Tweak theme and update a few modules for consistency

This commit is contained in:
Marcel Stör 2016-01-08 20:49:56 +01:00
parent f2babb9c81
commit f1461c2e14
4 changed files with 320 additions and 370 deletions

View File

@ -11,4 +11,26 @@ blockquote {
/*shifts the nested subnav label to the left to align it with the regular nav item labels*/
ul.subnav ul.subnav span {
padding-left: 1.3em;
}
p {
line-height: 20px;
margin-bottom: 16px;
}
h1, h2 {
border-bottom: 1px solid #eee;
line-height: 1.2;
margin-top: 1.2em;
margin-bottom: 16px;
}
h3, h4, h5, h6 {
margin: 1em 0 0.7em 0;
}
code {
font-size: 85%;
margin-right: 3px;
}
.wy-plain-list-disc, .rst-content .section ul, .rst-content .toctree-wrapper ul, article ul {
line-height: 20px;
margin-bottom: 16px;
}

View File

@ -1,44 +1,34 @@
# ADC Module
The ADC module provides access to the in-built ADC.
On the ESP8266 there is only a single-channel, which is multiplexed with the
battery voltage. Depending on the setting in the "esp init data" (byte 107)
one can either use the ADC to read an external voltage, or to read the
system voltage, but not both.
On the ESP8266 there is only a single-channel, which is multiplexed with the battery voltage. Depending on the setting in the "esp init data" (byte 107) one can either use the ADC to read an external voltage, or to read the system voltage, but not both.
The default setting in the NodeMCU firmware can be controlled via user_config.h at compile time, by defining one of ESP_INIT_DATA_ENABLE_READVDD33, ESP_INIT_DATA_ENABLE_READADC or ESP_INIT_DATA_FIXED_VDD33_VALUE. To change the setting
at a later date, use Espressif's flash download tool to create a new init data block.
The default setting in the NodeMCU firmware can be controlled via user_config.h at compile time, by defining one of ESP_INIT_DATA_ENABLE_READVDD33, ESP_INIT_DATA_ENABLE_READADC or ESP_INIT_DATA_FIXED_VDD33_VALUE. To change the setting at a later date, use Espressif's flash download tool to create a new init data block.
## adc.read()
Samples the ADC.
####Syntax
`adc.read(channel)`
####Parameters
- `channel`: Always zero on the ESP8266
`channel` always zero on the ESP8266
####Returns
number:the sampled value
the sampled value (number)
####Example
```lua
val = adc.read(0)
```
___
## adc.readvdd33()
Reads the system voltage.
####Syntax
`adc.readvdd33()`
####Parameters
`nil`
none
####Returns
The system voltage, in millivolts.
system voltage in millivolts (number)
If the ESP8266 has been configured to use the ADC for sampling the external pin, this function will always return 65535. This is a hardware and/or SDK limitation.
@ -46,4 +36,3 @@ If the ESP8266 has been configured to use the ADC for sampling the external pin,
```lua
mv = adc.readvdd33()
```
___

View File

@ -2,131 +2,89 @@
Bit manipulation support, on 32bit integers.
## bit.bnot()
Bitwise negation, equivalent to ~value in C.
####Syntax
`bit.bnot(value)`
####Parameters
value: the number to negate.
####Returns
number: the bitwise negated value of the number.
___
## bit.band()
Bitwise AND, equivalent to val1 & val2 & ... & valn in C.
####Syntax
`bit.band(val1, val2 [, ... valn])`
####Parameters
- `val1`: first AND argument.
- `val2`: second AND argument.
- `...valn`: ...nth AND argument.
####Returns
number: the bitwise AND of all the arguments.
___
## bit.bor()
Bitwise OR, equivalent to val1 | val2 | ... | valn in C.
####Syntax
`bit.bor(val1, val2 [, ... valn])`
####Parameters
- `val1`: first OR argument.
