/* ** $Id: ldump.c,v 2.37.1.1 2017/04/19 17:20:42 roberto Exp $ ** save precompiled Lua chunks ** See Copyright Notice in lua.h */ #define ldump_c #define LUA_CORE #include "lprefix.h" #include #include "lua.h" #include "lapi.h" #include "lauxlib.h" #include "llex.h" #include "lgc.h" #include "lmem.h" #include "lobject.h" #include "lstate.h" #include "lstring.h" #include "ltable.h" #include "lundump.h" typedef struct { lua_State *L; lua_Writer writer; void *data; int strip; int status; #ifdef LUA_USE_HOST int useStrRefs; Table *stringIndex; int sTScnt; int lTScnt; int nFixed; #endif } DumpState; /* ** To ensure that dump files are loadable onto the ESP architectures: ** 1. Integers are in the range -2^31 .. 2^31-1 (sint32_t) ** 2. Floats are the IEEE 4 or 8 byte format, with a 4 byte default. ** ** The file formats are also different to standard because of two add ** additional goals: ** 3. The file must be serially loadable into a programmable flash ** memory through a file-write like API call. ** 4. Compactness of dump files is a key design goal. */ #define DumpVector(v,n,D) DumpBlock(v,(n)*sizeof((v)[0]),D) #define DumpLiteral(s,D) DumpBlock(s, sizeof(s) - sizeof(char), D) static void DumpBlock (const void *b, size_t size, DumpState *D) { if (D->status == 0 && size > 0) { lua_unlock(D->L); D->status = (*D->writer)(D->L, b, size, D->data); lua_lock(D->L); } } #define DumpVar(x,D) DumpVector(&x,1,D) static void DumpByte (lu_byte x, DumpState *D) { DumpVar(x, D); } /* ** Dump (unsigned) int 0..MAXINT using multibyte encoding (MBE). DumpInt ** is used for context dependent counts and sizes; no type information ** is embedded. */ static void DumpInt (lua_Integer x, DumpState *D) { lu_byte buf[sizeof(lua_Integer) + 2]; lu_byte *b = buf + sizeof(buf) - 1; lua_assert(x>=0); *b-- = x & 0x7f; x >>= 7; while(x) { *b-- = 0x80 + (x & 0x7f); x >>= 7; } b++; lua_assert (b >= buf); DumpVector(b, (buf - b) + sizeof(buf), D); } static void DumpNumber (lua_Number x, DumpState *D) { DumpByte(LUAU_TNUMFLT, D); DumpVar(x, D); } /* ** DumpIntTT is MBE and embeds a type encoding for string length and integers. ** It also handles negative integers by forcing the type to LUAU_TNUMNINT. ** 0TTTNNNN or 1TTTNNNN (1NNNNNNN)* 0NNNNNNN */ static void DumpIntTT (lu_byte tt, lua_Integer y, DumpState *D) { lua_Integer x = y < 0 ? -(y + 1) : y; lu_byte buf[sizeof(lua_Integer) + 3]; lu_byte *b = buf + sizeof(buf) - 1; *b-- = x & 0x7f; x >>= 7; while(x) { *b-- = 0x80 + (x & 0x7f); x >>= 7; } b++; if (*b & cast(lu_byte, LUAU_TMASK) )/* Need an extra byte for the type bits? */ *--b = 0x80; *b |= (y >= 0) ? tt: LUAU_TNUMNINT; lua_assert (b >= buf); DumpVector(b, (buf - b) + sizeof(buf), D); } #define DumpInteger(i, D) DumpIntTT(LUAU_TNUMPINT, i, D); /* ** Strings are stored in LFS uniquely, any string references use this index. ** The table at D->stringIndex is used to lookup this unique index. */ static void DumpString (const TString *s, DumpState *D) { if (s == NULL) { DumpByte(LUAU_TSSTRING + 0, D); } else { lu_byte tt = (gettt((struct GCObject *)s) == LUA_TSHRSTR) \ ? LUAU_TSSTRING : LUAU_TLSTRING; size_t l = tsslen(s); const char *str = getstr(s); #ifdef LUA_USE_HOST if (D->useStrRefs) { const TValue *o = luaH_getstr(D->stringIndex, cast(TString *,s)); DumpIntTT(tt, ivalue(o), D); return; } #endif DumpIntTT(tt, l + 1, D); /* include trailing '\0' */ DumpVector(str, l, D); /* no need to save '\0' */ } } static void DumpCode (const Proto *f, DumpState *D) { DumpInt(f->sizecode, D); DumpVector(f->code, f->sizecode, D); } static void DumpFunction(const Proto *f, TString *psource, DumpState *D); static void DumpConstants (const Proto *f, DumpState *D) { int i; int n = f->sizek; DumpInt(n, D); for (i = 0; i < n; i++) { const TValue *o = &f->k[i]; switch (ttype(o)) { case LUA_TNIL: DumpByte(LUAU_TNIL, D); break; case LUA_TBOOLEAN: DumpByte(LUAU_TBOOLEAN + bvalue(o), D); break; case LUA_TNUMFLT : DumpNumber(fltvalue(o), D); break; case LUA_TNUMINT: DumpInteger(ivalue(o), D); break; case LUA_TSHRSTR: case