// Platform-dependent functions and includes #include "platform.h" #include "common.h" #include #include #include #include "llimits.h" #include "gpio.h" #include "user_interface.h" #include "driver/gpio16.h" #include "driver/i2c_master.h" #include "driver/spi.h" #include "driver/uart.h" #include "driver/sigma_delta.h" #ifdef GPIO_INTERRUPT_ENABLE static task_handle_t gpio_task_handle; #ifdef GPIO_INTERRUPT_HOOK_ENABLE struct gpio_hook_entry { platform_hook_function func; uint32_t bits; }; struct gpio_hook { struct gpio_hook_entry *entry; uint32_t all_bits; uint32_t count; }; static struct gpio_hook platform_gpio_hook; #endif #endif int platform_init() { // Setup the various forward and reverse mappings for the pins get_pin_map(); cmn_platform_init(); // All done return PLATFORM_OK; } // **************************************************************************** // KEY_LED functions uint8_t platform_key_led( uint8_t level){ uint8_t temp; gpio16_output_set(1); // set to high first, for reading key low level gpio16_input_conf(); temp = gpio16_input_get(); gpio16_output_conf(); gpio16_output_set(level); return temp; } // **************************************************************************** // GPIO functions /* * Set GPIO mode to output. Optionally in RAM helper because interrupts are dsabled */ static void NO_INTR_CODE set_gpio_no_interrupt(uint8 pin, uint8_t push_pull) { unsigned pnum = pin_num[pin]; ETS_GPIO_INTR_DISABLE(); #ifdef GPIO_INTERRUPT_ENABLE pin_int_type[pin] = GPIO_PIN_INTR_DISABLE; #endif PIN_FUNC_SELECT(pin_mux[pin], pin_func[pin]); //disable interrupt gpio_pin_intr_state_set(GPIO_ID_PIN(pnum), GPIO_PIN_INTR_DISABLE); //clear interrupt status GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, BIT(pnum)); // configure push-pull vs open-drain if (push_pull) { GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum)), GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum))) & (~ GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_ENABLE))); //disable open drain; } else { GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum)), GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum))) | GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_ENABLE)); //enable open drain; } ETS_GPIO_INTR_ENABLE(); } /* * Set GPIO mode to interrupt. Optionally RAM helper because interrupts are dsabled */ #ifdef GPIO_INTERRUPT_ENABLE static void NO_INTR_CODE set_gpio_interrupt(uint8 pin) { ETS_GPIO_INTR_DISABLE(); PIN_FUNC_SELECT(pin_mux[pin], pin_func[pin]); GPIO_DIS_OUTPUT(pin_num[pin]); gpio_register_set(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin])), GPIO_PIN_INT_TYPE_SET(GPIO_PIN_INTR_DISABLE) | GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_DISABLE) | GPIO_PIN_SOURCE_SET(GPIO_AS_PIN_SOURCE)); ETS_GPIO_INTR_ENABLE(); } #endif int platform_gpio_mode( unsigned pin, unsigned mode, unsigned pull ) { NODE_DBG("Function platform_gpio_mode() is called. pin_mux:%d, func:%d\n", pin_mux[pin], pin_func[pin]); if (pin >= NUM_GPIO) return -1; if(pin == 0){ if(mode==PLATFORM_GPIO_INPUT) gpio16_input_conf(); else gpio16_output_conf(); return 1; } #ifdef LUA_USE_MODULES_PWM platform_pwm_close(pin); // closed from pwm module, if it is used in pwm #endif