- `val2`: second OR argument.
- `...valn`: ...nth OR argument.
####Returns
number: the bitwise OR of all the arguments.
___
## bit.bxor()
Bitwise XOR, equivalent to val1 ^ val2 ^ ... ^ valn in C.
####Syntax
`bit.bxor(val1, val2 [, ... valn])`
####Parameters
- `val1`: first XOR argument.
- `val2`: second XOR argument.
- `...valn`: ...nth XOR argument.
####Returns
number: the bitwise XOR of all the arguments.
___
## bit.lshift()
Left-shift a number, equivalent to value << shift in C.
####Syntax
`bit.lshift(value, shift)`
####Parameters
- `value`: the value to shift.
- `shift`: positions to shift.
####Returns
number: the number shifted left
___
## bit.rshift()
Logical right shift a number, equivalent to ( unsigned )value >> shift in C.
####Syntax
`bit.rshift(value, shift)`
####Parameters
- `value`: the value to shift.
- `shift`: positions to shift.
####Returns
number: the number shifted right (logically).
___
## bit.arshift()
Arithmetic right shift a number equivalent to value >> shift in C.
Arithmetic right shift a number equivalent to `value >> shift` in C.
####Syntax
`bit.arshift(value, shift)`
####Parameters
- `value`: the value to shift.
- `shift`: positions to shift.
- `value` the value to shift
- `shift` positions to shift
####Returns
number: the number shifted right (arithmetically).
___
the number shifted right (arithmetically)
## bit.band()
Bitwise AND, equivalent to `val1 & val2 & ... & valn` in C.
####Syntax
`bit.band(val1, val2 [, ... valn])`
####Parameters
- `val1` first AND argument
- `val2` second AND argument
- `...valn` ...nth AND argument
####Returns
the bitwise AND of all the arguments (number)
## bit.bit()
Generate a number with a 1 bit (used for mask generation). Equivalent to 1 << position in C.
Generate a number with a 1 bit (used for mask generation). Equivalent to `1 << position` in C.
####Syntax
`bit.bit(position)`
####Parameters
- `position`: position of the bit that will be set to 1.
`position` position of the bit that will be set to 1
####Returns
number: a number with only one 1 bit at position (the rest are set to 0).
___
## bit.set()
a number with only one 1 bit at position (the rest are set to 0)
Set bits in a number.
## bit.bnot()
Bitwise negation, equivalent to `~value in C.
####Syntax
`bit.set(value, pos1 [, ... posn ])`
`bit.bnot(value)`
####Parameters
- `value`: the base number.
- `pos1`: position of the first bit to set.
- `...posn`: position of the nth bit to set.
`value` the number to negate
####Returns
number: the number with the bit(s) set in the given position(s).
___
the bitwise negated value of the number
## bit.bor()
Bitwise OR, equivalent to `val1 | val2 | ... | valn` in C.
####Syntax
`bit.bor(val1, val2 [, ... valn])`
####Parameters
- `val1` first OR argument.
- `val2` second OR argument.
- `...valn` ...nth OR argument
####Returns
the bitwise OR of all the arguments (number)
## bit.bxor()
Bitwise XOR, equivalent to `val1 ^ val2 ^ ... ^ valn` in C.
####Syntax
`bit.bxor(val1, val2 [, ... valn])`
####Parameters
- `val1` first XOR argument
- `val2` second XOR argument
- `...valn` ...nth XOR argument
####Returns
the bitwise XOR of all the arguments (number)
## bit.clear()
Clear bits in a number.
@ -134,27 +92,13 @@ Clear bits in a number.
`bit.clear(value, pos1 [, ... posn])`
####Parameters
- `value`: the base number.
- `pos1`: position of the first bit to clear.
- `...posn`: position of thet nth bit to clear.
- `value` the base number
- `pos1` position of the first bit to clear
- `...posn` position of thet nth bit to clear
####Returns
number: the number with the bit(s) cleared in the given position(s).
