The IDF provides all we need these days, and the old driver was just
needlessly conflicting with the IDF settings and setup.
This also simplifies our uart input path as we no longer need to
duplicate the raw byte handling for when "run_input" is false.
Changes have been kept to a minimum, but a serious chunk of work was
needed to move from 8266isms to IDFisms.
Some things got refactored into components/lua/common, in particular
the LFS location awareness.
As part of this work I also evicted our partition table manipulation
code, as with the current IDF it kept breaking checksums and rendering
things unbootable, which is the opposite of helpful (which was the
original intent behind it).
The uart module got relocated from base_nodemcu to the modules component
properly, after I worked out how to force its inclusion using Kconfig alone.
The uzlib and parts of Lua had to be switched over to use the
C standard int types, as their custom typedefs conflicted with
RISC-V toolchain provided typedefs.
UART console driver updated to do less direct register meddling
and use the IDF uart driver interface for setup. Still using our
own ISR rather than the default driver ISR. Down the line we
might want to investigate whether the IDF ISR would be a better
fit.
Lua C modules have been split into common and ESP32/ESP32-S
specific ones. In the future there might also be ESP32-C3
specific modules, which would go into components/modules-esp32c3
at that point.
Our old automatic fixup of flash size has been discarded as it
interferes with the checksumming done by the ROM loader and
results in unbootable systems. The IDF has already taken on
this work via the ESPTOOL_FLASHSIZE_DETECT option, which handles
this situation properly.
* ESP32: add support for RS485
This commit adds support for switching UART mode to RS485/IRDA.
Also included are patches for memory leaks then handling UART events other than data.
* ESP32: Documentation for uart.setmode()
* uart 1/2
* call -> pcall in uart_on_* functions
* fix docs
* fixed console driver when using custom console uart
* fixed line_inverse and error callback
* fixed a crash when uart.start() called more than one time
RTOS driver evicted as it did not play nice with stdio etc.
Implemented a minimal driver to fully support Lua console on UART0. Output
on UART0 done via stdout (provided by the IDF). Input and setup handled
via driver_console/console.c. In addition to the direct input function
console_getc(), the driver also registers in the syscall tables to enable
regular stdio input functions to work (yay!). The Lua VM is still using the
direct interface since it's less overhead, but does also work when going
through stdin/fd 0.
Auto-bauding on the console is not yet functional; revisit when the UART docs
are available.
Module registration/linking/enabling moved over to be Kconfig based. See
updates to base_nodemcu/include/module.h and base_nodemcu/Kconfig for
details.
The sdk-overrides directory/approach is no longer used. The IDF is simply
too different to the old RTOS SDK - we need to adapt our code directly instead.
Everything in app/ is now unused, and will need to be gradually migrated
into components/ though it is probably better to migrate straight from the
latest dev branch.