/* ** lflashimg.c ** Dump a compiled Proto hiearchy to a RO (FLash) image file ** See Copyright Notice in lua.h */ #define LUAC_CROSS_FILE #include "luac_cross.h" #include C_HEADER_CTYPE #include C_HEADER_STDIO #include C_HEADER_STDLIB #include C_HEADER_STRING #define lflashimg_c #define LUA_CORE #include "lobject.h" #include "lstring.h" #undef LUA_FLASH_STORE #define LUA_FLASH_STORE #include "lflash.h" //#define LOCAL_DEBUG #if INT_MAX != 2147483647 # error "luac.cross requires C toolchain with 4 byte word size" #endif #define WORDSIZE ((int) sizeof(int)) #define ALIGN(s) (((s)+(WORDSIZE-1)) & (-(signed) WORDSIZE)) #define WORDSHIFT 2 typedef unsigned int uint; #define FLASH_WORDS(t) (sizeof(t)/sizeof(FlashAddr)) /* * * This dumper is a variant of the standard ldump, in that instead of producing a * binary loader format that lundump can load, it produced an image file that can be * directly mapped or copied into addressable memory. The typical application is on * small memory IoT devices which support programmable flash storage such as the * ESP8266. A 64 Kb LFS image has 16Kb words and will enable all program-related * storage to be accessed directly from flash, leaving the RAM for true R/W application * data. * * The start address of the Lua Flash Store (LFS) is build-dependent,. However, by * adopting a position independent image format, cross compilation can leave this * detail to the on-device image loader. As all objects in the LFS can be treated as * multiples of 4-byte words. Although some record field are byte-size and can be byte * packed, all other fields are word aligned, and in particular any address references * within the LFS are word-aligned and also refer to word-aligned addresses within the * LFS. * * In order to make the LFS position independent, such addresses are stored in a * special format, where each PIC address is two 16-bit unsigned offsets: * * Bits 0-15 is the offset into the LFS that this address refers to * Bits 16-31 is the offset linking to the PIC next address. * * Hence the LFS can be up to 256Kb in length and the flash loader can use the forward * links to chain down from the mainProto address at offet 3 to all image addresses * during load and convert them to the corresponding correct absolute memory addresses. * * The flash image has a standard header detailed in lflash.h * * Note that luac.cross may be compiled on any little-endian machine with 32 or 64 bit * word length so Flash addresses cant be handled as standard C pointers as size_t and * int may not have the same size. Hence addresses with the must be declared as the * FlashAddr type rather than typed C pointers and must be accessed through macros. * * The Flash image is assembled up by first building the RO stringtable containing * all strings used in the compiled proto hierarchy. This is followed by the Protos. * * The storage is allocated bottom up using a serial allocator and the algortihm for * building the image essentially does a bottom-uo serial enumeration so that any * referenced storage has already been allocated in the image, and therefore (with the * exception of the Flash Header) all pointer references are backwards. * * As addresses are 4 byte on the target and either 4 or (typically) 8 bytes on the * host so any structures containing address fields (TStrings, TValues, Protos, other * address vectors) need repacking. */ typedef struct flashts { /* This is the fixed 32-bit equivalent of TString */ FlashAddr next; lu_byte tt; lu_byte marked; int hash; int len; } FlashTS; #ifndef LUA_MAX_FLASH_SIZE #define LUA_MAX_FLASH_SIZE 0x10000 //in words #endif static uint curOffset = 0; static uint flashImage[LUA_MAX_FLASH_SIZE]; static unsigned char flashAddrTag[LUA_MAX_FLASH_SIZE/WORDSIZE]; #define fatal luac_fatal extern void __attribute__((noreturn)) luac_fatal(const