___
## bit.isset()
the number with the bit(s) cleared in the given position(s)
Test if a given bit is set.
####Syntax
`bit.isset(value, position)`
####Parameters
- `value`: the value to test.
- `position`: bit position to test.
####Returns
boolean: true if the bit at the given position is 1, false otherwise.
___
## bit.isclear()
Test if a given bit is cleared.
@ -163,9 +107,64 @@ Test if a given bit is cleared.
`bit.isclear(value, position)`
####Parameters
- `value`: the value to test.
- `position`: bit position to test.
- `value` the value to test
- `position` bit position to test
####Returns
boolean: true if the bit at the given position is 0, false othewise.
___
true if the bit at the given position is 0, false othewise
## bit.isset()
Test if a given bit is set.
####Syntax
`bit.isset(value, position)`
####Parameters
- `value` the value to test
- `position` bit position to test
####Returns
true if the bit at the given position is 1, false otherwise
## bit.lshift()
Left-shift a number, equivalent to `value << shift` in C.
####Syntax
`bit.lshift(value, shift)`
####Parameters
- `value` the value to shift
- `shift` positions to shift
####Returns
the number shifted left
## bit.rshift()
Logical right shift a number, equivalent to `( unsigned )value >> shift` in C.
####Syntax
`bit.rshift(value, shift)`
####Parameters
- `value` the value to shift.
- `shift` positions to shift.
####Returns
the number shifted right (logically)
## bit.set()
Set bits in a number.
####Syntax
`bit.set(value, pos1 [, ... posn ])`
####Parameters
- `value` the base number.
- `pos1` position of the first bit to set.
- `...posn` position of the nth bit to set.
####Returns
the number with the bit(s) set in the given position(s)

View File

@ -6,73 +6,86 @@ The node module provides access to system-level features such as sleep, restart
Returns the boot reason code.
This is the raw code, not the new "reset info" code which was introduced in recent SDKs. Values are:
- 1: power-on
- 2: reset (software?)
- 3: hardware reset via reset pin
- 4: WDT reset (watchdog timeout)
####Syntax
`node.bootreason()`
####Parameters
`nil`
none
####Returns
number:the boot reason code
the boot reason code (number)
####Example
```lua
rsn = node.bootreason()
```
___
## node.restart()
Restarts the chip.
## node.chipid()
####Syntax
`node.restart()`
Returns the ESP chip ID.
####Parameters
`nil`
none
####Returns
chip ID (number)
####Example
```lua
id = node.chipid();
```
## node.compile()
Compiles a Lua text file into Lua bytecode, and saves it as .lc file.
####Parameters
`filename` name of Lua text file
####Returns
`nil`
####Example
```lua
node.restart();
file.open("hello.lua","w+")
file.writeline([[print("hello nodemcu")]])
file.writeline([[print(node.heap())]])
file.close()
node.compile("hello.lua")
dofile("hello.lua")
dofile("hello.lc")
```
___
## node.dsleep()
Enter deep sleep mode, wake up when timed out.
Enters deep sleep mode, wakes up when timed out.
The maximum sleep time is 4294967295us, ~71 minutes. This is an SDK limitation.
Firmware from before 05 Jan 2016 have a maximum sleeptime of ~35 minutes.
####Syntax
`node.dsleep(us, option)`
!!! note "Note:"
**Note:** This function can only be used in the condition that esp8266 PIN32(RST) and PIN8(XPD_DCDC aka GPIO16) are connected together. Using sleep(0) will set no wake up timer, connect a GPIO to pin RST, the chip will wake up by a falling-edge on pin RST.<br />
option=0, init data byte 108 is valuable;<br />
option>0, init data byte 108 is valueless.<br />
More details as follows:<br />
0, RF_CAL or not after deep-sleep wake up, depends on init data byte 108.<br />
1, RF_CAL after deep-sleep wake up, there will belarge current.<br />
2, no RF_CAL after deep-sleep wake up, there will only be small current.<br />
4, disable RF after deep-sleep wake up, just like modem sleep, there will be the smallest current.