if (pull == PLATFORM_GPIO_PULLUP) { PIN_PULLUP_EN(pin_mux[pin]); } else { PIN_PULLUP_DIS(pin_mux[pin]); } switch(mode){ case PLATFORM_GPIO_INPUT: GPIO_DIS_OUTPUT(pin_num[pin]); /* run on */ case PLATFORM_GPIO_OUTPUT: set_gpio_no_interrupt(pin, TRUE); break; case PLATFORM_GPIO_OPENDRAIN: set_gpio_no_interrupt(pin, FALSE); break; #ifdef GPIO_INTERRUPT_ENABLE case PLATFORM_GPIO_INT: set_gpio_interrupt(pin); break; #endif default: break; } return 1; } int platform_gpio_write( unsigned pin, unsigned level ) { // NODE_DBG("Function platform_gpio_write() is called. pin:%d, level:%d\n",GPIO_ID_PIN(pin_num[pin]),level); if (pin >= NUM_GPIO) return -1; if(pin == 0){ gpio16_output_conf(); gpio16_output_set(level); return 1; } GPIO_OUTPUT_SET(GPIO_ID_PIN(pin_num[pin]), level); } int platform_gpio_read( unsigned pin ) { // NODE_DBG("Function platform_gpio_read() is called. pin:%d\n",GPIO_ID_PIN(pin_num[pin])); if (pin >= NUM_GPIO) return -1; if(pin == 0){ // gpio16_input_conf(); return 0x1 & gpio16_input_get(); } // GPIO_DIS_OUTPUT(pin_num[pin]); return 0x1 & GPIO_INPUT_GET(GPIO_ID_PIN(pin_num[pin])); } #ifdef GPIO_INTERRUPT_ENABLE static void ICACHE_RAM_ATTR platform_gpio_intr_dispatcher (void *dummy){ uint32 j=0; uint32 gpio_status = GPIO_REG_READ(GPIO_STATUS_ADDRESS); UNUSED(dummy); #ifdef GPIO_INTERRUPT_HOOK_ENABLE if (gpio_status & platform_gpio_hook.all_bits) { for (j = 0; j < platform_gpio_hook.count; j++) { if (gpio_status & platform_gpio_hook.entry[j].bits) gpio_status = (platform_gpio_hook.entry[j].func)(gpio_status); } } #endif /* * gpio_status is a bit map where bit 0 is set if unmapped gpio pin 0 (pin3) has * triggered the ISR. bit 1 if unmapped gpio pin 1 (pin10=U0TXD), etc. Since this * is the ISR, it makes sense to optimize this by doing a fast scan of the status * and reverse mapping any set bits. */ for (j = 0; gpio_status>0; j++, gpio_status >>= 1) { if (gpio_status&1) { int i = pin_num_inv[j]; if (pin_int_type[i]) { //disable interrupt gpio_pin_intr_state_set(GPIO_ID_PIN(j), GPIO_PIN_INTR_DISABLE); //clear interrupt status GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, BIT(j)); uint32 level = 0x1 & GPIO_INPUT_GET(GPIO_ID_PIN(j)); task_post_high (gpio_task_handle, (i<<1) + level); // We re-enable the interrupt when we execute the callback } } } } void platform_gpio_init( task_handle_t gpio_task ) { gpio_task_handle = gpio_task; ETS_GPIO_INTR_ATTACH(platform_gpio_intr_dispatcher, NULL); } #ifdef GPIO_INTERRUPT_HOOK_ENABLE /* * Register an ISR hook to be called from the GPIO ISR for a given GPIO bitmask. * This routine is only called a few times so has been optimised for size and * the unregister is a special case when the bits are 0. * * Each hook function can only be registered once. If it is re-registered * then the hooked bits are just updated to the new value. */ int platform_gpio_register_intr_hook(uint32_t bits, platform_hook_function hook) { struct gpio_hook nh, oh = platform_gpio_hook; int i, j; if (!hook) { // Cannot register or unregister null hook return 0; } int delete_slot = -1; // If hook already registered, just update the bits for (i=0; i 0) nh.entry = malloc( nh.count * sizeof(*(nh.entry)) ); if (nh.count && !