// *************************************************************************** // Port of BMP680 module for ESP8266 with nodeMCU // // Written by Lukas Voborsky, @voborsky // *************************************************************************** // #define NODE_DEBUG #include "module.h" #include "lauxlib.h" #include "platform.h" #include "user_interface.h" #include #include "bme680_defs.h" #define DEFAULT_HEATER_DUR 100 #define DEFAULT_HEATER_TEMP 300 #define DEFAULT_AMBIENT_TEMP 23 static const uint32_t bme680_i2c_id = BME680_CHIP_ID_ADDR; static uint8_t bme680_i2c_addr = BME680_I2C_ADDR_PRIMARY; os_timer_t bme680_timer; // timer for forced mode readout int lua_connected_readout_ref; // callback when readout is ready static struct bme680_calib_data bme680_data; static uint8_t bme680_mode = 0; // stores oversampling settings static uint8 os_temp = 0; static uint8 os_pres = 0; static uint8 os_hum = 0; // stores humidity oversampling settings static uint16_t heatr_dur; static int8_t amb_temp = 23; //DEFAULT_AMBIENT_TEMP; static uint32_t bme680_h = 0; static double bme680_hc = 1.0; // return 0 if good static int r8u_n(uint8_t reg, int n, uint8_t *buff) { int i; platform_i2c_send_start(bme680_i2c_id); platform_i2c_send_address(bme680_i2c_id, bme680_i2c_addr, PLATFORM_I2C_DIRECTION_TRANSMITTER); platform_i2c_send_byte(bme680_i2c_id, reg); // platform_i2c_send_stop(bme680_i2c_id); // doco says not needed platform_i2c_send_start(bme680_i2c_id); platform_i2c_send_address(bme680_i2c_id, bme680_i2c_addr, PLATFORM_I2C_DIRECTION_RECEIVER); while (n-- > 0) *buff++ = platform_i2c_recv_byte(bme680_i2c_id, n > 0); platform_i2c_send_stop(bme680_i2c_id); return 0; } static uint8_t w8u(uint8_t reg, uint8_t val) { platform_i2c_send_start(bme680_i2c_id); platform_i2c_send_address(bme680_i2c_id, bme680_i2c_addr, PLATFORM_I2C_DIRECTION_TRANSMITTER); platform_i2c_send_byte(bme680_i2c_id, reg); platform_i2c_send_byte(bme680_i2c_id, val); platform_i2c_send_stop(bme680_i2c_id); } static uint8_t r8u(uint8_t reg) { uint8_t ret[1]; r8u_n(reg, 1, ret); return ret[0]; } // replace 'dev->calib.' with 'bme680_data.' // replace 'dev->amb_temp' with 'amb_temp' /**\mainpage * Copyright (C) 2017 - 2018 Bosch Sensortec GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the copyright holder nor the names of the * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER * OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE * * The information provided is believed to be accurate and reliable. * The copyright holder assumes no responsibility * for the consequences of use * of such information nor for any infringement of patents or * other rights of third parties which may result from its use. * No license is granted by implication or otherwise under any patent or * patent rights of the copyright holder. * * File bme680.c * @date 19 Jun 2018 * @version 3.5.9 * */ static uint8_t calc_heater_res(uint16_t temp) { uint8_t heatr_res; int32_t var1; int32_t var2; int32_t var3; int32_t var4; int32_t var5; int32_t heatr_res_x100; if (temp > 400) /* Cap temperature */ temp = 400; var1 = (((int32_t) amb_temp * bme680_data.par_gh3) / 1000) * 256; var2 = (bme680_data.par_gh1 + 784) * (((((bme680_data.par_gh2 + 154009) * temp * 5) / 100) + 3276800) / 10); var3 = var1 + (var2 / 2); var4 = (var3 / (bme680_data.res_heat_range + 4)); var5 = (131 * bme680_data.res_heat_val) + 65536; heatr_res_x100 = (int32_t) (((var4 / var5) - 250) * 34); heatr_res = (uint8_t) ((heatr_res_x100 + 50) / 100); return heatr_res; } static uint8_t calc_heater_dur(uint16_t dur) { uint8_t factor = 0; uint8_t durval; if (dur >= 0xfc0) { durval = 0xff; /* Max duration*/ } else { while (dur > 0x3F) { dur = dur / 4; factor += 1; } durval = (uint8_t) (dur + (factor * 64)); } return durval; } static int16_t calc_temperature(uint32_t temp_adc) { int64_t var1; int64_t var2; int64_t var3; int16_t calc_temp; var1 = ((int32_t) temp_adc >> 3) - ((int32_t) bme680_data.par_t1 << 1); var2 = (var1 * (int32_t) bme680_data.par_t2) >> 11; var3 = ((var1 >> 1) * (var1 >> 1)) >> 12; var3 = ((var3) * ((int32_t) bme680_data.par_t3 << 4)) >> 14; bme680_data.t_fine = (int32_t) (var2 + var3); calc_temp = (int16_t) (((bme680_data.t_fine * 5) + 128) >> 8); return calc_temp; } static uint32_t calc_pressure(uint32_t pres_adc) { int32_t var1; int32_t var2; int32_t var3; int32_t pressure_comp; var1 = (((int32_t)bme680_data.t_fine) >> 1) - 64000; var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) * (int32_t)bme680_data.par_p6) >> 2; var2 = var2 + ((var1 * (int32_t)bme680_data.par_p5) << 1); var2 = (var2 >> 2) + ((int32_t)bme680_data.par_p4 << 16); var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) * ((int32_t)bme680_data.par_p3 << 5)) >> 3) + (((int32_t)bme680_data.par_p2 * var1) >> 1); var1 = var1 >> 18; var1 = ((32768 + var1) * (int32_t)bme680_data.par_p1) >> 15; pressure_comp = 1048576 - pres_adc; pressure_comp = (int32_t)((pressure_comp - (var2 >> 12)) * ((uint32_t)3125)); if (pressure_comp >= BME680_MAX_OVERFLOW_VAL) pressure_comp = ((pressure_comp / var1) << 1); else pressure_comp = ((pressure_comp << 1) / var1); var1 = ((int32_t)bme680_data.par_p9 * (int32_t)(((pressure_comp >> 3) * (pressure_comp >> 3)) >> 13)) >> 12; var2 = ((int32_t)(pressure_comp >> 2) * (int32_t)bme680_data.par_p8) >> 13; var3 = ((int32_t)(pressure_comp >> 8) * (int32_t)(pressure_comp >> 8) * (int32_t)(pressure_comp >> 8) * (int32_t)bme680_data.par_p10) >> 17; pressure_comp = (int32_t)(pressure_comp) + ((var1 + var2 + var3 + ((int32_t)bme680_data.par_p7 << 7)) >> 4); return (uint32_t)pressure_comp; } static uint32_t calc_humidity(uint16_t hum_adc) { int32_t var1; int32_t var2; int32_t var3; int32_t var4; int32_t var5; int32_t var6; int32_t temp_scaled; int32_t calc_hum; temp_scaled = (((int32_t) bme680_data.t_fine * 5) + 128) >> 8; var1 = (int32_t) (hum_adc - ((int32_t) ((int32_t) bme680_data.par_h1 * 16))) - (((temp_scaled * (int32_t) bme680_data.par_h3) / ((int32_t) 100)) >> 1); var2 = ((int32_t) bme680_data.par_h2 * (((temp_scaled * (int32_t) bme680_data.par_h4) / ((int32_t) 100)) + (((temp_scaled * ((temp_scaled * (int32_t) bme680_data.par_h5) / ((int32_t) 100))) >> 6) / ((int32_t) 100)) + (int32_t) (1 << 14))) >> 10; var3 = var1 * var2; var4 = (int32_t) bme680_data.par_h6 << 7; var4 = ((var4) + ((temp_scaled * (int32_t) bme680_data.par_h7) / ((int32_t) 100))) >> 