This function can only be used in the condition that esp8266 PIN32(RST) and PIN8(XPD_DCDC aka GPIO16) are connected together. Using sleep(0) will set no wake up timer, connect a GPIO to pin RST, the chip will wake up by a falling-edge on pin RST.
####Parameters
- `us`: number(Integer) or nil, sleep time in micro second. If us = 0, it will sleep forever. If us = nil, will not set sleep time.
- `us` number (integer) or `nil`, sleep time in micro second. If `us == 0`, it will sleep forever. If `us == nil`, will not set sleep time.
- `option`: number(Integer) or nil. If option = nil, it will use last alive setting as default option.
- `option` number (integer) or `nil`. If `nil`, it will use last alive setting as default option.
- 0, init data byte 108 is valuable
- \> 0, init data byte 108 is valueless
- 0, RF_CAL or not after deep-sleep wake up, depends on init data byte 108
- 1, RF_CAL after deep-sleep wake up, there will belarge current
- 2, no RF_CAL after deep-sleep wake up, there will only be small current
- 4, disable RF after deep-sleep wake up, just like modem sleep, there will be the smallest current
####Returns
`nil`
####Example
```lua
--do nothing
node.dsleep()
@ -83,16 +96,43 @@ node.dsleep(1000000, 4)
--set sleep option only
node.dsleep(nil,4)
```
___
## node.flashid()
Returns the flash chip ID.
####Parameters
none
####Returns
flash ID (number)
####Example
```lua
flashid = node.flashid();
```
## node.heap()
Returns the current available heap size in bytes. Note that due to fragmentation, actual allocations of this size may not be possible.
####Parameters
none
####Returns
system heap size left in bytes (number)
####Example
```lua
heap_size = node.heap();
```
## node.info()
Returns NodeMCU version, chipid, flashid, flash size, flash mode, flash speed.
####Syntax
`node.info()`
####Parameters
`nil`
none
####Returns
- `majorVer` (number)
@ -105,77 +145,40 @@ Returns NodeMCU version, chipid, flashid, flash size, flash mode, flash speed.
- `flashspeed` (number)
####Example
```lua
majorVer, minorVer, devVer, chipid, flashid, flashsize, flashmode, flashspeed = node.info()
print("NodeMCU "..majorVer.."."..minorVer.."."..devVer)
majorVer, minorVer, devVer, chipid, flashid, flashsize, flashmode, flashspeed = node.info()
print("NodeMCU "..majorVer.."."..minorVer.."."..devVer)
```
___
## node.chipid()
Returns the ESP chip ID.
## node.input()
Submits a string to the Lua interpreter. Similar to `pcall(loadstring(str))`, but without the single-line limitation.
!!! note "Note:"
This function only has an effect when invoked from a callback. Using it directly on the console **does not work**.
####Syntax
`node.chipid()`
####Parameters
`nil`
`str` Lua chunk
####Returns
number:chip ID
####Example
```lua
id = node.chipid();
```
___
## node.flashid()
Returns the flash chip ID.
####Syntax
`node.flashid()`
####Parameters
`nil`
####Returns
number:flash ID
####Example
```lua
flashid = node.flashid();
sk:on("receive", function(conn, payload) node.input(payload) end)
```
___
## node.heap()
Returns the current available heap size in bytes. Note that due to fragmentation, actual allocations of this size may not be possible.
####Syntax
`node.heap()`
####See also
[`node.output()`](#nodeoutput)
####Parameters
`nil`
####Returns
number: system heap size left in bytes
####Example
```lua
heap_size = node.heap();
```
___
## node.key() --deprecated
Define action to take on button press (on the old devkit 0.9), button connected to GPIO 16.