(nh.entry)) { return 0; // Allocation failure } for (i=0, j=0; i= NUM_PWM) return 0; if(!pwm_exist(pin)) return 0; return (uint32_t)pwm_get_freq(pin); } // Set the PWM clock uint32_t platform_pwm_set_clock( unsigned pin, uint32_t clock ) { // NODE_DBG("Function platform_pwm_set_clock() is called.\n"); if( pin >= NUM_PWM) return 0; if(!pwm_exist(pin)) return 0; pwm_set_freq((uint16_t)clock, pin); pwm_start(); return (uint32_t)pwm_get_freq( pin ); } uint32_t platform_pwm_get_duty( unsigned pin ) { // NODE_DBG("Function platform_pwm_get_duty() is called.\n"); if( pin < NUM_PWM){ if(!pwm_exist(pin)) return 0; // return NORMAL_DUTY(pwm_get_duty(pin)); return pwms_duty[pin]; } return 0; } // Set the PWM duty uint32_t platform_pwm_set_duty( unsigned pin, uint32_t duty ) { // NODE_DBG("Function platform_pwm_set_duty() is called.\n"); if ( pin < NUM_PWM) { if(!pwm_exist(pin)) return 0; pwm_set_duty(DUTY(duty), pin); } else { return 0; } pwm_start(); pwms_duty[pin] = NORMAL_DUTY(pwm_get_duty(pin)); return pwms_duty[pin]; } uint32_t platform_pwm_setup( unsigned pin, uint32_t frequency, unsigned duty ) { uint32_t clock; if ( pin < NUM_PWM) { platform_gpio_mode(pin, PLATFORM_GPIO_OUTPUT, PLATFORM_GPIO_FLOAT); // disable gpio interrupt first if(!pwm_add(pin)) return 0; // pwm_set_duty(DUTY(duty), pin); pwm_set_duty(0, pin); pwms_duty[pin] = duty; pwm_set_freq((uint16_t)frequency, pin); } else { return 0; } clock = platform_pwm_get_clock( pin ); if (!pwm_start()) { return 0; } return clock; } void platform_pwm_close( unsigned pin ) { // NODE_DBG("Function platform_pwm_stop() is called.\n"); if ( pin < NUM_PWM) { pwm_delete(pin); pwm_start(); } } bool platform_pwm_start( unsigned pin ) { // NODE_DBG("Function platform_pwm_start() is called.\n"); if ( pin < NUM_PWM) { if(!pwm_exist(pin)) return FALSE; pwm_set_duty(DUTY(pwms_duty[pin]), pin); return pwm_start(); } return FALSE; } void platform_pwm_stop( unsigned pin ) { // NODE_DBG("Function platform_pwm_stop() is called.\n"); if ( pin < NUM_PWM) { if(!pwm_exist(pin)) return; pwm_set_duty(0, pin); pwm_start(); } } // ***************************************************************************** // Sigma-Delta platform interface uint8_t platform_sigma_delta_setup( uint8_t pin ) { if (pin < 1 || pin > NUM_GPIO) return 0; sigma_delta_setup(); // set GPIO output mode for this pin platform_gpio_mode( pin, PLATFORM_GPIO_OUTPUT, PLATFORM_GPIO_FLOAT ); platform_gpio_write( pin, PLATFORM_GPIO_LOW ); // enable sigma-delta on this pin GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin])), (GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin]))) &(~GPIO_PIN_SOURCE_MASK)) | GPIO_PIN_SOURCE_SET( SIGMA_AS_PIN_SOURCE )); return 1; } uint8_t platform_sigma_delta_close( uint8_t pin ) { if (pin < 1 || pin > NUM_GPIO) return 0; sigma_delta_stop(); // set GPIO input mode for this pin platform_gpio_mode( pin, PLATFORM_GPIO_INPUT, PLATFORM_GPIO_PULLUP ); // CONNECT GPIO TO PIN PAD GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin])), (GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin]))) &(~GPIO_PIN_SOURCE_MASK)) | GPIO_PIN_SOURCE_SET( GPIO_AS_PIN_SOURCE )); return 1; } void platform_sigma_delta_set_pwmduty( uint8_t duty ) { uint8_t target = 0, prescale = 0; target = duty > 128 ? 