LUA_TLNGSTR: DumpString(tsvalue(o), D); break; default: lua_assert(0); } } } static void DumpProtos (const Proto *f, DumpState *D) { int i; int n = f->sizep; DumpInt(n, D); for (i = 0; i < n; i++) DumpFunction(f->p[i], f->source, D); } static void DumpUpvalues (const Proto *f, DumpState *D) { int i, n = f->sizeupvalues, nostrip = (D->strip == 0); DumpByte(nostrip, D); DumpInt(n, D); for (i = 0; i < n; i++) { if (nostrip) DumpString(f->upvalues[i].name, D); DumpByte(f->upvalues[i].instack, D); DumpByte(f->upvalues[i].idx, D); } } static void DumpDebug (const Proto *f, DumpState *D) { int i, keepli = (D->strip <= 1), keeplv = (D->strip == 0); int n = keepli ? f->sizelineinfo : 0; DumpInt(n, D); DumpVector(f->lineinfo, n, D); n = keeplv ? f->sizelocvars : 0; DumpInt(n, D); for (i = 0; i < n; i++) { DumpString(f->locvars[i].varname, D); DumpInt(f->locvars[i].startpc, D); DumpInt(f->locvars[i].endpc, D); } } static void DumpFunction (const Proto *f, TString *psource, DumpState *D) { if (f->source == psource) DumpString(NULL, D); /* same source as its parent */ else DumpString(f->source, D); DumpInt(f->linedefined, D); DumpInt(f->lastlinedefined, D); DumpByte(getnumparams(f), D); DumpByte(getis_vararg(f), D); DumpByte(getmaxstacksize(f), D); DumpProtos(f, D); DumpCode(f, D); DumpConstants(f, D); DumpUpvalues(f, D); DumpDebug(f, D); } static void DumpHeader (DumpState *D, int format) { DumpLiteral(LUA_SIGNATURE, D); DumpByte(LUAC_VERSION, D); DumpByte(format, D); DumpLiteral(LUAC_DATA, D); DumpByte(sizeof(int), D); DumpByte(sizeof(Instruction), D); DumpByte(sizeof(lua_Integer), D); DumpByte(sizeof(lua_Number), D); /* Note that we multi-byte encoded integers so need to check size_t or endian */ DumpNumber(LUAC_NUM, D); } /* ** Dump Lua function as precompiled chunk */ int luaU_dump (lua_State *L, const Proto *f, lua_Writer w, void *data, int strip) { DumpState D = {0}; D.L = L; D.writer = w; D.data = data; D.strip = strip; DumpHeader(&D, LUAC_FORMAT); DumpByte(f->sizeupvalues, &D); DumpFunction(f, NULL, &D); return D.status; } static int stripdebug (lua_State *L, Proto *f, int level) { int i, len = 0; switch (level) { case 2: if (f->lineinfo) { f->lineinfo = luaM_freearray(L, f->lineinfo, f->sizelineinfo); len += f->sizelineinfo; } case 1: for (i=0; isizeupvalues; i++) f->upvalues[i].name = NULL; f->locvars = luaM_freearray(L, f->locvars, f->sizelocvars); len += f->sizelocvars * sizeof(LocVar); f->sizelocvars = 0; } return len; } /* This is a recursive function so it's stack size has been kept to a minimum! */ int luaU_stripdebug (lua_State *L, Proto *f, int level, int recv){ int len = 0, i; if (recv != 0 && f->sizep != 0) { for(i=0;isizep;i++) len += luaU_stripdebug(L, f->p[i], level, recv); } len += stripdebug (L, f, level); return len; } /*============================================================================** ** ** NodeMCU extensions for LFS support and dumping. Note that to keep lua_lock ** pairing for testing, this dump/unload functionality works within a locked ** window and therefore has to use the core luaH, ..., APIs rather than the ** public Lua and lauxlib APIs. ** **============================================================================*/ #ifdef LUA_USE_HOST /* ** Add a TS found in the Proto Load to the table at the ToS. Note that this is ** a unified table of {string = index} for both short and long TStrings. */ static void addTS (TString *ts, DumpState *D) { lua_State *L = D->L; if (!ts) return; if (ttisnil(luaH_getstr(D->stringIndex, ts))) { TValue k, v, *slot; gettt((struct GCObject *)ts)<=LUA_TSHRSTR ? D->sTScnt++ : D->lTScnt++; setsvalue(L, &k, ts); setivalue(&v, D->sTScnt + D->lTScnt); slot = luaH_set(L, D->stringIndex, &k); setobj2t(L, slot, &v); luaC_barrierback(L, D->stringIndex, &v); } } /* ** Add the fixed TS that are created by the luaX and LuaT initialisation ** and fixed so not collectable. This are always loaded into LFS to save ** RAM and can be implicitly referenced in any Proto. */ static void addFixedStrings (DumpState *D) { int i; const char *p; for (i = 0; (p = luaX_getstr(i, 0))!