-- It uses the input from the sensor to drive a "rainbow" effect on the RGB LED
|
||||
-- Includes a very "pseudoSin" function
|
||||
--
|
||||
|
||||
function led(r,Sg,b)
|
||||
pwm.setduty(8,r)
|
||||
pwm.setduty(6,g)
|
||||
pwm.setduty(7,b)
|
||||
end
|
||||
|
||||
-- this is perhaps the lightest weight sin function in existance
|
||||
-- Given an integer from 0..128, 0..512 appximating 256 + 256 * sin(idx*Pi/256)
|
||||
-- This is first order square approximation of sin, it's accurate around 0 and any multiple of 128 (Pi/2),
|
||||
-- 92% accurate at 64 (Pi/4).
|
||||
function pseudoSin (idx)
|
||||
idx = idx % 128
|
||||
lookUp = 32 - idx % 64
|
||||
val = 256 - (lookUp * lookUp) / 4
|
||||
if (idx > 64) then
|
||||
val = - val;
|
||||
end
|
||||
return 256+val
|
||||
end
|
||||
|
||||
pwm.setup(6,500,512)
|
||||
pwm.setup(7,500,512)
|
||||
pwm.setup(8,500,512)
|
||||
pwm.start(6)
|
||||
pwm.start(7)
|
||||
pwm.start(8)
|
||||
|
||||
tmr.alarm(1,20,1,function()
|
||||
idx = 3 * adc.read(0) / 2
|
||||
r = pseudoSin(idx)
|
||||
g = pseudoSin(idx + 43)
|
||||
b = pseudoSin(idx + 85)
|
||||
led(r,g,b)
|
||||
idx = (idx + 1) % 128
|
||||
end)
|
|
@ -0,0 +1,121 @@
|
|||
--
|
||||
-- Simple NodeMCU web server (done is a not so nodeie fashion :-)
|
||||
--
|
||||
-- Highly modified by Bruce Meacham, based on work by Scott Beasley 2015
|
||||
-- Open and free to change and use. Enjoy. [Beasley/Meacham 2015]
|
||||
--
|
||||
-- Meacham Update: I streamlined/improved the parsing to focus on simple HTTP GET request and their simple parameters
|
||||
-- Also added the code to drive a servo/light. Comment out as you see fit.
|
||||
--
|
||||
-- Usage:
|
||||
-- Change SSID and SSID_PASSPHRASE for your wifi network
|
||||
-- Download to NodeMCU
|
||||
-- node.compile("http_server.lua")
|
||||
-- dofile("http_server.lc")
|
||||
-- When the server is esablished it will output the IP address.
|
||||
-- http://{ip address}/?s0=1200&light=1
|
||||
-- s0 is the servo position (actually the PWM hertz), 500 - 2000 are all good values
|
||||
-- light chanel high(1)/low(0), some evaluation boards have LEDs pre-wired in a "pulled high" confguration, so '0' ground the emitter and turns it on backwards.
|
||||
--
|
||||
-- Add to init.lua if you want it to autoboot.
|
||||
--
|
||||
|
||||
-- Your Wifi connection data
|
||||
local SSID = "YOUR WIFI SSID"
|
||||
local SSID_PASSWORD = "YOUR SSID PASSPHRASE"
|
||||
|
||||
-- General setup
|
||||
local pinLight = 2 -- this is GPIO4
|
||||
gpio.mode(pinLight,gpio.OUTPUT)
|
||||
gpio.write(pinLight,gpio.HIGH)
|
||||
|
||||
servo = {}
|
||||
servo.pin = 4 --this is GPIO2
|
||||
servo.value = 1500
|
||||
servo.id = "servo"
|
||||
gpio.mode(servo.pin, gpio.OUTPUT)
|
||||
gpio.write(servo.pin, gpio.LOW)
|
||||
|
||||
-- This alarm drives the servo
|
||||
tmr.alarm(0,10,1,function() -- 50Hz
|
||||
if servo.value then -- generate pulse
|
||||
gpio.write(servo.pin, gpio.HIGH)
|
||||
tmr.delay(servo.value)
|
||||
gpio.write(servo.pin, gpio.LOW)
|
||||
end
|
||||
end)
|
||||
|
||||
local function connect (conn, data)
|
||||
local query_data
|
||||
|
||||
conn:on ("receive",
|
||||
function (cn, req_data)
|
||||
params = get_http_req (req_data)
|
||||
cn:send("HTTP/1.1 200/OK\r\nServer: NodeLuau\r\nContent-Type: text/html\r\n\r\n")
|
||||
cn:send ("<h1>ESP8266 Servo & Light Server</h1>\r\n")
|
||||
if (params["light"] ~= nil) then
|
||||
if ("0" == params["light"]) then
|
||||
gpio.write(pinLight, gpio.LOW)
|
||||
else
|
||||
gpio.write(pinLight, gpio.HIGH)
|
||||
end
|
||||
end
|
||||
|
||||
if (params["s0"] ~= nil) then
|
||||
servo.value = tonumber(params["s0"]);
|
||||
end
|
||||
|
||||
-- Close the connection for the request
|
||||
cn:close ( )
|
||||
end)
|
||||
end
|
||||
|
||||
-- Build and return a table of the http request data
|
||||
function get_http_req (instr)
|
||||
local t = {}
|
||||
local str = string.sub(instr, 0, 200)
|
||||
local v = string.gsub(split(str, ' ')[2], '+', ' ')
|
||||
parts = split(v, '?')
|
||||
local params = {}
|
||||
if (table.maxn(parts) > 1) then
|
||||
for idx,part in ipairs(split(parts[2], '&')) do
|
||||
parmPart = split(part, '=')
|
||||
params[parmPart[1]] = parmPart[2]
|
||||
end
|
||||
end
|
||||
return params
|
||||
end
|
||||
|
||||
-- Source: http://lua-users.org/wiki/MakingLuaLikePhp
|
||||
-- Credit: http://richard.warburton.it/
|
||||
function split(str, splitOn)
|
||||
if (splitOn=='') then return false end
|
||||
local pos,arr = 0,{}
|
||||
for st,sp in function() return string.find(str,splitOn,pos,true) end do
|
||||
table.insert(arr,string.sub(str,pos,st-1))
|
||||
pos = sp + 1
|
||||
end
|
||||
table.insert(arr,string.sub(str,pos))
|
||||
return arr
|
||||
end
|
||||
|
||||
-- Configure the ESP as a station (client)
|
||||
wifi.setmode (wifi.STATION)
|
||||
wifi.sta.config (SSID, SSID_PASSWORD)
|
||||
wifi.sta.autoconnect (1)
|
||||
|
||||
-- Hang out until we get a wifi connection before the httpd server is started.
|
||||
tmr.alarm (1, 800, 1, function ( )
|
||||
if wifi.sta.getip ( ) == nil then
|
||||
print ("Waiting for Wifi connection")
|
||||
else
|
||||
tmr.stop (1)
|
||||
print ("Config done, IP is " .. wifi.sta.getip ( ))
|
||||
end
|
||||
end)
|
||||
|
||||
-- Create the httpd server
|
||||
svr = net.createServer (net.TCP, 30)
|
||||
|
||||
-- Server listening on port 80, call connect function if a request is received
|
||||
svr:listen (80, connect)
|
Loading…
Reference in New Issue