#include "module.h" #include "lauxlib.h" #include "lmem.h" #include "platform.h" #include #include #include "user_interface.h" #include "driver/uart.h" #define CANARY_VALUE 0x32383132 typedef struct { int canary; int size; uint8_t colorsPerLed; uint8_t values[0]; } ws2812_buffer; // Init UART1 to be able to stream WS2812 data // We use GPIO2 as output pin static void ws2812_init() { // Configure UART1 // Set baudrate of UART1 to 3200000 WRITE_PERI_REG(UART_CLKDIV(1), UART_CLK_FREQ / 3200000); // Set UART Configuration No parity / 6 DataBits / 1 StopBits / Invert TX WRITE_PERI_REG(UART_CONF0(1), UART_TXD_INV | (1 << UART_STOP_BIT_NUM_S) | (1 << UART_BIT_NUM_S)); // Pull GPIO2 down platform_gpio_mode(4, PLATFORM_GPIO_OUTPUT, PLATFORM_GPIO_FLOAT); platform_gpio_write(4, 0); // Waits 10us to simulate a reset os_delay_us(10); // Redirect UART1 to GPIO2 // Disable GPIO2 GPIO_REG_WRITE(GPIO_ENABLE_W1TC_ADDRESS, BIT2); // Enable Function 2 for GPIO2 (U1TXD) PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U, FUNC_U1TXD_BK); } // Stream data using UART1 routed to GPIO2 // ws2812.init() should be called first // // NODE_DEBUG should not be activated because it also uses UART1 static void ICACHE_RAM_ATTR ws2812_write(uint8_t *pixels, uint32_t length) { // Data are sent LSB first, with a start bit at 0, an end bit at 1 and all inverted // 0b00110111 => 110111 => [0]111011[1] => 10001000 => 00 // 0b00000111 => 000111 => [0]111000[1] => 10001110 => 01 // 0b00110100 => 110100 => [0]001011[1] => 11101000 => 10 // 0b00000100 => 000100 => [0]001000[1] => 11101110 => 11 // Array declared as static const to avoid runtime generation // But declared in ".data" section to avoid read penalty from FLASH static const __attribute__((section(".data._uartData"))) uint8_t _uartData[4] = { 0b00110111, 0b00000111, 0b00110100, 0b00000100 }; uint8_t *end = pixels + length; do { uint8_t value = *pixels++; // Wait enough space in the FIFO buffer // (Less than 124 bytes in the buffer) while (((READ_PERI_REG(UART_STATUS(1)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT) > 124); // Fill the buffer WRITE_PERI_REG(UART_FIFO(1), _uartData[(value >> 6) & 3]); WRITE_PERI_REG(UART_FIFO(1), _uartData[(value >> 4) & 3]); WRITE_PERI_REG(UART_FIFO(1), _uartData[(value >> 2) & 3]); WRITE_PERI_REG(UART_FIFO(1), _uartData[(value >> 0) & 3]); } while(pixels < end); } // Lua: ws2812.write("string") // Byte triples in the string are interpreted as G R B values. // // ws2812.init() should be called first // // ws2812.write(string.char(0, 255, 0)) sets the first LED red. // ws2812.write(string.char(0, 0, 255):rep(10)) sets ten LEDs blue. // ws2812.write(string.char(255, 0, 0, 255, 255, 255)) first LED green, second LED white. static int ws2812_writegrb(lua_State* L) { size_t length; const char *values = luaL_checklstring(L, 1, &length); // Send the buffer ws2812_write((uint8_t*) values, length); return 0; } // Handle a buffer where we can store led values static int ws2812_new_buffer(lua_State *L) { const int leds = luaL_checkint(L, 1); const int colorsPerLed = luaL_checkint(L, 2); luaL_argcheck(L, leds > 0, 1, "should be a positive integer"); luaL_argcheck(L, colorsPerLed > 0, 2, "should be a positive integer"); // Allocate memory size_t size = sizeof(ws2812_buffer) + colorsPerLed*leds*sizeof(uint8_t); ws2812_buffer * buffer = (ws2812_buffer*)lua_newuserdata(L, size); // Associate its metatable luaL_getmetatable(L, "ws2812.buffer"); lua_setmetatable(L, -2); // Save led strip size buffer->size = leds; buffer->colorsPerLed = colorsPerLed; // Store canary for future type checks buffer->canary = CANARY_VALUE; return 1; } static int ws2812_buffer_fill(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)lua_touserdata(L, 1); luaL_argcheck(L, buffer && buffer->canary == CANARY_VALUE, 1, "ws2812.buffer expected"); // Grab colors