Merge eebc8a2dd3
into 24bf0ae2a4
This commit is contained in:
commit
87e6094a43
|
@ -25,6 +25,7 @@ set(module_srcs
|
|||
"i2c_hw_master.c"
|
||||
"i2c_hw_slave.c"
|
||||
"ledc.c"
|
||||
"matrix.c"
|
||||
"mqtt.c"
|
||||
"net.c"
|
||||
"node.c"
|
||||
|
|
|
@ -177,6 +177,13 @@ menu "NodeMCU modules"
|
|||
help
|
||||
Includes the LEDC module.
|
||||
|
||||
config NODEMCU_CMODULE_MATRIX
|
||||
bool "MATRIX module"
|
||||
default "n"
|
||||
select NODEMCU_CMODULE_GPIO
|
||||
help
|
||||
The matrix module provides support for cheap matrixed keypads like a 3x4 telephone keypad.
|
||||
|
||||
config NODEMCU_CMODULE_MQTT
|
||||
bool "MQTT module"
|
||||
default "n"
|
||||
|
|
|
@ -0,0 +1,528 @@
|
|||
/*
|
||||
* Module for interfacing with cheap matrix keyboards like telephone keypads
|
||||
*
|
||||
* The idea is to have pullups on all the rows, and drive the columns low.
|
||||
* WHen a key is pressed, one of the rows will go low and trigger an interrupt. Disable
|
||||
* all the row interrupts.
|
||||
* Then we disable all the columns and then drive each column low in turn. Hopefully
|
||||
* one of the rows will go low. This is a keypress. We only report the first keypress found.
|
||||
* we start a timer to handle debounce.
|
||||
* On timer expiry, see if any key is pressed, if so, just wait again
|
||||
* If no key is pressed, run timer again. On timer expiry, re-enable interrupts.
|
||||
*
|
||||
* Philip Gladstone, N1DQ
|
||||
*/
|
||||
|
||||
#include "module.h"
|
||||
#include "lauxlib.h"
|
||||
#include "platform.h"
|
||||
#include "task/task.h"
|
||||
#include "esp_timer.h"
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include "driver/gpio.h"
|
||||
|
||||
#define MATRIX_PRESS_INDEX 0
|
||||
#define MATRIX_RELEASE_INDEX 1
|
||||
|
||||
#define MASK(x) (1 << MATRIX_##x##_INDEX)
|
||||
|
||||
#define MATRIX_ALL 0x3
|
||||
|
||||
#define CALLBACK_COUNT 2
|
||||
#define QUEUE_SIZE 8
|
||||
|
||||
typedef struct {
|
||||
int32_t character; // 1 + character for press, -1 - character for release
|
||||
uint32_t time_us;
|
||||
} matrix_event_t;
|
||||
|
||||
typedef enum {
|
||||
WAITING_FOR_PRESS,
|
||||
WAITING_FOR_RELEASE,
|
||||
WAITING_FOR_DEBOUNCE
|
||||
} state_t;
|
||||
|
||||
typedef struct {
|
||||
uint8_t column_count;
|
||||
uint8_t row_count;
|
||||
uint8_t *columns;
|
||||
uint8_t *rows;
|
||||
state_t state;
|
||||
bool open;
|
||||
int character_ref;
|
||||
int self_ref; // to prevent GC at bad moments.
|
||||
int callback[CALLBACK_COUNT];
|
||||
esp_timer_handle_t timer_handle;
|
||||
int8_t task_queued;
|
||||
uint32_t read_offset; // Accessed by task
|
||||
uint32_t write_offset; // Accessed by ISR
|
||||
uint8_t last_character;
|
||||
matrix_event_t queue[QUEUE_SIZE];
|
||||
} DATA;
|
||||
|
||||
static task_handle_t tasknumber;
|
||||
static void lmatrix_timer_done(void *param);
|
||||
//
|
||||
// Queue is empty if read == write.
