/* ** $Id: ltable.c,v 2.118.1.4 2018/06/08 16:22:51 roberto Exp $ ** Lua tables (hash) ** See Copyright Notice in lua.h */ #define ltable_c #define LUA_CORE #include "lprefix.h" /* ** Implementation of tables (aka arrays, objects, or hash tables). ** Tables keep its elements in two parts: an array part and a hash part. ** Non-negative integer keys are all candidates to be kept in the array ** part. The actual size of the array is the largest 'n' such that ** more than half the slots between 1 and n are in use. ** Hash uses a mix of chained scatter table with Brent's variation. ** A main invariant of these tables is that, if an element is not ** in its main position (i.e. the 'original' position that its hash gives ** to it), then the colliding element is in its own main position. ** Hence even when the load factor reaches 100%, performance remains good. */ #include #include #include #include "lua.h" #include "ldebug.h" #include "ldo.h" #include "lgc.h" #include "lmem.h" #include "lobject.h" #include "lstate.h" #include "lstring.h" #include "ltable.h" #include "lvm.h" /* ** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is ** the largest integer such that MAXASIZE fits in an unsigned int. */ #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) #define MAXASIZE (1u << MAXABITS) /* ** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest ** integer such that 2^MAXHBITS fits in a signed int. (Note that the ** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still ** fits comfortably in an unsigned int.) */ #define MAXHBITS (MAXABITS - 1) #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) #define hashstr(t,str) hashpow2(t, (str)->hash) #define hashboolean(t,p) hashpow2(t, p) #define hashint(t,i) hashpow2(t, i) /* ** for some types, it is better to avoid modulus by power of 2, as ** they tend to have many 2 factors. */ #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) #define hashpointer(t,p) hashmod(t, point2uint(p)) #define dummynode (&dummynode_) static const Node dummynode_ = { {NILCONSTANT}, /* value */ {{NILCONSTANT, 0}} /* key */ }; /* ** Hash for floating-point numbers. ** The main computation should be just ** n = frexp(n, &i); return (n * INT_MAX) + i ** but there are some numerical subtleties. ** In a two-complement representation, INT_MAX does not has an exact ** representation as a float, but INT_MIN does; because the absolute ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with ** INT_MIN. */ #if !defined(l_hashfloat) static int l_hashfloat (lua_Number n) { int i; lua_Integer ni; n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); return 0; } else { /* normal case */ unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni); return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u); } } #endif /* ** returns the 'main' position of an element in a table (that is, the index ** of its hash value) */ static Node *mainposition (const Table *t, const TValue *key) { switch (ttype(key)) { case LUA_TNUMINT: return hashint(t, ivalue(key)); case LUA_TNUMFLT: return hashmod(t, l_hashfloat(fltvalue(key))); case LUA_TSHRSTR: return hashstr(t, tsvalue(key)); case LUA_TLNGSTR: return hashpow2(t, luaS_hashlongstr(tsvalue(key))); case LUA_TBOOLEAN: return hashboolean(t, bvalue(key)); case LUA_TLIGHTUSERDATA: return hashpointer(t, pvalue(key)); case LUA_TLCF: return hashpointer(t, fvalue(key)); default: lua_assert(!ttisdeadkey(key)); return hashpointer(t, gcvalue(key)); } } /* ** returns the index for 'key' if 'key' is an appropriate key to live in ** the array part of the table, 0 otherwise. */ static unsigned int arrayindex (const TValue *key) { if (ttisinteger(key)) { lua_Integer k = ivalue(key); if (0 < k && (lua_Unsigned)k <= MAXASIZE) return cast(unsigned int, k); /* 'key' is an