4; var5 = ((var3 >> 14) * (var3 >> 14)) >> 10; var6 = (var4 * var5) >> 1; calc_hum = (((var3 + var6) >> 10) * ((int32_t) 1000)) >> 12; if (calc_hum > 100000) /* Cap at 100%rH */ calc_hum = 100000; else if (calc_hum < 0) calc_hum = 0; return (uint32_t) calc_hum; } /**static variables */ /**Look up table 1 for the possible gas range values */ uint32_t lookupTable1[16] = { UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2130303777), UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2143188679), UINT32_C(2136746228), UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2147483647) }; /**Look up table 2 for the possible gas range values */ uint32_t lookupTable2[16] = { UINT32_C(4096000000), UINT32_C(2048000000), UINT32_C(1024000000), UINT32_C(512000000), UINT32_C(255744255), UINT32_C(127110228), UINT32_C(64000000), UINT32_C(32258064), UINT32_C(16016016), UINT32_C(8000000), UINT32_C(4000000), UINT32_C(2000000), UINT32_C(1000000), UINT32_C(500000), UINT32_C(250000), UINT32_C(125000) }; static uint32_t calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range) { int64_t var1; uint64_t var2; int64_t var3; uint32_t calc_gas_res; var1 = (int64_t) ((1340 + (5 * (int64_t) bme680_data.range_sw_err)) * ((int64_t) lookupTable1[gas_range])) >> 16; var2 = (((int64_t) ((int64_t) gas_res_adc << 15) - (int64_t) (16777216)) + var1); var3 = (((int64_t) lookupTable2[gas_range] * (int64_t) var1) >> 9); calc_gas_res = (uint32_t) ((var3 + ((int64_t) var2 >> 1)) / (int64_t) var2); return calc_gas_res; } uint16_t calc_dur() { uint32_t tph_dur; /* Calculate in us */ /* TPH measurement duration */ tph_dur = ((uint32_t) (os_temp + os_pres + os_hum) * UINT32_C(1963)); tph_dur += UINT32_C(477 * 4); /* TPH switching duration */ tph_dur += UINT32_C(477 * 5); /* Gas measurement duration */ tph_dur += UINT32_C(500); /* Get it to the closest whole number.*/ tph_dur /= UINT32_C(1000); /* Convert to ms */ tph_dur += UINT32_C(1); /* Wake up duration of 1ms */ NODE_DBG("tpc_dur: %d\n", tph_dur); /* The remaining time should be used for heating */ return heatr_dur + (uint16_t) tph_dur; } /* This part of code is coming from the original bme680.c driver by Bosch. * END */ static double ln(double x) { double y = (x-1)/(x+1); double y2 = y*y; double r = 0; for (int8_t i=33; i>0; i-=2) { //we've got the power r = 1.0/(double)i + y2 * r; } return 2*y*r; } static double bme280_qfe2qnh(int32_t qfe, int32_t h) { double hc; if (bme680_h == h) { hc = bme680_hc; } else { hc = pow((double)(1.0 - 2.25577e-5 * h), (double)(-5.25588)); bme680_hc = hc; bme680_h = h; } double qnh = (double)qfe * hc; return qnh; } static int bme680_lua_setup(lua_State* L) { uint8_t ack; bme680_i2c_addr = BME680_I2C_ADDR_PRIMARY; platform_i2c_send_start(bme680_i2c_id); ack = platform_i2c_send_address(bme680_i2c_id, bme680_i2c_addr, PLATFORM_I2C_DIRECTION_TRANSMITTER); platform_i2c_send_stop(bme680_i2c_id); if (!ack) { NODE_DBG("No ACK on address: %x\n", bme680_i2c_addr); bme680_i2c_addr = BME680_I2C_ADDR_SECONDARY; platform_i2c_send_start(bme680_i2c_id); ack = platform_i2c_send_address(bme680_i2c_id, bme680_i2c_addr, PLATFORM_I2C_DIRECTION_TRANSMITTER); platform_i2c_send_stop(bme680_i2c_id); if (!ack) { NODE_DBG("No ACK on address: %x\n", bme680_i2c_addr); return 0; } } uint8_t chipid = r8u(BME680_CHIP_ID_ADDR); NODE_DBG("chip_id: %x\n", chipid); #define r16uLE_buf(reg) (uint16_t)(((uint16_t)reg[1] << 8) | (uint16_t)reg[0]) #define r16sLE_buf(reg) (int16_t)(r16uLE_buf(reg)) uint8_t buff[BME680_COEFF_SIZE], *reg; r8u_n(BME680_COEFF_ADDR1, BME680_COEFF_ADDR1_LEN, buff); r8u_n(BME680_COEFF_ADDR2, BME680_COEFF_ADDR2_LEN, &buff[BME680_COEFF_ADDR1_LEN]); reg = buff + 1; bme680_data.par_t2 = r16sLE_buf(reg); reg+=2; // #define BME680_T3_REG (3) bme680_data.par_t3 = (int8_t) reg[0]; reg+=2; // #define BME680_P1_LSB_REG (5) bme680_data.par_p1 = r16uLE_buf(reg); reg+=2; // #define BME680_P2_LSB_REG (7) bme680_data.par_p2 = r16sLE_buf(reg); reg+=2; // #define BME680_P3_REG (9) bme680_data.par_p3 = (int8_t) reg[0]; reg+=2; // #define BME680_P4_LSB_REG (11) bme680_data.par_p4 = r16sLE_buf(reg); reg+=2; // #define BME680_P5_LSB_REG (13) bme680_data.par_p5 = r16sLE_buf(reg); reg+=2; // #define BME680_P7_REG (15) bme680_data.par_p7 = (int8_t) reg[0]; reg++; // #define BME680_P6_REG (16) bme680_data.par_p6 = (int8_t) reg[0]; reg+=3; // #define BME680_P8_LSB_REG (19) bme680_data.par_p8 = r16sLE_buf(reg); reg+=2; // #define BME680_P9_LSB_REG (21) bme680_data.par_p9 = r16sLE_buf(reg); reg+=2; // #define BME680_P10_REG (23) bme680_data.par_p10 = (int8_t) reg[0]; reg+=2; // #define BME680_H2_MSB_REG (25) bme680_data.par_h2 = (uint16_t) (((uint16_t) reg[0] << BME680_HUM_REG_SHIFT_VAL) | ((reg[1]) >> BME680_HUM_REG_SHIFT_VAL)); reg++; // #define BME680_H1_LSB_REG (26) bme680_data.par_h1 = (uint16_t) (((uint16_t) reg[1] << BME680_HUM_REG_SHIFT_VAL) | (reg[0] & BME680_BIT_H1_DATA_MSK)); reg+=2; // #define BME680_H3_REG (28) bme680_data.par_h3 = (int8_t) reg[0]; reg++; // #define BME680_H4_REG (29) bme680_data.par_h4 = (int8_t) reg[0]; reg++; // #define BME680_H5_REG (30) bme680_data.par_h5 = (int8_t) reg[0]; reg++; // #define BME680_H6_REG (31) bme680_data.par_h6 = (uint8_t) reg[0]; reg++; // #define BME680_H7_REG (32) bme680_data.par_h7 = (int8_t) reg[0]; reg++; // #define BME680_T1_LSB_REG (33) bme680_data.par_t1 = r16uLE_buf(reg); reg+=2; // #define BME680_GH2_LSB_REG (35) bme680_data.par_gh2 = r16sLE_buf(reg); reg+=2; // #define BME680_GH1_REG (37) bme680_data.par_gh1 = reg[0]; reg++; // #define BME680_GH3_REG (38) bme680_data.par_gh3 = reg[0]; #undef r16uLE_buf #undef r16sLE_buf /* Other coefficients */ bme680_data.res_heat_range = ((r8u(BME680_ADDR_RES_HEAT_RANGE_ADDR) & BME680_RHRANGE_MSK) / 16); bme680_data.res_heat_val = (int8_t) r8u(BME680_ADDR_RES_HEAT_VAL_ADDR); bme680_data.range_sw_err = ((int8_t) r8u(BME680_ADDR_RANGE_SW_ERR_ADDR) & (int8_t) BME680_RSERROR_MSK) / 16; NODE_DBG("par_T: %d\t%d\t%d\n", bme680_data.par_t1, bme680_data.par_t2, bme680_data.par_t3); NODE_DBG("par_P: %d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n", bme680_data.par_p1, bme680_data.par_p2, bme680_data.par_p3, bme680_data.par_p4, bme680_data.par_p5, bme680_data.par_p6, bme680_data.par_p7, bme680_data.par_p8, bme680_data.par_p9, bme680_data.par_p10); NODE_DBG("par_H: %d\t%d\t%d\t%d\t%d\t%d\t%d\n", bme680_data.par_h1, bme680_data.par_h2, bme680_data.par_h3, bme680_data.par_h4, bme680_data.par_h5, bme680_data.par_h6, bme680_data.par_h7); NODE_DBG("par_GH: %d\t%d\t%d\n", bme680_data.par_gh1, bme680_data.par_gh2, bme680_data.par_gh3); NODE_DBG("res_heat_range, res_heat_val, range_sw_err: %d\t%d\t%d\n", bme680_data.res_heat_range, bme680_data.res_heat_val, bme680_data.range_sw_err); uint8_t full_init = !lua_isnumber(L, 7)?1:lua_tointeger(L, 7); // 7-th parameter: init the chip too if (full_init) { uint8_t filter; uint8_t const bit3 = 0b111; uint8_t const bit2 = 0b11; //bme680.setup([temp_oss, press_oss, humi_oss, heater_temp, heater_duration, IIR_filter]) os_temp = (!lua_isnumber(L, 1)?BME680_OS_2X:(luaL_checkinteger(L, 1)&bit3)); // 1-st parameter: temperature oversampling os_pres = (!lua_isnumber(L, 2)?BME680_OS_16X:(luaL_checkinteger(L, 2)&bit3)); // 2-nd parameter: pressure oversampling os_hum = (!lua_isnumber(L, 3))?BME680_OS_1X:(luaL_checkinteger(L, 3)&bit3); bme680_mode = BME680_SLEEP_MODE | (os_pres << 2) | (os_temp << 5); os_hum = os_hum; // 3-rd parameter: humidity oversampling filter = ((!lua_isnumber(L, 6)?BME680_FILTER_SIZE_31:(luaL_checkinteger(L, 6)&bit3)) << 2); // 6-th parameter: IIR filter NODE_DBG("mode: %x\nhumidity oss: %x\nconfig: %x\n", bme680_mode, os_hum, filter); heatr_dur = (!lua_isnumber(L, 5)?DEFAULT_HEATER_DUR:(luaL_checkinteger(L, 5))); // 5-th parameter: heater duration w8u(BME680_GAS_WAIT0_ADDR, calc_heater_dur(heatr_dur)); w8u(BME680_RES_HEAT0_ADDR, calc_heater_res((!lua_isnumber(L, 4)?DEFAULT_HEATER_TEMP:(luaL_checkinteger(L, 4))))); // 4-th parameter: heater temperature w8u(BME680_CONF_ODR_FILT_ADDR, BME680_SET_BITS_POS_0(r8u(BME680_CONF_ODR_FILT_ADDR), BME680_FILTER, filter)); // #define BME680_CONF_ODR_FILT_ADDR UINT8_C(0x75) // set heater on w8u(BME680_CONF_HEAT_CTRL_ADDR, BME680_SET_BITS_POS_0(r8u(BME680_CONF_HEAT_CTRL_ADDR), BME680_HCTRL, 1)); w8u(BME680_CONF_T_P_MODE_ADDR, bme680_mode); w8u(BME680_CONF_OS_H_ADDR, BME680_SET_BITS_POS_0(r8u(BME680_CONF_OS_H_ADDR), BME680_OSH, os_hum)); w8u(BME680_CONF_ODR_RUN_GAS_NBC_ADDR, 1 << 4 | 0 & bit3); } lua_pushinteger(L, 1); return 1; } static void bme280_readoutdone (void *arg) { NODE_DBG("timer out\n"); lua_State *L = lua_getstate(); lua_rawgeti (L, LUA_REGISTRYINDEX, lua_connected_readout_ref); luaL_unref (L, LUA_REGISTRYINDEX, lua_connected_readout_ref); os_timer_disarm (&bme680_timer); luaL_pcallx (L, 0, 0); } static int bme680_lua_startreadout(lua_State* L) { uint32_t delay; if (lua_isnumber(L, 1)) { delay = luaL_checkinteger(L, 1); if (!delay) {delay = calc_dur();} // if delay is 0 then set the default delay } if (!lua_isnoneornil(L, 2)) { lua_pushvalue(L, 2); lua_connected_readout_ref = luaL_ref(L, LUA_REGISTRYINDEX); } else { lua_connected_readout_ref = LUA_NOREF; } w8u(BME680_CONF_OS_H_ADDR, os_hum); w8u(BME680_CONF_T_P_MODE_ADDR, (bme680_mode & 0xFC) | BME680_FORCED_MODE); NODE_DBG("control old: %x, control: %x, delay: %d\n", bme680_mode, (bme680_mode & 0xFC) | BME680_FORCED_MODE, delay); if (lua_connected_readout_ref != LUA_NOREF) { NODE_DBG("timer armed\n"); os_timer_disarm (&bme680_timer); os_timer_setfn (&bme680_timer, (os_timer_func_t *)bme280_readoutdone, L); os_timer_arm (&bme680_timer, delay, 0); // trigger callback when readout is ready } return 0; } // Return nothing on failure // Return T, QFE, H if no altitude given // Return T, QFE, H, QNH if altitude given static int bme680_lua_read(lua_State* L) { uint8_t buff[BME680_FIELD_LENGTH] = { 0 }; uint8_t gas_range; uint32_t adc_temp; uint32_t adc_pres; uint16_t adc_hum; uint16_t adc_gas_res; uint8_t status; uint32_t qfe; uint8_t calc_qnh = lua_isnumber(L, 1); r8u_n(BME680_FIELD0_ADDR, BME680_FIELD_LENGTH, buff); status = buff[0] & BME680_NEW_DATA_MSK; /* read the raw data from the sensor */ adc_pres = (uint32_t) (((uint32_t) buff[2] * 4096) | ((uint32_t) buff[3] * 16) | ((uint32_t) buff[4] / 16)); adc_temp = (uint32_t) (((uint32_t) buff[5] * 4096) | ((uint32_t) buff[6] * 16) | ((uint32_t) buff[7] / 16)); adc_hum = (uint16_t) (((uint32_t) buff[8] * 256) | (uint32_t) buff[9]); adc_gas_res = (uint16_t) ((uint32_t) buff[13] * 4 | (((uint32_t) buff[14]) / 64)); gas_range = buff[14] & BME680_GAS_RANGE_MSK; status |= buff[14] & BME680_GASM_VALID_MSK; status |= buff[14] & BME680_HEAT_STAB_MSK; NODE_DBG("status, new_data, gas_range, gasm_valid: 0x%x, 0x%x, 0x%x, 0x%x\n", status, status & BME680_NEW_DATA_MSK, buff[14] & BME680_GAS_RANGE_MSK, buff[14] & BME680_GASM_VALID_MSK); if (!(status & BME680_NEW_DATA_MSK)) { return 0; } int16_t temp = calc_temperature(adc_temp); amb_temp = temp / 100; lua_pushinteger(L, temp); qfe = calc_pressure(adc_pres); lua_pushinteger(L, qfe); lua_pushinteger(L, calc_humidity(adc_hum)); lua_pushinteger(L, calc_gas_resistance(adc_gas_res, gas_range)); if (calc_qnh) { // have altitude int32_t h = luaL_checkinteger(L, 1); double qnh = bme280_qfe2qnh(qfe, h); lua_pushinteger(L, (int32_t)(qnh + 0.5)); return 5; } return 4; } static int bme680_lua_qfe2qnh(lua_State* L) { if (!lua_isnumber(L, 2)) { return luaL_error(L, "wrong arg range"); } int32_t qfe = luaL_checkinteger(L, 1); int32_t h = luaL_checkinteger(L, 2); double qnh = bme280_qfe2qnh(qfe, h); lua_pushinteger(L, (int32_t)(qnh + 0.5)); return 1; } static int bme680_lua_altitude(lua_State* L) { if (!lua_isnumber(L, 2)) { return luaL_error(L, "wrong arg range"); } int32_t P = luaL_checkinteger(L, 1); int32_t qnh = luaL_checkinteger(L, 2); double h = (1.0 - pow((double)P/(double)qnh, 1.0/5.25588)) / 2.25577e-5 * 100.0; lua_pushinteger(L, (int32_t)(h + (((h<0)?-1:(h>0)) * 0.5))); return 1; } static int bme680_lua_dewpoint(lua_State* L) { if (!lua_isnumber(L, 2)) { return luaL_error(L, "wrong arg range"); } double H = luaL_checkinteger(L, 1)/100000.0; double T = luaL_checkinteger(L, 2)/100.0; const double c243 = 243.5; const double c17 = 17.67; double c = ln(H) + ((c17 * T) / (c243 + T)); double d = (c243 * c)/(c17 - c) * 100.0; lua_pushinteger(L, (int32_t)(d + (((d<0)?-1:(d>0)) * 0.5))); return 1; } LROT_BEGIN(bme680, NULL, 0) LROT_FUNCENTRY( setup, bme680_lua_setup ) LROT_FUNCENTRY( startreadout, bme680_lua_startreadout ) LROT_FUNCENTRY( qfe2qnh, bme680_lua_qfe2qnh ) LROT_FUNCENTRY( altitude, bme680_lua_altitude ) LROT_FUNCENTRY( dewpoint, bme680_lua_dewpoint ) LROT_FUNCENTRY( read, bme680_lua_read ) LROT_END(bme680, NULL, 0) NODEMCU_MODULE(BME680, "bme680", bme680, NULL);