|
||||
// However, we always want to keep the previous value
|
||||
// so writing is only allowed if write - read < QUEUE_SIZE - 1
|
||||
|
||||
#define GET_LAST_STATUS(d) (d->queue[(d->write_offset - 1) & (QUEUE_SIZE - 1)])
|
||||
#define GET_PREV_STATUS(d) (d->queue[(d->write_offset - 2) & (QUEUE_SIZE - 1)])
|
||||
#define HAS_QUEUED_DATA(d) (d->read_offset < d->write_offset)
|
||||
#define HAS_QUEUE_SPACE(d) (d->read_offset + QUEUE_SIZE - 1 > d->write_offset)
|
||||
|
||||
#define REPLACE_IT(d, x) \
|
||||
(d->queue[(d->write_offset - 1) & (QUEUE_SIZE - 1)] = \
|
||||
(matrix_event_t){(x), esp_timer_get_time()})
|
||||
#define QUEUE_IT(d, x) \
|
||||
(d->queue[(d->write_offset++) & (QUEUE_SIZE - 1)] = \
|
||||
(matrix_event_t){(x), esp_timer_get_time()})
|
||||
|
||||
#define GET_READ_STATUS(d) (d->queue[d->read_offset & (QUEUE_SIZE - 1)])
|
||||
#define ADVANCE_IF_POSSIBLE(d) \
|
||||
if (d->read_offset < d->write_offset) { \
|
||||
d->read_offset++; \
|
||||
}
|
||||
|
||||
static esp_err_t set_gpio_mode_input(int pin, gpio_int_type_t intr) {
|
||||
gpio_config_t config = {.pin_bit_mask = 1LL << pin,
|
||||
.mode = GPIO_MODE_INPUT,
|
||||
.pull_up_en = GPIO_PULLUP_ENABLE,
|
||||
.pull_down_en = GPIO_PULLDOWN_DISABLE,
|
||||
.intr_type = intr};
|
||||
|
||||
return gpio_config(&config);
|
||||
}
|
||||
|
||||
static esp_err_t set_gpio_mode_output(int pin) {
|
||||
gpio_config_t config = {.pin_bit_mask = 1LL << pin,
|
||||
.mode = GPIO_MODE_OUTPUT_OD,
|
||||
.pull_up_en = GPIO_PULLUP_DISABLE,
|
||||
.pull_down_en = GPIO_PULLDOWN_DISABLE
|
||||
};
|
||||
|
||||
return gpio_config(&config);
|
||||
}
|
||||
|
||||
static void set_columns(DATA *d, int level) {
|
||||
for (int i = 0; i < d->column_count; i++) {
|
||||
gpio_set_level(d->columns[i], level);
|
||||
}
|
||||
}
|
||||
|
||||
static void initialize_pins(lua_State *L, DATA *d) {
|
||||
for (int i = 0; i < d->column_count; i++) {
|
||||
if (set_gpio_mode_output(d->columns[i]) != ESP_OK) {
|
||||
luaL_error(L, "Unable to configure pins");
|
||||
}
|
||||
}
|
||||
|
||||
set_columns(d, 0);
|
||||
|
||||
for (int i = 0; i < d->row_count; i++) {
|
||||
if (set_gpio_mode_input(d->rows[i], GPIO_INTR_NEGEDGE) != ESP_OK) {
|
||||
luaL_error(L, "Unable to configure pins");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void disable_row_interrupts(DATA *d) {
|
||||
for (int i = 0; i < d->row_count; i++) {
|
||||
gpio_set_intr_type(d->rows[i], GPIO_INTR_DISABLE);
|
||||
}
|
||||
}
|
||||
|
||||
// Just takes the channel number. Cleans up the resources used.
|
||||
static int matrix_close(DATA *d) {
|
||||
if (!d) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
disable_row_interrupts(d);
|
||||
|
||||
for (int i = 0; i < d->row_count; i++) {
|
||||
gpio_isr_handler_remove(d->rows[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < d->column_count; i++) {
|
||||
set_gpio_mode_input(d->columns[i], GPIO_INTR_DISABLE);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Character returned is 0 .. max if pressed. -1 if not.
|
||||
static int matrix_get_character(DATA *d)
|
||||
{
|
||||
set_columns(d, 1);
|
||||
disable_row_interrupts(d);
|
||||
|
||||
int character = -1;
|
||||
|
||||
// We are either waiting for a negative edge (keypress) or a positive edge
|
||||
// (keyrelease)
|
||||
|
||||
for (int i = 0; i < d->column_count && character < 0; i++) {
|
||||
gpio_set_level(d->columns[i], 0);
|
||||
|
||||
for (int j = 0; j < d->row_count && character < 0; j++) {
|
||||
if (gpio_get_level(d->rows[j]) == 0) {
|
||||
// We found a keypress
|
||||
character = j * d->column_count + i;
|
||||
}
|
||||
}
|
||||
|
||||
gpio_set_level(d->columns[i], 1);
|
||||
}
|
||||
|
||||
return character;
|
||||
}
|
||||
|
||||
static void matrix_queue_character(DATA *d, int character)
|
||||
{
|
||||
// If character is >= 0 then we have found the character -- so send it.