appropriate array index */ } return 0; /* 'key' did not match some condition */ } /* ** returns the index of a 'key' for table traversals. First goes all ** elements in the array part, then elements in the hash part. The ** beginning of a traversal is signaled by 0. */ static unsigned int findindex (lua_State *L, Table *t, StkId key) { unsigned int i; if (ttisnil(key)) return 0; /* first iteration */ i = arrayindex(key); if (i != 0 && i <= t->sizearray) /* is 'key' inside array part? */ return i; /* yes; that's the index */ else { int nx; Node *n = mainposition(t, key); for (;;) { /* check whether 'key' is somewhere in the chain */ /* key may be dead already, but it is ok to use it in 'next' */ if (luaV_rawequalobj(gkey(n), key) || (ttisdeadkey(gkey(n)) && iscollectable(key) && deadvalue(gkey(n)) == gcvalue(key))) { i = cast_int(n - gnode(t, 0)); /* key index in hash table */ /* hash elements are numbered after array ones */ return (i + 1) + t->sizearray; } nx = gnext(n); if (nx == 0) luaG_runerror(L, "invalid key to 'next'"); /* key not found */ else n += nx; } } } static void rotable_next(lua_State *L, ROTable *t, TValue *key, TValue *val); int luaH_next (lua_State *L, Table *t, StkId key) { unsigned int i; if (isrotable(t)) { rotable_next(L, (ROTable *) t, key, key+1); return ttisnil(key) ? 0 : 1; } i = findindex(L, t, key); /* find original element */ for (; i < t->sizearray; i++) { /* try first array part */ if (!ttisnil(&t->array[i])) { /* a non-nil value? */ setivalue(key, i + 1); setobj2s(L, key+1, &t->array[i]); return 1; } } for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) { /* hash part */ if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */ setobj2s(L, key, gkey(gnode(t, i))); setobj2s(L, key+1, gval(gnode(t, i))); return 1; } } return 0; /* no more elements */ } /* ** {============================================================= ** Rehash ** ============================================================== */ /* ** Compute the optimal size for the array part of table 't'. 'nums' is a ** "count array" where 'nums[i]' is the number of integers in the table ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of ** integer keys in the table and leaves with the number of keys that ** will go to the array part; return the optimal size. */ static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { int i; unsigned int twotoi; /* 2^i (candidate for optimal size) */ unsigned int a = 0; /* number of elements smaller than 2^i */ unsigned int na = 0; /* number of elements to go to array part */ unsigned int optimal = 0; /* optimal size for array part */ /* loop while keys can fill more than half of total size */ for (i = 0, twotoi = 1; twotoi > 0 && *pna > twotoi / 2; i++, twotoi *= 2) { if (nums[i] > 0) { a += nums[i]; if (a > twotoi/2) { /* more than half elements present? */ optimal = twotoi; /* optimal size (till now) */ na = a; /* all elements up to 'optimal' will go to array part */ } } } lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); *pna = na; return optimal; } static int countint (const TValue *key, unsigned int *nums) { unsigned int k = arrayindex(key); if (k != 0) { /* is 'key' an appropriate array index? */ nums[luaO_ceillog2(k)]++; /* count as such */ return 1; } else return 0; } /* ** Count keys in array part of table 't': Fill 'nums[i]' with ** number of keys that will go into corresponding slice and return ** total number of non-nil keys. */ static unsigned int numusearray (const Table *t, unsigned int *nums) { int lg; unsigned int ttlg; /* 2^lg */ unsigned int ause = 0; /* summation of 'nums' */ unsigned int i = 1; /* count to traverse all array keys */ /* traverse each slice */ for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { unsigned int lc = 0; /* counter */ unsigned int lim = ttlg; if (lim > t->sizearray) { lim = t->sizearray; /* adjust upper limit */ if (i > lim) break; /* no more elements to count */ } /* count elements in range (2^(lg - 1), 2^lg] */ for (; i <= lim; i++) { if (!ttisnil(&t->array[i-1])) lc++; } nums[lg] += lc; ause += lc; } return ause; } static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { int totaluse = 0; /* total number of elements */ int ause = 0; /* elements added to 'nums' (can go to array part) */ int i = sizenode(t); while (i--) { Node *n = &t->node[i]; if (!ttisnil(gval(n))) { ause += countint(gkey(n), nums); totaluse++; } } *pna += ause; return totaluse; } static void setarrayvector (lua_State *L, Table *t, unsigned int size) { unsigned int i; luaM_reallocvector(L, t->array, t->sizearray, size, TValue); for (i=t->sizearray; iarray[i]); t->sizearray = size; } static void setnodevector (lua_State *L, Table *t, unsigned int size) { if (size == 0) { /* no elements to hash part? */ t->node = cast(Node *, dummynode); /* use common 'dummynode' */ t->lsizenode = 0; t->lastfree = NULL; /* signal that it is using dummy node */ } else { int i; int lsize = luaO_ceillog2(size); if (lsize > MAXHBITS) luaG_runerror(L, "table overflow"); size = twoto(lsize); t->node = luaM_newvector(L, size, Node); for (i = 0; i < (int)size; i++) { Node *n = gnode(t, i); gnext(n) = 0; setnilvalue(wgkey(n)); setnilvalue(gval(n)); } t->lsizenode = cast_byte(lsize); t->lastfree = gnode(t, size); /* all positions are free */ } } typedef struct { Table *t; unsigned int nhsize; } AuxsetnodeT; static void auxsetnode (lua_State *L, void *ud) { AuxsetnodeT *asn = cast(AuxsetnodeT *, ud); setnodevector(L, asn->t, asn->nhsize); } void luaH_resize (lua_State *L, Table *t, unsigned int nasize, unsigned int nhsize) { unsigned int i; int j; AuxsetnodeT asn; unsigned int oldasize = t->sizearray; int oldhsize = allocsizenode(t); Node *nold = t->node; /* save old hash ... */ if (nasize > oldasize) /* array part must grow? */ setarrayvector(L, t, nasize); /* create new hash part with appropriate size */ asn.t = t; asn.nhsize = nhsize; if (luaD_rawrunprotected(L, auxsetnode, &asn) != LUA_OK) { /* mem. error? */ setarrayvector(L, t, oldasize); /* array back to its original size */ luaD_throw(L, LUA_ERRMEM); /* rethrow memory error */ } if (nasize < oldasize) { /* array part must shrink? */ t->sizearray = nasize; /* re-insert elements from vanishing slice */ for (i=nasize; iarray[i])) luaH_setint(L, t, i + 1, &t->array[i]); } /* shrink array */ luaM_reallocvector(L, t->array, oldasize, nasize, TValue); } /* re-insert elements from hash part */ for (j = oldhsize - 1; j >= 0; j--) { Node *old = nold + j; if (!ttisnil(gval(old))) { /* doesn't need barrier/invalidate cache, as entry was already present in the table */ setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old)); } } if (oldhsize > 0) /* not the dummy node? */ luaM_freearray(L, nold, cast(size_t, oldhsize)); /* free old hash */ } void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { int nsize = allocsizenode(t); luaH_resize(L, t, nasize, nsize); } /* ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i */ static void rehash (lua_State *L, Table *t, const TValue *ek) { unsigned int asize; /* optimal size for array part */ unsigned int na; /* number of keys in the array part */ unsigned int nums[MAXABITS + 1]; int i; int totaluse; for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */ na = numusearray(t, nums); /* count keys in array part */ totaluse = na; /* all those keys are integer keys */ totaluse += numusehash(t, nums, &na); /* count keys in hash part */ /* count extra key */ na += countint(ek, nums); totaluse++; /* compute new size for array part */ asize = computesizes(nums, &na); /* resize the table to