char* message); #ifdef LOCAL_DEBUG #define DBG_PRINT(...) printf(__VA_ARGS__) #else #define DBG_PRINT(...) ((void)0) #endif #define FLASH_SIG 0xfafaaf00 /* * Serial allocator. Throw a luac-style out of memory error is allocaiton fails. */ static void *flashAlloc(lua_State* L, size_t n) { void *p = (void *)(flashImage + curOffset); curOffset += ALIGN(n)>>WORDSHIFT; if (curOffset > LUA_MAX_FLASH_SIZE) { fatal("Out of Flash memmory"); } return p; } /* * Convert an absolute address pointing inside the flash image to offset form. * This macro form also takes the lvalue destination so that this can be tagged * as a relocatable address. */ #define toFlashAddr(l, pd, s) _toFlashAddr(l, &(pd), s) static void _toFlashAddr(lua_State* L, FlashAddr *a, void *p) { uint doffset = cast(char *, a) - cast(char *,flashImage); lua_assert(!(doffset & (WORDSIZE-1))); doffset >>= WORDSHIFT; lua_assert(doffset <= curOffset); if (p) { uint poffset = cast(char *, p) - cast(char *,flashImage); lua_assert(!(poffset & (WORDSIZE-1))); poffset >>= WORDSHIFT; lua_assert(poffset <= curOffset); flashImage[doffset] = poffset; // Set the pointer to the offset flashAddrTag[doffset] = 1; // And tag as an address } else { // Special case for NULL pointer flashImage[doffset] = 0; } } /* * Convert an image address in offset form back to (host) absolute form */ static void *fromFashAddr(FlashAddr a) { return a ? cast(void *, flashImage + a) : NULL; } /* * Add a TS found in the Proto Load to the table at the ToS */ static void addTS(lua_State *L, TString *ts) { lua_assert(ttisstring(&(ts->tsv))); lua_pushnil(L); setsvalue(L, L->top-1, ts); lua_pushinteger(L, 1); lua_rawset(L, -3); DBG_PRINT("Adding string: %s\n",getstr(ts)); } /* * Enumerate all of the Protos in the Proto hiearchy and scan contents to collect * all referenced strings in a Lua Array at ToS. */ static void scanProtoStrings(lua_State *L, const Proto* f) { /* Table at L->Top[-1] is used to collect the strings */ int i; if (f->source) addTS(L, f->source); #ifdef LUA_OPTIMIZE_DEBUG if (f->packedlineinfo) addTS(L, luaS_new(L, cast(const char *, f->packedlineinfo))); #endif for (i = 0; i < f->sizek; i++) { if (ttisstring(f->k + i)) addTS(L, rawtsvalue(f->k + i)); } for (i = 0; i < f->sizeupvalues; i++) addTS(L, f->upvalues[i]); for (i = 0; i < f->sizelocvars; i++) addTS(L, f->locvars[i].varname); for (i = 0; i < f->sizep; i++) scanProtoStrings(L, f->p[i]); } /* * Use the collected strings table to build the new ROstrt in the Flash Image * * The input is an array of {"SomeString" = 1, ...} on the ToS. * The output is an array of {"SomeString" = FlashOffset("SomeString"), ...} on ToS */ static void createROstrt(lua_State *L, FlashHeader *fh) { /* Table at L->Top[-1] on input is hash used to collect the strings */ /* Count the number of strings. Can't use objlen as this is a hash */ fh->nROuse = 0; lua_pushnil(L); /* first key */ while (lua_next(L, -2) != 0) { fh->nROuse++; DBG_PRINT("Found: %s\n",getstr(rawtsvalue(L->top-2))); lua_pop(L, 1); // dump the value } fh->nROsize = 2<nROuse); FlashAddr *hashTab = flashAlloc(L, fh->nROsize * WORDSIZE); toFlashAddr(L, fh->pROhash, hashTab); /* Now iterate over the strings to be added to the RO string table and build it */ lua_newtable(L); // add output table lua_pushnil(L); // First key while (lua_next(L, -3) != 0) { // replaces key, pushes value TString *ts = rawtsvalue(L->top - 2); // key.ts const char *p = getstr(ts); // C string of key uint hash = ts->tsv.hash; // hash of key size_t len = ts->tsv.len; // and length DBG_PRINT("2nd pass: %s\n",p); FlashAddr *e = hashTab + lmod(hash, fh->nROsize); FlashTS *last = cast(FlashTS *, fromFashAddr(*e)); FlashTS *fts = cast(FlashTS *, flashAlloc(L, sizeof(FlashTS))); toFlashAddr(L, *e, fts); // add reference to TS to lookup