|
||||
|
||||
if ((d->state == WAITING_FOR_PRESS && character >= 0) || (d->state == WAITING_FOR_RELEASE && character < 0)) {
|
||||
if (character >= 0) {
|
||||
character++;
|
||||
d->last_character = character;
|
||||
} else {
|
||||
character = -d->last_character;
|
||||
}
|
||||
|
||||
if (HAS_QUEUE_SPACE(d)) {
|
||||
QUEUE_IT(d, character);
|
||||
if (!d->task_queued) {
|
||||
if (task_post_medium(tasknumber, (task_param_t)d)) {
|
||||
d->task_queued = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void matrix_interrupt(void *arg) {
|
||||
// This function runs with high priority
|
||||
DATA *d = (DATA *)arg;
|
||||
|
||||
int character = matrix_get_character(d);
|
||||
|
||||
matrix_queue_character(d, character);
|
||||
|
||||
d->state = character >= 0 ? WAITING_FOR_RELEASE : WAITING_FOR_PRESS;
|
||||
esp_timer_start_once(d->timer_handle, 5000);
|
||||
}
|
||||
|
||||
static bool matrix_has_queued_event(DATA *d) {
|
||||
if (!d) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return HAS_QUEUED_DATA(d);
|
||||
}
|
||||
|
||||
// Get the oldest event in the queue and remove it (if possible)
|
||||
static bool matrix_getevent(DATA *d, matrix_event_t *resultp) {
|
||||
matrix_event_t result = {0};
|
||||
|
||||
if (!d) {
|
||||
return false;
|
||||
}
|
||||
|
||||
bool status = false;
|
||||
|
||||
if (HAS_QUEUED_DATA(d)) {
|
||||
result = GET_READ_STATUS(d);
|
||||
d->read_offset++;
|
||||
status = true;
|
||||
} else {
|
||||
result = GET_LAST_STATUS(d);
|
||||
}
|
||||
|
||||
*resultp = result;
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
static void callback_free_one(lua_State *L, int *cb_ptr)
|
||||
{
|
||||
if (*cb_ptr != LUA_NOREF) {
|
||||
luaL_unref(L, LUA_REGISTRYINDEX, *cb_ptr);
|
||||
*cb_ptr = LUA_NOREF;
|
||||
}
|
||||
}
|
||||
|
||||
static void callback_free(lua_State* L, DATA *d, int mask)
|
||||
{
|
||||
if (d) {
|
||||
int i;
|
||||
for (i = 0; i < CALLBACK_COUNT; i++) {
|
||||
if (mask & (1 << i)) {
|
||||
callback_free_one(L, &d->callback[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int callback_setOne(lua_State* L, int *cb_ptr, int arg_number)
|
||||
{
|
||||
if (lua_isfunction(L, arg_number)) {
|
||||
lua_pushvalue(L, arg_number); // copy argument (func) to the top of stack
|
||||
callback_free_one(L, cb_ptr);
|
||||
*cb_ptr = luaL_ref(L, LUA_REGISTRYINDEX);
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int callback_set(lua_State* L, DATA *d, int mask, int arg_number)
|
||||
{
|
||||
int result = 0;
|
||||
|
||||
int i;
|
||||
for (i = 0; i < CALLBACK_COUNT; i++) {
|
||||
if (mask & (1 << i)) {
|
||||
result |= callback_setOne(L, &d->callback[i], arg_number);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void callback_callOne(lua_State* L, int cb, int mask, int arg, uint32_t time)
|
||||
{
|
||||
if (cb != LUA_NOREF) {
|
||||
lua_rawgeti(L, LUA_REGISTRYINDEX, cb);
|
||||
|
||||
lua_pushinteger(L, mask);
|
||||
lua_pushvalue(L, arg - 2);
|
||||
lua_pushinteger(L, time);
|
||||
|
||||
luaL_pcallx(L, 3, 0);
|
||||
}
|
||||
}
|
||||
|
||||
static void callback_call(lua_State* L, DATA *d, int cbnum, int key, uint32_t time)
|
||||
{
|
||||
if (d) {
|
||||
lua_rawgeti(L, LUA_REGISTRYINDEX, d->character_ref);
|
||||
lua_rawgeti(L, -1, key);
|
||||
if (lua_type(L, -1) != LUA_TNIL) {
|
||||
callback_callOne(L, d->callback[cbnum], 1 << cbnum, -1, time);