new computed sizes */ luaH_resize(L, t, asize, totaluse - na); } /* ** }============================================================= */ Table *luaH_new (lua_State *L) { GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table)); Table *t = gco2t(o); t->metatable = NULL; t->flags = cast_byte(~0); t->array = NULL; t->sizearray = 0; setnodevector(L, t, 0); return t; } void luaH_free (lua_State *L, Table *t) { if (!isdummy(t)) luaM_freearray(L, t->node, cast(size_t, sizenode(t))); luaM_freearray(L, t->array, t->sizearray); luaM_free(L, t); } static Node *getfreepos (Table *t) { if (!isdummy(t)) { while (t->lastfree > t->node) { t->lastfree--; if (ttisnil(gkey(t->lastfree))) return t->lastfree; } } return NULL; /* could not find a free place */ } /* ** inserts a new key into a hash table; first, check whether key's main ** position is free. If not, check whether colliding node is in its main ** position or not: if it is not, move colliding node to an empty place and ** put new key in its main position; otherwise (colliding node is in its main ** position), new key goes to an empty position. */ TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) { Node *mp; TValue aux; if(!isrwtable(t)) luaG_runerror(L, "table is Readonly"); if (ttisnil(key)) luaG_runerror(L, "table index is nil"); else if (ttisfloat(key)) { lua_Integer k; if (luaV_tointeger(key, &k, 0)) { /* does index fit in an integer? */ setivalue(&aux, k); key = &aux; /* insert it as an integer */ } else if (luai_numisnan(fltvalue(key))) luaG_runerror(L, "table index is NaN"); } mp = mainposition(t, key); if (!ttisnil(gval(mp)) || isdummy(t)) { /* main position is taken? */ Node *othern; Node *f = getfreepos(t); /* get a free place */ if (f == NULL) { /* cannot find a free place? */ rehash(L, t, key); /* grow table */ /* whatever called 'newkey' takes care of TM cache */ return luaH_set(L, t, key); /* insert key into grown table */ } lua_assert(!isdummy(t)); othern = mainposition(t, gkey(mp)); if (othern != mp) { /* is colliding node out of its main position? */ /* yes; move colliding node into free position */ while (othern + gnext(othern) != mp) /* find previous */ othern += gnext(othern); gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ if (gnext(mp) != 0) { gnext(f) += cast_int(mp - f); /* correct 'next' */ gnext(mp) = 0; /* now 'mp' is free */ } setnilvalue(gval(mp)); } else { /* colliding node is in its own main position */ /* new node will go into free position */ if (gnext(mp) != 0) gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ else lua_assert(gnext(f) == 0); gnext(mp) = cast_int(f - mp); mp = f; } } setnodekey(L, &mp->i_key, key); luaC_barrierback(L, t, key); lua_assert(ttisnil(gval(mp))); return gval(mp); } /* ** search function for integers */ const TValue *luaH_getint (Table *t, lua_Integer key) { if (isrotable(t)) return luaO_nilobject; /* (1 <= key && key <= t->sizearray) */ if (l_castS2U(key) - 1 < t->sizearray) return &t->array[key - 1]; else { Node *n = hashint(t, key); for (;;) { /* check whether 'key' is somewhere in the chain */ if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key) return gval(n); /* that's it */ else { int nx = gnext(n); if (nx == 0) break; n += nx; } } return luaO_nilobject; } } /* ** search function for short strings */ static const TValue* rotable_findentry(ROTable *rotable, TString *key, unsigned *ppos); const TValue *luaH_getshortstr (Table *t, TString *key) { Node *n; if (isrotable(t)) return rotable_findentry((ROTable*) t, key, NULL); n = hashstr(t, key); lua_assert(gettt((struct GCObject *)key) == LUA_TSHRSTR); for (;;) { /* check whether 'key' is somewhere in the chain */ const TValue *k = gkey(n); if (ttisshrstring(k) && eqshrstr(tsvalue(k), key)) return gval(n); /* that's it */ else { int