/****************************************************************************** * Copyright 2013-2014 Espressif Systems (Wuxi) * * FileName: pwm.c * * Description: pwm driver * * Modification history: * 2014/5/1, v1.0 create this file. *******************************************************************************/ #include "platform.h" #include "ets_sys.h" #include "os_type.h" #include "osapi.h" #include "gpio.h" #include "hw_timer.h" #include "user_interface.h" #include "driver/pwm.h" // #define PWM_DBG os_printf #define PWM_DBG // Enabling the next line will cause the interrupt handler to toggle // this output pin during processing so that the timing is obvious // // #define PWM_DBG_PIN 13 // GPIO7 #ifdef PWM_DBG_PIN #define PWM_DBG_PIN_HIGH() GPIO_REG_WRITE(GPIO_OUT_W1TS_ADDRESS, 1 << PWM_DBG_PIN) #define PWM_DBG_PIN_LOW() GPIO_REG_WRITE(GPIO_OUT_W1TC_ADDRESS, 1 << PWM_DBG_PIN) #else #define PWM_DBG_PIN_HIGH() #define PWM_DBG_PIN_LOW() #endif LOCAL struct pwm_single_param pwm_single_toggle[2][PWM_CHANNEL + 1]; LOCAL struct pwm_single_param *pwm_single; LOCAL struct pwm_param pwm; // LOCAL uint8 pwm_out_io_num[PWM_CHANNEL] = {PWM_0_OUT_IO_NUM, PWM_1_OUT_IO_NUM, PWM_2_OUT_IO_NUM}; LOCAL int8 pwm_out_io_num[PWM_CHANNEL] = {-1, -1, -1, -1, -1, -1}; LOCAL uint8 pwm_channel_toggle[2]; LOCAL uint8 *pwm_channel; // Toggle flips between 1 and 0 when we make updates so that the interrupt code // cn switch cleanly between the two states. The cinterrupt handler uses either // the pwm_single_toggle[0] or pwm_single_toggle[1] // pwm_toggle indicates which state should be used on the *next* timer interrupt // freq boundary. LOCAL uint8 pwm_toggle = 1; LOCAL volatile uint8 pwm_current_toggle = 1; LOCAL uint8 pwm_timer_down = 1; LOCAL uint8 pwm_current_channel = 0; LOCAL uint16 pwm_gpio = 0; LOCAL uint8 pwm_channel_num = 0; LOCAL void ICACHE_RAM_ATTR pwm_tim1_intr_handler(os_param_t p); #define TIMER_OWNER ((os_param_t) 'P') LOCAL void ICACHE_FLASH_ATTR pwm_insert_sort(struct pwm_single_param pwm[], uint8 n) { uint8 i; for (i = 1; i < n; i++) { if (pwm[i].h_time < pwm[i - 1].h_time) { int8 j = i - 1; struct pwm_single_param tmp; os_memcpy(&tmp, &pwm[i], sizeof(struct pwm_single_param)); while (tmp.h_time < pwm[j].h_time) { os_memcpy(&pwm[j + 1], &pwm[j], sizeof(struct pwm_single_param)); j--; if (j < 0) { break; } } os_memcpy(&pwm[j + 1], &tmp, sizeof(struct pwm_single_param)); } } } // Returns FALSE if we cannot start bool ICACHE_FLASH_ATTR pwm_start(void) { uint8 i, j; PWM_DBG("--Function pwm_start() is called\n"); PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num); PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]); PWM_DBG("pwm.period:%d,pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.period,pwm.duty[0],pwm.duty[1],pwm.duty[2]); // First we need to make sure that the interrupt handler is running // out of the same set of params as we expect while (!pwm_timer_down && pwm_toggle != pwm_current_toggle) { os_delay_us(100); } if (pwm_timer_down) { pwm_toggle = pwm_current_toggle; } uint8_t new_toggle = pwm_toggle ^ 0x01; struct pwm_single_param *local_single = pwm_single_toggle[new_toggle]; uint8 *local_channel = &pwm_channel_toggle[new_toggle]; // step 1: init PWM_CHANNEL+1 channels param for (i = 0; i < pwm_channel_num; i++) { uint32 us = pwm.period * pwm.duty[i] / PWM_DEPTH; local_single[i].h_time = US_TO_RTC_TIMER_TICKS(us); PWM_DBG("i:%d us:%d ht:%d\n",i,us,local_single[i].h_time); local_single[i].gpio_set = 