|
||||
}
|
||||
lua_pop(L, 2);
|
||||
}
|
||||
}
|
||||
|
||||
static void getpins(lua_State *L, int argno, int count, uint8_t *dest)
|
||||
{
|
||||
for (int i = 1; i <= count; i++) {
|
||||
lua_rawgeti(L, argno, i);
|
||||
*dest++ = lua_tonumber(L, -1);
|
||||
lua_pop(L, 1);
|
||||
}
|
||||
}
|
||||
|
||||
// Lua: setup({cols}, {rows}, {characters})
|
||||
static int lmatrix_setup( lua_State* L )
|
||||
{
|
||||
luaL_checktype(L, 1, LUA_TTABLE);
|
||||
luaL_checktype(L, 2, LUA_TTABLE);
|
||||
luaL_checktype(L, 3, LUA_TTABLE);
|
||||
|
||||
// Get the sizes of the first two tables
|
||||
size_t columns = lua_rawlen(L, 1);
|
||||
size_t rows = lua_rawlen(L, 2);
|
||||
|
||||
if (columns > 255 || rows > 255 || !rows || !columns) {
|
||||
return luaL_error(L, "Number of rows or columns out of range");
|
||||
}
|
||||
|
||||
DATA *d = (DATA *)lua_newuserdata(L, sizeof(DATA) + rows + columns);
|
||||
if (!d) return luaL_error(L, "not enough memory");
|
||||
memset(d, 0, sizeof(*d) + rows + columns);
|
||||
luaL_getmetatable(L, "matrix.keyboard");
|
||||
lua_setmetatable(L, -2);
|
||||
|
||||
// create a self_ref to prevent GC
|
||||
|
||||
lua_pushvalue(L, -1);
|
||||
d->self_ref = luaL_ref(L, LUA_REGISTRYINDEX);
|
||||
|
||||
d->columns = (uint8_t *) (d + 1);
|
||||
d->rows = d->columns + columns;
|
||||
d->column_count = columns;
|
||||
d->row_count = rows;
|
||||
|
||||
esp_timer_create_args_t timer_args = {
|
||||
.callback = lmatrix_timer_done,
|
||||
.dispatch_method = ESP_TIMER_TASK,
|
||||
.name = "matrix_timer",
|
||||
.arg = d
|
||||
};
|
||||
|
||||
d->open = true;
|
||||
|
||||
esp_timer_create(&timer_args, &d->timer_handle);
|
||||
|
||||
for (int i = 0; i < CALLBACK_COUNT; i++) {
|
||||
d->callback[i] = LUA_NOREF;
|
||||
}
|
||||
getpins(L, 1, columns, d->columns);
|
||||
getpins(L, 2, rows, d->rows);
|
||||
lua_pushvalue(L, 3);
|
||||
d->character_ref = luaL_ref(L, LUA_REGISTRYINDEX);
|
||||
|
||||
for (int i = 0; i < d->row_count; i++) {
|
||||
gpio_isr_handler_add(d->rows[i], matrix_interrupt, d);
|
||||
}
|
||||
initialize_pins(L, d);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Lua: close( )
|
||||
static int lmatrix_close( lua_State* L )
|
||||
{
|
||||
DATA *d = (DATA *)luaL_checkudata(L, 1, "matrix.keyboard");
|
||||
|
||||
if (d->open) {
|
||||
callback_free(L, d, MATRIX_ALL);
|
||||
|
||||
if (matrix_close( d )) {
|
||||
return luaL_error( L, "Unable to close switch." );
|
||||
}
|
||||
|
||||
esp_timer_stop(d->timer_handle);
|
||||
esp_timer_delete(d->timer_handle);
|
||||
luaL_unref(L, LUA_REGISTRYINDEX, d->character_ref);
|
||||
|
||||
if (!HAS_QUEUED_DATA(d)) {
|
||||
luaL_unref(L, LUA_REGISTRYINDEX, d->self_ref);
|
||||
}
|
||||
|
||||
d->open = false;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Lua: on( mask[, cb] )
|
||||
static int lmatrix_on( lua_State* L )
|
||||
{
|
||||
DATA *d = (DATA *)luaL_checkudata(L, 1, "matrix.keyboard");
|
||||
|
||||
int mask = luaL_checkinteger(L, 2);
|
||||
|
||||
if (lua_gettop(L) >= 3) {
|
||||
if (callback_set(L, d, mask, 3)) {
|
||||
return luaL_error( L, "Unable to set callback." );
|
||||
}
|
||||
} else {
|
||||
callback_free(L, d, mask);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Returns TRUE if there maybe/is more stuff to do
|
||||
static bool lmatrix_dequeue_single(lua_State* L, DATA *d)
|
||||
{
|
||||