nx = gnext(n); if (nx == 0) return luaO_nilobject; /* not found */ n += nx; } } } /* ** "Generic" get version. (Not that generic: not valid for integers, ** which may be in array part, nor for floats with integral values.) */ static const TValue *getgeneric (Table *t, const TValue *key) { Node *n; if (isrotable(t)) return luaO_nilobject; n = mainposition(t, key); for (;;) { /* check whether 'key' is somewhere in the chain */ if (luaV_rawequalobj(gkey(n), key)) return gval(n); /* that's it */ else { int nx = gnext(n); if (nx == 0) return luaO_nilobject; /* not found */ n += nx; } } } const TValue *luaH_getstr (Table *t, TString *key) { if (gettt((struct GCObject *)key) == LUA_TSHRSTR) return luaH_getshortstr(t, key); else { /* for long strings, use generic case */ TValue ko; setsvalue(cast(lua_State *, NULL), &ko, key); return getgeneric(t, &ko); } } /* ** main search function */ const TValue *luaH_get (Table *t, const TValue *key) { switch (ttype(key)) { case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key)); case LUA_TNUMINT: return luaH_getint(t, ivalue(key)); case LUA_TNIL: return luaO_nilobject; case LUA_TNUMFLT: { lua_Integer k; if (luaV_tointeger(key, &k, 0)) /* index is int? */ return luaH_getint(t, k); /* use specialized version */ /* else... */ } /* FALLTHROUGH */ default: return getgeneric(t, key); } } /* ** beware: when using this function you probably need to check a GC ** barrier and invalidate the TM cache. */ TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { const TValue *p; if (isrotable(t)) luaG_runerror(L, "table is readonly"); p = luaH_get(t, key); if (p != luaO_nilobject) return cast(TValue *, p); else return luaH_newkey(L, t, key); } void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { const TValue *p; if (isrotable(t)) luaG_runerror(L, "table is readonly"); p = luaH_getint(t, key); TValue *cell; if (p != luaO_nilobject) cell = cast(TValue *, p); else { TValue k; setivalue(&k, key); cell = luaH_newkey(L, t, &k); } setobj2t(L, cell, value); } static lua_Unsigned unbound_search (Table *t, lua_Unsigned j) { lua_Unsigned i = j; /* i is zero or a present index */ j++; /* find 'i' and 'j' such that i is present and j is not */ while (!ttisnil(luaH_getint(t, j))) { i = j; if (j > l_castS2U(LUA_MAXINTEGER) / 2) { /* overflow? */ /* table was built with bad purposes: resort to linear search */ i = 1; while (!ttisnil(luaH_getint(t, i))) i++; return i - 1; } j *= 2; } /* now do a binary search between them */ while (j - i > 1) { lua_Unsigned m = (i+j)/2; if (ttisnil(luaH_getint(t, m))) j = m; else i = m; } return i; } /* ** Try to find a boundary in table 't'. A 'boundary' is an integer index ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil). */ lua_Unsigned luaH_getn (Table *t) { unsigned int j; if (isrotable(t)) return 0; j = t->sizearray; if (j > 0 && ttisnil(&t->array[j - 1])) { /* there is a boundary in the array part: (binary) search for it */ unsigned int i = 0; while (j - i > 1) { unsigned int m = (i+j)/2; if (ttisnil(&t->array[m - 1])) j = m; else i = m; } return i; } /* else must find a boundary in hash part */ else if (isdummy(t)) /* hash part is empty? */ return j; /* that is easy... */ else return unbound_search(t, j); } int luaH_isdummy (const Table *t) { return isdummy(t); } /* ** All keyed ROTable access passes through rotable_findentry(). ROTables ** are simply a list of pairs. ** ** The global KeyCache is used to avoid a relatively expensive Flash memory ** vector scan. A simple hash on the key's TString addr and the ROTable ** addr selects the cache line. The line's slots are then scanned for a ** hit. ** ** Unlike the standard hash which uses a prime line count therefore requires ** the use of modulus operation which is expensive on an IoT processor ** without