int i, j; int * colors = luaM_malloc(L, buffer->colorsPerLed * sizeof(int)); for (i = 0; i < buffer->colorsPerLed; i++) { colors[i] = luaL_checkinteger(L, 2+i); } // Fill buffer uint8_t * p = &buffer->values[0]; for(i = 0; i < buffer->size; i++) { for (j = 0; j < buffer->colorsPerLed; j++) { *p++ = colors[j]; } } // Free memory luaM_free(L, colors); return 0; } static int ws2812_buffer_fade(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)lua_touserdata(L, 1); const int fade = luaL_checkinteger(L, 2); luaL_argcheck(L, buffer && buffer->canary == CANARY_VALUE, 1, "ws2812.buffer expected"); luaL_argcheck(L, fade > 0, 2, "fade value should be a strict positive number"); uint8_t * p = &buffer->values[0]; int i; for(i = 0; i < buffer->size * buffer->colorsPerLed; i++) { *p++ /= fade; } return 0; } static int ws2812_buffer_get(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)lua_touserdata(L, 1); const int led = luaL_checkinteger(L, 2) - 1; luaL_argcheck(L, buffer && buffer->canary == CANARY_VALUE, 1, "ws2812.buffer expected"); luaL_argcheck(L, led >= 0 && led < buffer->size, 2, "index out of range"); int i; for (i = 0; i < buffer->colorsPerLed; i++) { lua_pushnumber(L, buffer->values[buffer->colorsPerLed*led+i]); } return buffer->colorsPerLed; } static int ws2812_buffer_set(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)lua_touserdata(L, 1); const int led = luaL_checkinteger(L, 2) - 1; luaL_argcheck(L, buffer && buffer->canary == CANARY_VALUE, 1, "ws2812.buffer expected"); luaL_argcheck(L, led >= 0 && led < buffer->size, 2, "index out of range"); int type = lua_type(L, 3); if(type == LUA_TTABLE) { int i; for (i = 0; i < buffer->colorsPerLed; i++) { // Get value and push it on stack lua_rawgeti(L, 3, i+1); // Convert it as int and store them in buffer buffer->values[buffer->colorsPerLed*led+i] = lua_tonumber(L, -1); } // Clean up the stack lua_pop(L, buffer->colorsPerLed); } else if(type == LUA_TSTRING) { size_t len; const char * buf = lua_tolstring(L, 3, &len); // Overflow check if( buffer->colorsPerLed*led + len > buffer->colorsPerLed*buffer->size ) { return luaL_error(L, "string size will exceed strip length"); } memcpy(&buffer->values[buffer->colorsPerLed*led], buf, len); } else { int i; for (i = 0; i < buffer->colorsPerLed; i++) { buffer->values[buffer->colorsPerLed*led+i] = luaL_checkinteger(L, 3+i); } } return 0; } static int ws2812_buffer_size(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)lua_touserdata(L, 1); luaL_argcheck(L, buffer && buffer->canary == CANARY_VALUE, 1, "ws2812.buffer expected"); lua_pushnumber(L, buffer->size); return 1; } static int ws2812_buffer_write(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)lua_touserdata(L, 1); luaL_argcheck(L, buffer && buffer->canary == CANARY_VALUE, 1, "ws2812.buffer expected"); // Send the buffer ws2812_write(buffer->values, buffer->colorsPerLed*buffer->size); return 0; } static const LUA_REG_TYPE ws2812_buffer_map[] = { { LSTRKEY( "fade" ), LFUNCVAL( ws2812_buffer_fade )}, { LSTRKEY( "fill" ), LFUNCVAL( ws2812_buffer_fill )}, { LSTRKEY( "get" ), LFUNCVAL( ws2812_buffer_get )}, { LSTRKEY( "set" ), LFUNCVAL( ws2812_buffer_set )}, { LSTRKEY( "size" ), LFUNCVAL( ws2812_buffer_size )}, { LSTRKEY( "write" ), LFUNCVAL( ws2812_buffer_write )}, { LSTRKEY( "__index" ), LROVAL ( ws2812_buffer_map )}, { LNILKEY, LNILVAL} }; static const LUA_REG_TYPE ws2812_map[] = { { LSTRKEY( "write" ), LFUNCVAL( ws2812_writegrb )}, { LSTRKEY( "newBuffer" ), LFUNCVAL( ws2812_new_buffer )}, { LSTRKEY( "init" ), LFUNCVAL( ws2812_init )}, { LNILKEY, LNILVAL} }; int luaopen_ws2812(lua_State *L) { // TODO: Make sure that the GPIO system is initialized luaL_rometatable(L, "ws2812.buffer", (void *)ws2812_buffer_map); // create metatable for ws2812.buffer return 0; } NODEMCU_MODULE(WS2812, "ws2812", ws2812_map, luaopen_ws2812);