bool something_pending = false;
|
||||
|
||||
if (d) {
|
||||
matrix_event_t result;
|
||||
|
||||
if (matrix_getevent(d, &result)) {
|
||||
int character = result.character;
|
||||
|
||||
callback_call(L, d, character > 0 ? MATRIX_PRESS_INDEX : MATRIX_RELEASE_INDEX, character < 0 ? -character : character, result.time_us);
|
||||
|
||||
d->task_queued = 0;
|
||||
something_pending = matrix_has_queued_event(d);
|
||||
}
|
||||
}
|
||||
|
||||
return something_pending;
|
||||
}
|
||||
|
||||
static void lmatrix_timer_done(void *param)
|
||||
{
|
||||
DATA *d = (DATA *) param;
|
||||
|
||||
// We need to see if the key is still pressed, and if so, enable rising edge interrupts
|
||||
|
||||
int character = matrix_get_character(d);
|
||||
|
||||
matrix_queue_character(d, character);
|
||||
|
||||
if (d->state == WAITING_FOR_RELEASE && character < 0) {
|
||||
d->state = WAITING_FOR_DEBOUNCE;
|
||||
} else if (character >= 0) {
|
||||
d->state = WAITING_FOR_RELEASE;
|
||||
} else {
|
||||
d->state = WAITING_FOR_PRESS;
|
||||
}
|
||||
|
||||
if (d->state == WAITING_FOR_PRESS) {
|
||||
for (int i = 0; i < d->row_count; i++) {
|
||||
gpio_set_intr_type(d->rows[i], GPIO_INTR_NEGEDGE);
|
||||
}
|
||||
set_columns(d, 0);
|
||||
} else {
|
||||
esp_timer_start_once(d->timer_handle, 40000);
|
||||
}
|
||||
}
|
||||
|
||||
static void lmatrix_task(task_param_t param, task_prio_t prio)
|
||||
{
|
||||
(void) prio;
|
||||
|
||||
bool need_to_post = false;
|
||||
lua_State *L = lua_getstate();
|
||||
|
||||
DATA *d = (DATA *) param;
|
||||
if (d) {
|
||||
if (lmatrix_dequeue_single(L, d)) {
|
||||
need_to_post = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (need_to_post) {
|
||||
// If there is pending stuff, queue another task
|
||||
task_post_medium(tasknumber, param);
|
||||
} else if (d) {
|
||||
if (!d->open) {
|
||||
luaL_unref(L, LUA_REGISTRYINDEX, d->self_ref);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Module function map
|
||||
LROT_BEGIN(matrix, NULL, 0)
|
||||
LROT_FUNCENTRY( setup, lmatrix_setup )
|
||||
LROT_NUMENTRY( PRESS, MASK(PRESS) )
|
||||
LROT_NUMENTRY( RELEASE, MASK(RELEASE) )
|
||||
LROT_NUMENTRY( ALL, MATRIX_ALL )
|
||||
LROT_END(matrix, NULL, 0)
|
||||
|
||||
// Module function map
|
||||
LROT_BEGIN(matrix_keyboard, NULL, LROT_MASK_GC_INDEX)
|
||||
LROT_FUNCENTRY(__gc, lmatrix_close)
|
||||
LROT_TABENTRY(__index, matrix_keyboard)
|
||||
LROT_FUNCENTRY(on, lmatrix_on)
|
||||
LROT_FUNCENTRY(close, lmatrix_close)
|
||||
LROT_END(matrix_keyboard, NULL, LROT_MASK_GC_INDEX)
|
||||
|
||||
static int matrix_open(lua_State *L) {
|
||||
luaL_rometatable(L, "matrix.keyboard",
|
||||
LROT_TABLEREF(matrix_keyboard)); // create metatable
|
||||
tasknumber = task_get_id(lmatrix_task);
|
||||
return 0;
|
||||
}
|
||||
|
||||
NODEMCU_MODULE(MATRIX, "matrix", matrix, matrix_open);
|
|
@ -0,0 +1,77 @@
|
|||
# matrix Module
|
||||
| Since | Origin / Contributor | Maintainer | Source |
|
||||
| :----- | :-------------------- | :---------- | :------ |
|
||||
| 2024-02-01 | [Philip Gladstone](https://github.com/pjsg) | [Philip Gladstone](https://github.com/pjsg) | [matrix.c](../../components/modules/matrix.c)|
|
||||
|
||||
|
||||
This module processes key presses on matrixed keyboards such as cheap numeric keypads with the # and * keys. These are organized as a 3x4 matrix with 7 connections
|
||||
in all.