0; local_single[i].gpio_clear = 1 << pin_num[pwm_out_io_num[i]]; } local_single[pwm_channel_num].h_time = US_TO_RTC_TIMER_TICKS(pwm.period); local_single[pwm_channel_num].gpio_set = pwm_gpio; local_single[pwm_channel_num].gpio_clear = 0; PWM_DBG("i:%d period:%d ht:%d\n",pwm_channel_num,pwm.period,local_single[pwm_channel_num].h_time); // step 2: sort, small to big pwm_insert_sort(local_single, pwm_channel_num + 1); *local_channel = pwm_channel_num + 1; PWM_DBG("1channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time); // step 3: combine same duty channels (or nearly the same duty). If there is // under 2 us between pwm outputs, then treat them as the same. for (i = pwm_channel_num; i > 0; i--) { if (local_single[i].h_time <= local_single[i - 1].h_time + US_TO_RTC_TIMER_TICKS(2)) { local_single[i - 1].gpio_set |= local_single[i].gpio_set; local_single[i - 1].gpio_clear |= local_single[i].gpio_clear; for (j = i + 1; j < *local_channel; j++) { os_memcpy(&local_single[j - 1], &local_single[j], sizeof(struct pwm_single_param)); } (*local_channel)--; } } PWM_DBG("2channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time); // step 4: cacl delt time for (i = *local_channel - 1; i > 0; i--) { local_single[i].h_time -= local_single[i - 1].h_time; } // step 5: last channel needs to clean local_single[*local_channel-1].gpio_clear = 0; // step 6: if first channel duty is 0, remove it if (local_single[0].h_time == 0) { local_single[*local_channel - 1].gpio_set &= ~local_single[0].gpio_clear; local_single[*local_channel - 1].gpio_clear |= local_single[0].gpio_clear; for (i = 1; i < *local_channel; i++) { os_memcpy(&local_single[i - 1], &local_single[i], sizeof(struct pwm_single_param)); } (*local_channel)--; } // Make the new ones active pwm_toggle = new_toggle; // if timer is down, need to set gpio and start timer if (pwm_timer_down == 1) { pwm_channel = local_channel; pwm_single = local_single; pwm_current_toggle = pwm_toggle; // start gpio_output_set(local_single[0].gpio_set, local_single[0].gpio_clear, pwm_gpio, 0); // yeah, if all channels' duty is 0 or 255, don't need to start timer, otherwise start... if (*local_channel != 1) { PWM_DBG("Need to setup timer\n"); if (!platform_hw_timer_init(TIMER_OWNER, NMI_SOURCE, FALSE)) { return FALSE; } pwm_timer_down = 0; platform_hw_timer_set_func(TIMER_OWNER, pwm_tim1_intr_handler, 0); platform_hw_timer_arm_ticks(TIMER_OWNER, local_single[0].h_time); } else { PWM_DBG("Timer left idle\n"); platform_hw_timer_close(TIMER_OWNER); } } else { // ensure that all outputs are outputs gpio_output_set(0, 0, pwm_gpio, 0); } #ifdef PWM_DBG_PIN // Enable as output gpio_output_set(0, 0, 1 << PWM_DBG_PIN, 0); #endif PWM_DBG("3channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time); return TRUE; } /****************************************************************************** * FunctionName : pwm_set_duty * Description : set each channel's duty params * Parameters : uint8 duty : 0 ~ PWM_DEPTH * uint8 channel : channel index * Returns : NONE *******************************************************************************/ void ICACHE_FLASH_ATTR pwm_set_duty(uint16 duty, uint8 channel) { uint8 i; for(i=0;i= PWM_DEPTH) { pwm.duty[channel] = PWM_DEPTH; } else { pwm.duty[channel] = duty; } } /****************************************************************************** * FunctionName : pwm_set_freq * Description : set pwm frequency * Parameters : uint16 freq : 100hz typically * Returns : NONE *******************************************************************************/ void ICACHE_FLASH_ATTR pwm_set_freq(uint16 freq, uint8 channel) { if (freq > PWM_FREQ_MAX) { pwm.freq = PWM_FREQ_MAX; } else if (freq < 1) { pwm.freq = 1; } else { pwm.freq = freq; } pwm.period = PWM_1S / pwm.freq; } /****************************************************************************** * FunctionName : pwm_set_freq_duty * Description : set pwm frequency and each channel's duty * Parameters : uint16 freq : 100hz typically * uint16 *duty : each channel's duty * Returns : NONE *******************************************************************************/ LOCAL void ICACHE_FLASH_ATTR pwm_set_freq_duty(uint16 freq, uint16 *duty) { uint8 i; pwm_set_freq(freq, 0); for (i = 0; i < PWM_CHANNEL; i++) { // pwm_set_duty(duty[i], i); if(pwm_out_io_num[i] != -1) pwm_set_duty(duty[i], pwm_out_io_num[i]); } } /****************************************************************************** * FunctionName : pwm_get_duty * Description : get duty of each channel * Parameters : uint8 channel : channel index * Returns : NONE *******************************************************************************/ uint16 ICACHE_FLASH_ATTR pwm_get_duty(uint8 channel) { uint8 i; for(i=0;i= (*pwm_channel - 1)) { pwm_single = pwm_single_toggle[pwm_toggle]; pwm_channel = &pwm_channel_toggle[pwm_toggle]; pwm_current_toggle = pwm_toggle; gpio_output_set(pwm_single[*pwm_channel - 1].gpio_set, pwm_single[*pwm_channel - 1].gpio_clear, 0, 0); pwm_current_channel = 0; if (*pwm_channel == 1) { pwm_timer_down = 1; break; } } else { gpio_output_set(pwm_single[pwm_current_channel].gpio_set, pwm_single[pwm_current_channel].gpio_clear, 0, 0); pwm_current_channel++; } int next_time = pwm_single[pwm_current_channel].h_time; // Delay now holds the time (in ticks) since when the last timer expiry was PWM_DBG_PIN_LOW(); int delay = platform_hw_timer_get_delay_ticks(TIMER_OWNER) + 4 - offset; offset += next_time; next_time = next_time - delay; if (next_time > US_TO_RTC_TIMER_TICKS(4)) { PWM_DBG_PIN_HIGH(); platform_hw_timer_arm_ticks(TIMER_OWNER, next_time); break; } PWM_DBG_PIN_HIGH(); } PWM_DBG_PIN_LOW(); } /****************************************************************************** * FunctionName : pwm_init * Description : pwm gpio, params and timer initialization * Parameters : uint16 freq : pwm freq param * uint16 *duty : each channel's duty * Returns : void *******************************************************************************/ void ICACHE_FLASH_ATTR pwm_init(uint16 freq, uint16 *duty) { uint8 i; // PIN_FUNC_SELECT(PWM_0_OUT_IO_MUX, PWM_0_OUT_IO_FUNC); // PIN_FUNC_SELECT(PWM_1_OUT_IO_MUX, PWM_1_OUT_IO_FUNC); // PIN_FUNC_SELECT(PWM_2_OUT_IO_MUX, PWM_2_OUT_IO_FUNC); // GPIO_OUTPUT_SET(GPIO_ID_PIN(PWM_0_OUT_IO_NUM), 0); // GPIO_OUTPUT_SET(GPIO_ID_PIN(PWM_1_OUT_IO_NUM), 0); // GPIO_OUTPUT_SET(GPIO_ID_PIN(PWM_2_OUT_IO_NUM), 0); for (i = 0; i < PWM_CHANNEL; i++) { // pwm_gpio |= (1 << pwm_out_io_num[i]); pwm_gpio = 0; pwm.duty[i] = 0; } pwm_set_freq(500, 0); // pwm_set_freq_duty(freq, duty); pwm_start(); PWM_DBG("pwm_init returning\n"); } bool ICACHE_FLASH_ATTR pwm_add(uint8 channel){ PWM_DBG("--Function pwm_add() is called. channel:%d\n", channel); PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num); PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]); PWM_DBG("pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.duty[0],pwm.duty[1],pwm.duty[2]); uint8 i; for(i=0;i