=NULL; i++) addTS(luaS_new(D->L, p), D); addTS(G(D->L)->memerrmsg, D); addTS(luaS_new(D->L, LUA_ENV), D); for (i = 0; (p = luaT_getstr(i))!=NULL; i++) addTS(luaS_new(D->L, p), D); lua_assert(D->lTScnt == 0); /* all of these fixed strings should be short */ D->nFixed = D->sTScnt; /* book mark for later skipping */ } /* ** Dump all LFS strings. If there are 71 fixed and 17 LFS strings, say, in ** the stringIndex, then these fixed and LFS strings are numbered 1..71 and ** 72..88 respectively; this numbering is swapped to 18..88 and 1..17. The ** fixed strings are fixed and can be omitted from the LFS image. */ static void DumpLFSstrings(DumpState *D) { lua_State *L = D->L; int n = D->sTScnt + D->lTScnt; int i, maxlen = 0, nStrings = n - D->nFixed; Table *revT = luaH_new(L); sethvalue(L, L->top++, revT); /* Put on stack to prevent GC */ luaH_resize(L, revT, n, 0); luaC_checkGC(L); /* luaH_next scan of stringIndex table using two top of stack entries */ setnilvalue(L->top++); api_incr_top(L); while (luaH_next(L, D->stringIndex, L->top-2)) { /* * Update the value to swap fix and LFS order, then insert (v, k) into * the reverse index table. Note that luaC_barrier checks not required * for overwrites and non-collectable values. */ int len = tsslen(tsvalue(L->top-2)); lua_Integer *i = &L->top[-1].value_.i; *i += *i > D->nFixed ? -D->nFixed : nStrings; /* recalc index and */ luaH_set(L, D->stringIndex, L->top-2)->value_.i = *i; /* update table value */ luaH_setint(L, revT, ivalue(L->top-1), L->top-2); /* Add str to reverse T */ if (len > maxlen) maxlen = len; /* roll up maximum string size */ } L->top -= 2; /* discard key and value stack slots */ DumpInt(maxlen, D); DumpInt(D->sTScnt, D); DumpInt(D->lTScnt, D); DumpInt(nStrings, D); for (i = 1; i <= nStrings; i++) { /* dump out non-fixed strings in order */ const TValue *o = luaH_getint(revT, i); DumpString(tsvalue(o), D); } L->top--; /* pop revT stack entry */ luaC_checkGC(L); } /* ** Recursive scan all of the Protos in the Proto hierarchy ** to collect all referenced strings in 2 Lua Arrays at ToS. */ #define OVER(n) for (i = 0; i < (n); i++) static void scanProtoStrings(const Proto *f, DumpState *D) { int i; addTS(f->source, D); OVER(f->sizek) if (ttisstring(f->k + i)) addTS(tsvalue(f->k + i), D); OVER(f->sizeupvalues) addTS(f->upvalues[i].name, D); OVER(f->sizelocvars) addTS(f->locvars[i].varname, D); OVER(f->sizep) scanProtoStrings(f->p[i], D); } /* ** An LFS image comprises a prologue segment of all of the strings used in ** the image, followed by a set of Proto dumps. Each of these is essentially ** the same as standard lua_dump format, except that string constants don't ** contain the string inline, but are instead an index into the prologue. ** Separating out the strings in this way simplifies loading the image ** content into an LFS region. ** ** A dummy container Proto, main, is used to hold all of the Protos to go ** into the image. The Proto main itself is not callable; it is used as the ** image Proto index and only contains a Proto vector and a constant vector ** where each constant in the string names the corresponding Proto. */ int luaU_DumpAllProtos(lua_State *L, const Proto *m, lua_Writer w, void *data, int strip) { DumpState D = {0}; D.L = L; D.writer = w; D.data = data; D.strip = strip; lua_assert(L->stack_last - L->top > 5); /* This dump uses 5 stack slots */ DumpHeader(&D, LUAC_LFS_IMAGE_FORMAT); DumpInteger(G(L)->seed, &D); D.stringIndex = luaH_new(L); sethvalue(L, L->top++, D.stringIndex); /* Put on stack to prevent GC */ /* Add fixed strings + strings used in the Protos, then swap fixed/added blocks */ addFixedStrings(&D); scanProtoStrings(m, &D); /* Dump out all non-fixed strings */ DumpLiteral(LUA_STRING_SIG, &D); DumpLFSstrings(&D); /* Switch to string reference mode and add the Protos themselves */ D.useStrRefs = 1; DumpLiteral(LUA_PROTO_SIG, &D); DumpProtos(m, &D); DumpConstants(m, &D); /* Dump Function name vector */ L->top--; return D.status; } #endif