// Module for interfacing with serial #include "module.h" #include "lauxlib.h" #include "platform.h" #include "linput.h" #include #include static lua_State *gL = NULL; bool uart_has_on_data_cb(unsigned id){ return uart_status[id].receive_rf != LUA_NOREF; } bool uart_on_data_cb(unsigned id, const char *buf, size_t len){ if(!buf || len==0) return false; if(uart_status[id].receive_rf == LUA_NOREF) return false; if(!gL) return false; int top = lua_gettop(gL); lua_rawgeti(gL, LUA_REGISTRYINDEX, uart_status[id].receive_rf); lua_pushlstring(gL, buf, len); luaL_pcallx(gL, 1, 0); lua_settop(gL, top); return !run_input; } bool uart_on_error_cb(unsigned id, const char *buf, size_t len){ if(!buf || len==0) return false; if(uart_status[id].error_rf == LUA_NOREF) return false; if(!gL) return false; int top = lua_gettop(gL); lua_rawgeti(gL, LUA_REGISTRYINDEX, uart_status[id].error_rf); lua_pushlstring(gL, buf, len); luaL_pcallx(gL, 1, 0); lua_settop(gL, top); return true; } // Lua: uart.on([id], "method", [number/char], function, [run_input]) static int uart_on( lua_State* L ) { unsigned id = CONFIG_ESP_CONSOLE_UART_NUM; size_t sl, el; int32_t run = 1; uint8_t stack = 1; const char *method; uart_status_t *us; if( lua_isnumber( L, stack ) ) { id = ( unsigned )luaL_checkinteger( L, stack ); MOD_CHECK_ID( uart, id ); stack++; } us = & uart_status[id]; method = luaL_checklstring( L, stack, &sl ); stack++; if (method == NULL) return luaL_error( L, "wrong arg type" ); if( lua_type( L, stack ) == LUA_TNUMBER ) { us->need_len = ( uint16_t )luaL_checkinteger( L, stack ); stack++; us->end_char = -1; if( us->need_len > 255 ){ us->need_len = 255; return luaL_error( L, "wrong arg range" ); } } else if(lua_isstring(L, stack)) { const char *end = luaL_checklstring( L, stack, &el ); stack++; if(el!=1){ return luaL_error( L, "wrong arg range" ); } us->end_char = (int16_t)end[0]; us->need_len = 0; } if (lua_isfunction(L, stack)) { if ( lua_isnumber(L, stack+1) ){ run = lua_tointeger(L, stack+1); } lua_pushvalue(L, stack); // copy argument (func) to the top of stack } else { lua_pushnil(L); } if(sl == 4 && strcmp(method, "data") == 0){ if(id == CONFIG_ESP_CONSOLE_UART_NUM) run_input = true; if(us->receive_rf != LUA_NOREF){ luaL_unref(L, LUA_REGISTRYINDEX, us->receive_rf); us->receive_rf = LUA_NOREF; } if(!lua_isnil(L, -1)){ us->receive_rf = luaL_ref(L, LUA_REGISTRYINDEX); gL = L; if(id == CONFIG_ESP_CONSOLE_UART_NUM && run==0) run_input = false; } else { lua_pop(L, 1); } } else if(sl == 5 && strcmp(method, "error") == 0){ if(us->error_rf != LUA_NOREF){ luaL_unref(L, LUA_REGISTRYINDEX, us->error_rf); us->error_rf = LUA_NOREF; } if(!lua_isnil(L, -1)){ us->error_rf = luaL_ref(L, LUA_REGISTRYINDEX); gL = L; } else { lua_pop(L, 1); } } else { lua_pop(L, 1); return luaL_error( L, "method not supported" ); } return 0; } // Lua: actualbaud = setup( id, baud, databits, parity, stopbits, echo ) static int uart_setup( lua_State* L ) { unsigned id, databits, parity, stopbits; uint32_t baud, res; uart_pins_t pins; uart_pins_t* pins_to_use = NULL; memset(&pins, 0, sizeof(pins)); id = luaL_checkinteger( L, 1 ); MOD_CHECK_ID( uart, id ); baud = luaL_checkinteger( L, 2 ); databits = luaL_checkinteger( L, 3 ); parity = luaL_checkinteger( L, 4 ); stopbits = luaL_checkinteger( L, 5 ); if(id == CONFIG_ESP_CONSOLE_UART_NUM){ if (!lua_isnoneornil(L, 6)) { input_echo = luaL_checkinteger(L, 6) > 0; } } else { if (!lua_isnoneornil(L, 6)) { luaL_checktable(L, 6); lua_getfield (L, 6, "tx"); pins.tx_pin = luaL_checkint(L, -1); lua_getfield (L, 6, "rx"); pins.rx_pin = luaL_checkint(L, -1); lua_getfield (L, 6, "cts"); pins.cts_pin = luaL_optint(L, -1, -1); lua_getfield (L, 6, "rts"); pins.rts_pin = luaL_optint(L, -1, -1); lua_getfield (L, 6, "tx_inverse"); pins.tx_inverse = lua_toboolean(L, -1); lua_getfield (L, 6, "rx_inverse"); pins.rx_inverse = lua_toboolean(L, -1); lua_getfield (L, 