By returning result as a signed 32-bit int between INT32_MIN to IN32_MAX
which is represented the same regardless of 64-bit support or
integral-only builds.
Also updated docs, fixed links and clarified behavior of random APIs
when WiFi isn't started.
* Adding the first version of the rmt documentation.
* Stub RMT module compiles.
* This version seems to work in (at least) simple cases.
* CLean up the docs
* Minor fixes
* Give the SPI module a chance of working...
* Update to the released version of idf4.4
* Try to get the CI Build to work in all cases
* Try to get the CI Build to work in all cases
* FIx a ringbuffer return issue
* Remove bogus comment
* Review comments
* Better example of transmission
* Review comments
* Add table send example
* Improved documentation
* Documentation comments
* Install the driver correctly.
* A couple of doc updates
* Fix typo
Also removed old, very unsafe node.osoutput(). We're now integrating cleanly
with the IDF/newlib way of redirecting stdout.
Added necessary depends in Kconfig to ensure VFS support is enabled, as
otherwise you'd only get a mysterious crash when attempting to enable
output redirection.
The IDF-provided VFS resolves several issues:
- The IDF components having a different view of the (virtual) file system
compared to the Lua environment.
- RTOS task/thread safety. Our legacy VFS was only ever safe to use
from the LVM thread, which limited its usability. Upgrading it
would have effectively required a reimplementation of the IDF VFS,
which would have been a bigger task with larger on-going maintenance
issues.
- We're no longer needing to maintain our own SPIFFS component.
- We're no longer needing to maintain our own FATFS component.
- The legacy of the 8266's lack of standard C interface to the file system
is no longer holding us back, meaning that we can use the standard
Lua `io` module rather than the cobbled-together swiss army knife
also known as the file module.
Of course, the downside is that we'll either have to declare a backwards
breakage in regard to the file module, or provide a Lua shim for the old
functions, where applicable.
Also included is some necessary integer type fixups in unrelated code,
which apparently had depended on some non-standard types in either the
SPIFFS or FATFS headers.
A memory leak issue in the sdmmc module was also found and fixed while
said module got switched over to the Espressif VFS.
Module documentation has been updated to match the new reality (and I
discovered in some places it wasn't even matching the old reality).
Only compile-tested so far.
Of note is that the WiFi auto-connect (flag) functionality has been removed
from the IDF, and as a follow-on so has the "auto" field in the wifi config.
On the Ethernet side, support for the TLK110 PHY seems to have been removed,
but on the other hand there is now new support for several others.
* Leaner, meaner crypto module; now with HMAC
Based on my testing, mbedtls pulls in all its algorithm regardless of
whether the NodeMCU crypto module was using them or not. As such, the
space savings from omitting algorithms were only in the tens of bytes.
By switching to using the mbedtls generic message digest interface, the
crypto module itself could be shrunk in size and complexity. Despite
adding support for HMAC on all algorithms (plus including RIPEMD160),
this version is 330 bytes smaller.
* Updated crypto module docs.
* Removed superfluous brackets in crypto docs.
Copy-paste considered harmful... >.>
* ESP32: Added pulsecnt module
The pulsecnt module let's you use the ESP32's pulse counter capabilities from Lua.
* ESP32: Pulsecnt module. Better/faster callback.
Reduced the amount of callback variables to speed things up and shift more logic to Lua than in the C code.
* ESP32: Completed docs for pulsecnt
* ESP32: Final release of pulsecnt
* ESP32: Production release of pulsecnt
* ESP32: Release (tweaked docs)
* ESP32: Pulse Counter Release. Cleaned up .gitignore
* ESP32: Pulse counter release (changed ch1 gpio to int to match ch0)