|
||||
|
||||
## Sources for parts
|
||||
|
||||
- Adafruit: [Matrix keypad](https://www.adafruit.com/search?q=matrix+keypad)
|
||||
- Aliexpress: This [search](https://www.aliexpress.us/w/wholesale-matrix-keypad.html) reveals all sorts of shapes and sizes.
|
||||
|
||||
## Constants
|
||||
- `matrix.PRESS = 1` The eventtype for a keyboard key press
|
||||
- `matrix.RELEASE = 2` The eventtype for keyboard key release.
|
||||
- `matrix.ALL = 3` Covers all event types
|
||||
|
||||
## matrix.setup()
|
||||
Initialize the nodemcu to talk to a matrixed keyboard.
|
||||
|
||||
#### Syntax
|
||||
`keyboard = matrix.setup({column pins}, {row pins}, {key characters})`
|
||||
|
||||
#### Parameters
|
||||
- `column pins` These are the GPIO numbers of the pins connected to the columns of the keyboard
|
||||
- `row pins` These are the GPIO numbers of the pins connected to the rows of the keyboard
|
||||
- `key characters` These are the characters (or strings) to be returned when a key is pressed. The first character corresponds to the first row and first column. The next character is the second column and first row, etc.
|
||||
|
||||
#### Returns
|
||||
The keyboard object.
|
||||
|
||||
|
||||
#### Example
|
||||
|
||||
keyboard = matrix.setup({17, 4, 18}, {16, 21, 19, 5}, { "1", "2", "3", "4", "5", "6", "7", "8", "9", "*", "0", "#"})
|
||||
|
||||
#### Notes
|
||||
If an entry in the key characters table is nil, then that key press will not be reported.
|
||||
|
||||
## keyboard:on()
|
||||
Sets a callback on specific events.
|
||||
|
||||
#### Syntax
|
||||
`keyboard:on(eventtype[, callback])`
|
||||
|
||||
#### Parameters
|
||||
- `eventtype` This defines the type of event being registered. This can be one or more of `matrix.PRESS` and `matrix.RELEASE`. `matrix.ALL` covers all the event types.
|
||||
- `callback` This is a function that will be invoked when the specified event happens.
|
||||
|
||||
If the callback is None or omitted, then the registration is cancelled.
|
||||
|
||||
The callback will be invoked with three arguments when the event happens. The first argument is the eventtype,
|
||||
the second is the character, and the third is the time when the event happened.
|
||||
|
||||
The time is the number of microseconds represented in a 32-bit integer. Note that this wraps every hour or so.
|
||||
|
||||
#### Example
|
||||
|
||||
keyboard:on(matrix.ALL, function (type, char, when)
|
||||
print("Character=" .. char .. " event type=" .. type .. " time=" .. when)
|
||||
end)
|
||||
|
||||
#### Errors
|
||||
If an invalid `eventtype` is supplied, then an error will be thrown.
|
||||
|
||||
## keyboard:close()
|
||||
Releases the resources associated with the matrix keyboard.
|
||||
|
||||
#### Syntax
|
||||
`keyboard:close()`
|
||||
|
||||
#### Example
|
||||
|
||||
keyboard:close()
|
||||
|
Loading…
Reference in New Issue