H/W divide. This hash is power of 2 based which might not be quite ** so uniform but can be calculated without using H/W-based instructions. ** ** If a match is found and the table addresses match, then this entry is ** probed first. In practice the hit-rate here is over 99% so the code ** rarely fails back to doing the linear scan in ROM. ** Note that this hash does a couple of prime multiples and a modulus 2^X ** with is all evaluated in H/W, and adequately randomizes the lookup. */ #define HASH(a,b) ((((29*(size_t)(a)) ^ (37*((b)->hash)))>>4)&(KEYCACHE_N-1)) #define NDX_SHFT 24 #define ADDR_MASK (((size_t) 1<<24)-1) /* * Find a string key entry in a rotable and return it. */ static const TValue* rotable_findentry(ROTable *t, TString *key, unsigned *ppos) { const ROTable_entry *e = cast(const ROTable_entry *, t->entry); const int tl = gettbllsizenode((struct Table *)t); const char *strkey = getstr(key); const int hash = HASH(t, key); KeyCache *cl = luaE_getcache(hash); int i, j = 1, l; if (!e || gettt((struct GCObject *)key) != LUA_TSHRSTR) return luaO_nilobject; l = getstrshrlen(key); /* scan the ROTable key cache and return if hit found */ for (i = 0; i < KEYCACHE_M; i++) { int cl_ndx = cl[i] >> NDX_SHFT; if ((((size_t)t - cl[i]) & ADDR_MASK) == 0 && cl_ndx < tl && strcmp(e[cl_ndx].key, strkey) == 0) { if (ppos) *ppos = cl_ndx; return &e[cl_ndx].value; } } /* * In practice most table scans are from a table miss due to the key cache * short-circuiting almost all table hits. ROTable keys can be unsorted * because of legacy compatibility, so the search must use a sequential * equality match. * * The masked name4 comparison is a safe 4-byte comparison for all supported * NodeMCU hosts and targets; It generate fast efficient access that avoids * unaligned exceptions and costly strcmp() except for a last hit validation. * However, this is ENDIAN SENSITIVE which is validate during initialisation. * * The majority of search misses are for metavalues (keys starting with __), * so all metavalues if any must be at the front of each entry list. */ lu_int32 name4 = *(lu_int32 *)strkey; lu_int32 mask4 = l > 2 ? (~0u) : (~0u)>>((3-l)*8); lua_assert(*(int*)"abcd" == 0x64636261); #define eq4(s) (((*(lu_int32 *)s ^ name4) & mask4) == 0) #define ismeta(s) ((*(lu_int32 *)s & 0xffff) == *(lu_int32 *)"__\0") if (ismeta(&name4)) { for(i = 0; i < tl && ismeta(e[i].key); i++) { if (eq4(e[i].key) && !strcmp(e[i].key, strkey)) { j = 0; break; } } } else { for(i = 0; i < tl; i++) { if (eq4(e[i].key) && !strcmp(e[i].key, strkey)) { j = 0; break; } } } if (j) return luaO_nilobject; if (ppos) *ppos = i; /* In the case of a hit, update the lookaside cache */ for (j = KEYCACHE_M-1; j>0; j--) cl[j] = cl[j-1]; cl[0] = ((size_t)t & ADDR_MASK) + (i << NDX_SHFT); return &e[i].value; } static void rotable_next_helper(lua_State *L, ROTable *t, int pos, TValue *key, TValue *val) { const ROTable_entry *e = cast(const ROTable_entry *, t->entry); if (pos < gettbllsizenode((Table *)t)) { /* Found an entry */ setsvalue(L, key, luaS_new(L, e[pos].key)); setobj2s(L, val, &e[pos].value); } else { setnilvalue(key); setnilvalue(val); } } /* next (used for iteration) */ static void rotable_next(lua_State *L, ROTable *t, TValue *key, TValue *val) { unsigned keypos = gettbllsizenode((struct Table *)t); /* Special case: if key is nil, return the first element of the rotable */ if (ttisnil(key)) rotable_next_helper(L, t, 0, key, val); else if (ttisstring(key)) { /* Find the previous key again */ if (ttisstring(key)) { rotable_findentry(t, tsvalue(key), &keypos); } /* Advance to next key */ rotable_next_helper(L, t, ++keypos, key, val); } } #if defined(LUA_DEBUG) Node *luaH_mainposition (const Table *t, const TValue *key) { return mainposition(t, key); } #endif