Defines action to take on button press (on the old devkit 0.9), button connected to GPIO 16.
This function is only available if the firmware was compiled with DEVKIT_VERSION_0_9 defined.
####Syntax
`node.key(type, function)`
####Parameters
- `type`: type is either string "long" or "short". long: press the key for 3 seconds, short: press shortly(less than 3 seconds)
- `function`: user defined function which is called when key is pressed. If nil, remove the user defined function. Default function: long: change LED blinking rate, short: reset chip
@ -185,203 +188,140 @@ This function is only available if the firmware was compiled with DEVKIT_VERSION
####Example
```lua
node.key("long", function() print('hello world') end)
node.key("long", function() print('hello world') end)
```
####See also
- `node.led()`
___
## node.led() --deprecated
Set the on/off time for the LED (on the old devkit 0.9), with the LED connected to GPIO16, multiplexed with `node.key()`.
Sets the on/off time for the LED (on the old devkit 0.9), with the LED connected to GPIO16, multiplexed with `node.key()`.
This function is only available if the firmware was compiled with DEVKIT_VERSION_0_9 defined.
####Syntax
`node.led(low, high)`
####Parameters
- `low`: LED off time, LED keeps on when low=0. Unit: milliseconds, time resolution: 80~100ms<br />
- `high`: LED on time. Unit: milliseconds, time resolution: 80~100ms
- `low` LED off time, LED keeps on when low=0. Unit: milliseconds, time resolution: 80~100ms<br />
- `high` LED on time. Unit: milliseconds, time resolution: 80~100ms
####Returns
`nil`
####Example
```lua
-- turn led on forever.
node.led(0)
-- turn led on forever.
node.led(0)
```
####See also
- `node.key()`
___
## node.input()
Submit a string to the Lua interpreter. Similar to `pcall(loadstring(str))`, but without the single-line limitation.
!!! note "Note:"
This function only has an effect when invoked from a callback. Using it directly on the console **does not work**.
####Syntax
`node.input(str)`
####Parameters
- `str`: Lua chunk
####Returns
`nil`
####Example
```lua
sk:on("receive", function(conn, payload) node.input(payload) end)
```
####See also
- `node.output()`
___
## node.output()
Redirects the Lua interpreter output to a callback function. Optionally also prints it to the serial console.
!!! note "Note:"
Do **not** attempt to `print()` or otherwise induce the Lua interpreter to produce output from within the callback function. Doing so results in infinite recursion, and leads to a watchdog-triggered restart.
####Syntax
`node.output(output_fn, serial_debug)`
Do **not** attempt to `print()` or otherwise induce the Lua interpreter to produce output from within the callback function. Doing so results in infinite recursion, and leads to a watchdog-triggered restart.
####Parameters
- `output_fn(str)`: a function accept every output as str, and can send the output to a socket (or maybe a file).
- `serial_debug`: 1 output also show in serial. 0: no serial output.
####Returns
`nil`
####Example
```lua
function tonet(str)
sk:send(str)
end
node.output(tonet, 1) -- serial also get the lua output.
```
```lua
-- a simple telnet server
s=net.createServer(net.TCP)
s:listen(2323,function(c)
con_std = c
function s_output(str)
if(con_std~=nil)
then con_std:send(str)
end
end
node.output(s_output, 0) -- re-direct output to function s_ouput.
c:on("receive",function(c,l)
node.input(l) -- works like pcall(loadstring(l)) but support multiple separate line
end)
c:on("disconnection",function(c)
con_std = nil
node.output(nil) -- un-regist the redirect output function, output goes to serial
end)
end)
```
####See also
- `node.input()`
___
## node.readvdd33() --deprecated, moved to adc.readvdd33()
####See also
- `adc.readvdd33()`
___
## node.compile()
Compile a Lua text file into Lua bytecode, and save it as .lc file.