6, "cts_inverse"); pins.cts_inverse = lua_toboolean(L, -1); lua_getfield (L, 6, "rts_inverse"); pins.rts_inverse = lua_toboolean(L, -1); lua_getfield (L, 6, "flow_control"); pins.flow_control = luaL_optint(L, -1, PLATFORM_UART_FLOW_NONE); pins_to_use = &pins; } } res = platform_uart_setup( id, baud, databits, parity, stopbits, pins_to_use ); lua_pushinteger( L, res ); return 1; } static int uart_setmode(lua_State* L) { unsigned id, mode; id = luaL_checkinteger( L, 1 ); MOD_CHECK_ID( uart, id ); mode = luaL_checkinteger( L, 2 ); platform_uart_setmode(id, mode); return 0; } // Lua: write( id, string1, [string2], ..., [stringn] ) static int uart_write( lua_State* L ) { unsigned id; const char* buf; size_t len; int total = lua_gettop( L ), s; id = luaL_checkinteger( L, 1 ); MOD_CHECK_ID( uart, id ); for( s = 2; s <= total; s ++ ) { if( lua_type( L, s ) == LUA_TNUMBER ) { len = lua_tointeger( L, s ); if( len > 255 ) return luaL_error( L, "invalid number" ); platform_uart_send( id, (uint8_t)len ); } else { luaL_checktype( L, s, LUA_TSTRING ); buf = lua_tolstring( L, s, &len ); platform_uart_send_multi( id, buf, len ); } } platform_uart_flush( id ); return 0; } // Lua: stop( id ) static int uart_stop( lua_State* L ) { unsigned id; id = luaL_checkinteger( L, 1 ); MOD_CHECK_ID( uart, id ); platform_uart_stop( id ); return 0; } // Lua: start( id ) static int uart_start( lua_State* L ) { unsigned id; int err; id = luaL_checkinteger( L, 1 ); MOD_CHECK_ID( uart, id ); err = platform_uart_start( id ); lua_pushboolean( L, err == 0 ); return 1; } static int uart_getconfig(lua_State* L) { uint32_t id, baud, databits, parity, stopbits; id = luaL_checkinteger(L, 1); MOD_CHECK_ID(uart, id); int err = platform_uart_get_config(id, &baud, &databits, &parity, &stopbits); if (err) { luaL_error(L, "Error reading UART config"); } lua_pushinteger(L, baud); lua_pushinteger(L, databits); lua_pushinteger(L, parity); lua_pushinteger(L, stopbits); return 4; } static int uart_wakeup (lua_State *L) { uint32_t id = luaL_checkinteger(L, 1); MOD_CHECK_ID(uart, id); int threshold = luaL_checkinteger(L, 2); int err = platform_uart_set_wakeup_threshold(id, threshold); if (err) { return luaL_error(L, "Error %d from uart_set_wakeup_threshold()", err); } return 0; } static int luart_tx_flush (lua_State *L) { uint32_t id = luaL_checkinteger(L, 1); MOD_CHECK_ID(uart, id); platform_uart_flush(id); return 0; } // Module function map LROT_BEGIN(uart, NULL, 0) LROT_FUNCENTRY( setup, uart_setup ) LROT_FUNCENTRY( write, uart_write ) LROT_FUNCENTRY( start, uart_start ) LROT_FUNCENTRY( stop, uart_stop ) LROT_FUNCENTRY( on, uart_on ) LROT_FUNCENTRY( setmode, uart_setmode ) LROT_FUNCENTRY( getconfig, uart_getconfig ) LROT_FUNCENTRY( wakeup, uart_wakeup ) LROT_FUNCENTRY( txflush, luart_tx_flush ) LROT_NUMENTRY( STOPBITS_1, PLATFORM_UART_STOPBITS_1 ) LROT_NUMENTRY( STOPBITS_1_5, PLATFORM_UART_STOPBITS_1_5 ) LROT_NUMENTRY( STOPBITS_2, PLATFORM_UART_STOPBITS_2 ) LROT_NUMENTRY( PARITY_NONE, PLATFORM_UART_PARITY_NONE ) LROT_NUMENTRY( PARITY_EVEN, PLATFORM_UART_PARITY_EVEN ) LROT_NUMENTRY( PARITY_ODD, PLATFORM_UART_PARITY_ODD ) LROT_NUMENTRY( FLOWCTRL_NONE, PLATFORM_UART_FLOW_NONE ) LROT_NUMENTRY( FLOWCTRL_CTS, PLATFORM_UART_FLOW_CTS ) LROT_NUMENTRY( FLOWCTRL_RTS, PLATFORM_UART_FLOW_RTS ) LROT_NUMENTRY( MODE_UART, PLATFORM_UART_MODE_UART ) LROT_NUMENTRY( MODE_RS485_COLLISION_DETECT, PLATFORM_UART_MODE_RS485_COLLISION_DETECT ) LROT_NUMENTRY( MODE_RS485_APP_CONTROL, PLATFORM_UART_MODE_RS485_APP_CONTROL ) LROT_NUMENTRY( MODE_RS485_HALF_DUPLEX, PLATFORM_UART_MODE_HALF_DUPLEX ) LROT_NUMENTRY( MODE_IRDA, PLATFORM_UART_MODE_IRDA ) LROT_END(uart, NULL, 0) int luaopen_uart( lua_State *L ) { uart_status_t *us; for(int id = 0; id < NUM_UART; id++) { us = & uart_status[id]; us->receive_rf = LUA_NOREF; us->error_rf = LUA_NOREF; us->need_len = 0; us->end_char = -1; } return 0; } NODEMCU_MODULE(UART, "uart", uart, luaopen_uart);