vector toFlashAddr(L, fts->next, last); // and chain to previous entry if any fts->tt = LUA_TSTRING; // Set as String fts->marked = bitmask(LFSBIT); // LFS string with no Whitebits set fts->hash = hash; // add hash fts->len = len; // and length memcpy(flashAlloc(L, ALIGN(len+1)), p, ALIGN(len+1)); // copy string // include the trailing null char lua_pop(L, 1); // Junk the value lua_pushvalue(L, -1); // Dup the key as rawset dumps its copy lua_pushinteger(L, cast(FlashAddr*,fts)-flashImage); // Value is new TS offset. lua_rawset(L, -4); // Add to new table } /* At this point the old hash is done to derefence for GC */ lua_remove(L, -2); } /* * Convert a TString reference in the host G(L)->strt entry into the corresponding * TString address in the flashImage using the lookup table at ToS */ static void *resolveTString(lua_State* L, TString *s) { if (!s) return NULL; lua_pushnil(L); setsvalue(L, L->top-1, s); lua_rawget(L, -2); lua_assert(!lua_isnil(L, -1)); void *ts = fromFashAddr(lua_tointeger(L, -1)); lua_pop(L, 1); return ts; } /* * In order to simplify repacking of structures from the host format to that target * format, this simple copy routine is data-driven by a simple format specifier. * n Number of consecutive records to be processed * fmt A string of A,I, S, V specifiers spanning the record. * src Source of record * returns Address of destination record */ #define TARGET_TV_SIZE (2*sizeof(lua_Number)) static void *flashCopy(lua_State* L, int n, const char *fmt, void *src) { /* ToS is the string address mapping table */ if (n == 0) return NULL; int i, recsize; void *newts; /* A bit of a botch because fmt is either "V" or a string of WORDSIZE specifiers */ /* The size 8 for integer builds and 16 for float ones on both architectures */ if (fmt[0]=='V') { lua_assert(fmt[1] == 0); /* V formats must be singetons */ recsize = TARGET_TV_SIZE; } else { recsize = WORDSIZE * strlen(fmt); } uint *d = cast(uint *, flashAlloc(L, n * recsize)); uint *dest = d; uint *s = cast(uint *, src); for (i = 0; i < n; i++) { const char *p = fmt; while (*p) { /* All input address types (A,S,V) are aligned to size_t boundaries */ if (*p != 'I' && ((size_t)s)&(sizeof(size_t)-1)) s++; switch (*p++) { case 'A': toFlashAddr(L, *d, *cast(void**, s)); s += FLASH_WORDS(size_t); d++; break; case 'I': *d++ = *s++; break; case 'S': newts = resolveTString(L, *cast(TString **, s)); toFlashAddr(L, *d, newts); s += FLASH_WORDS(size_t); d++; break; case 'V': /* This code has to work for both Integer and Float build variants */ memset(d, 0, TARGET_TV_SIZE); TValue *sv = cast(TValue *, s); if (ttisstring(sv)) { toFlashAddr(L, *d, resolveTString(L, rawtsvalue(sv))); } else { /* non-collectable types all of size lua_Number */ lua_assert(!iscollectable(sv)); *cast(lua_Number*,d) = *cast(lua_Number*,s); } *cast(int *,cast(lua_Number*,d)+1) = ttype(sv); s += FLASH_WORDS(TValue); d += TARGET_TV_SIZE/WORDSIZE; break; default: lua_assert (0); } } } return dest; } /* The debug optimised version has a different Proto layout */ #ifdef LUA_OPTIMIZE_DEBUG #define PROTO_COPY_MASK "AIAAAAAASIIIIIIIAI" #else #define PROTO_COPY_MASK "AIAAAAAASIIIIIIIIAI" #endif /* * Do the actual prototype copy. */ static void *functionToFlash(lua_State* L, const Proto* orig) { Proto f; int i; memcpy (&f, orig, sizeof(Proto)); f.gclist = NULL; f.next = NULL; l_setbit(f.marked, LFSBIT); /* OK to set the LFSBIT on a stack-cloned copy */ if (f.sizep) { /* clone included Protos */ Proto **p = luaM_newvector(L, f.sizep, Proto *); for (i=0; i= 0; i--) { if (flashAddrTag[i]) { lua_assert(flashImage[i]mainProto, functionToFlash(L, main)); fh->flash_sig = FLASH_SIG; fh->flash_size = curOffset*WORDSIZE; linkPICaddresses(); lua_unlock(L); int status = w(L, flashImage, curOffset * sizeof(uint), data); lua_lock(L); return status; }