####Syntax
`node.compile(filename)`
####Parameters
- `filename`: name of Lua text file
- `output_fn(str)` a function accept every output as str, and can send the output to a socket (or maybe a file).
- `serial_debug` 1 output also show in serial. 0: no serial output.
####Returns
`nil`
####Example
```lua
file.open("hello.lua","w+")
file.writeline([[print("hello nodemcu")]])
file.writeline([[print(node.heap())]])
file.close()
node.compile("hello.lua")
dofile("hello.lua")
dofile("hello.lc")
function tonet(str)
sk:send(str)
end
node.output(tonet, 1) -- serial also get the lua output.
```
___
```lua
-- a simple telnet server
s=net.createServer(net.TCP)
s:listen(2323,function(c)
con_std = c
function s_output(str)
if(con_std~=nil)
then con_std:send(str)
end
end
node.output(s_output, 0) -- re-direct output to function s_ouput.
c:on("receive",function(c,l)
node.input(l) -- works like pcall(loadstring(l)) but support multiple separate line
end)
c:on("disconnection",function(c)
con_std = nil
node.output(nil) -- un-regist the redirect output function, output goes to serial
end)
end)
```
####See also
[`node.input()`](#nodeinput)
## node.readvdd33() --deprecated
Moved to [`adc.readvdd33()`](adc/#adcreadvdd33).
## node.restart()
Restarts the chip.
####Parameters
none
####Returns
`nil`
####Example
```lua
node.restart();
```
## node.restore()
Restores system configuration to defaults. Erases all stored WiFi settings, and resets the "esp init data" to the defaults. This function is intended as a last-resort without having to reflash the ESP altogether.
This also uses the SDK function `system_restore()`, which doesn't document precisely what it erases/restores.
####Parameters
none
####Returns
`nil`
####Example
```lua
node.restore()
node.restart() -- ensure the restored settings take effect
```
## node.setcpufreq()
Change the working CPU Frequency.
####Syntax
`node.setcpufreq(speed)`
####Parameters
- `speed`: `node.CPU80MHZ` or `node.CPU160MHZ`
`speed` constant 'node.CPU80MHZ' or 'node.CPU160MHZ'
####Returns
number:target CPU Frequency
target CPU frequency (number)
####Example
```lua
node.setcpufreq(node.CPU80MHZ)
node.setcpufreq(node.CPU80MHZ)
```
___
## node.restore()
Restore system configuration to defaults. Erases all stored WiFi settings, and resets the "esp init data" to the defaults. This function is intended as a last-resort without having to reflash the ESP altogether.
This also uses the SDK function `system_restore()`, which doesn't document precisely what it erases/restores.
####Syntax
`node.restore()`
####Parameters
`nil`
####Returns
`nil`
####Example
```lua
node.restore()
node.restart() -- ensure the restored settings take effect
```
___
## node.stripdebug()
Controls the amount of debug information kept during `node.compile()`, and
allows removal of debug information from already compiled Lua code.
Controls the amount of debug information kept during `node.compile()`, and allows removal of debug information from already compiled Lua code.
Only recommended for advanced users, the NodeMCU defaults are fine for almost all use cases.
####Syntax
`node.stripdebug([level[, function]])``
####Parameters
- `level`:
- `level`
- 1: don't discard debug info
- 2: discard Local and Upvalue debug info
- 3: discard Local, Upvalue and line-number debug info
- function: a compiled function to be stripped per setfenv except 0 is not permitted.
- `function` a compiled function to be stripped per setfenv except 0 is not permitted.
If no arguments are given then the current default setting is returned. If function is omitted, this is the default setting for future compiles. The function argument uses the same rules as for `setfenv()`.
#### Returns
If invoked without arguments, returns the current level settings. Otherwise, `nil` is returned.
@ -392,5 +332,5 @@ node.compile('bigstuff.lua')
```
####See also
- `node.compile()`
___
[`node.compile()`](#nodecompile)