256 - duty : duty; prescale = target == 0 ? 0 : target-1; //freq = 80000 (khz) /256 /duty_target * (prescale+1) sigma_delta_set_prescale_target( prescale, duty ); } void platform_sigma_delta_set_prescale( uint8_t prescale ) { sigma_delta_set_prescale_target( prescale, -1 ); } void platform_sigma_delta_set_target( uint8_t target ) { sigma_delta_set_prescale_target( -1, target ); } // ***************************************************************************** // I2C platform interface uint32_t platform_i2c_setup( unsigned id, uint8_t sda, uint8_t scl, uint32_t speed ){ if (sda >= NUM_GPIO || scl >= NUM_GPIO) return 0; // platform_pwm_close(sda); // platform_pwm_close(scl); // disable gpio interrupt first platform_gpio_mode(sda, PLATFORM_GPIO_INPUT, PLATFORM_GPIO_PULLUP); // inside this func call platform_pwm_close platform_gpio_mode(scl, PLATFORM_GPIO_INPUT, PLATFORM_GPIO_PULLUP); // disable gpio interrupt first i2c_master_gpio_init(sda, scl); return PLATFORM_I2C_SPEED_SLOW; } void platform_i2c_send_start( unsigned id ){ i2c_master_start(); } void platform_i2c_send_stop( unsigned id ){ i2c_master_stop(); } int platform_i2c_send_address( unsigned id, uint16_t address, int direction ){ // Convert enum codes to R/w bit value. // If TX == 0 and RX == 1, this test will be removed by the compiler if ( ! ( PLATFORM_I2C_DIRECTION_TRANSMITTER == 0 && PLATFORM_I2C_DIRECTION_RECEIVER == 1 ) ) { direction = ( direction == PLATFORM_I2C_DIRECTION_TRANSMITTER ) ? 0 : 1; } i2c_master_writeByte( (uint8_t) ((address << 1) | direction )); // Low-level returns nack (0=acked); we return ack (1=acked). return ! i2c_master_getAck(); } int platform_i2c_send_byte( unsigned id, uint8_t data ){ i2c_master_writeByte(data); // Low-level returns nack (0=acked); we return ack (1=acked). return ! i2c_master_getAck(); } int platform_i2c_recv_byte( unsigned id, int ack ){ uint8_t r = i2c_master_readByte(); i2c_master_setAck( !ack ); return r; } // ***************************************************************************** // SPI platform interface uint32_t platform_spi_setup( uint8_t id, int mode, unsigned cpol, unsigned cpha, uint32_t clock_div) { spi_master_init( id, cpol, cpha, clock_div ); return 1; } int platform_spi_send( uint8_t id, uint8_t bitlen, spi_data_type data ) { if (bitlen > 32) return PLATFORM_ERR; spi_mast_transaction( id, 0, 0, bitlen, data, 0, 0, 0 ); return PLATFORM_OK; } spi_data_type platform_spi_send_recv( uint8_t id, uint8_t bitlen, spi_data_type data ) { if (bitlen > 32) return 0; spi_mast_set_mosi( id, 0, bitlen, data ); spi_mast_transaction( id, 0, 0, 0, 0, bitlen, 0, -1 ); return spi_mast_get_miso( id, 0, bitlen ); } int platform_spi_set_mosi( uint8_t id, uint16_t offset, uint8_t bitlen, spi_data_type data ) { if (offset + bitlen > 512) return PLATFORM_ERR; spi_mast_set_mosi( id, offset, bitlen, data ); return PLATFORM_OK; } spi_data_type platform_spi_get_miso( uint8_t id, uint16_t offset, uint8_t bitlen ) { if (offset + bitlen > 512) return 0; return spi_mast_get_miso( id, offset, bitlen ); } int platform_spi_transaction( uint8_t id, uint8_t cmd_bitlen, spi_data_type cmd_data, uint8_t addr_bitlen, spi_data_type addr_data, uint16_t mosi_bitlen, uint8_t dummy_bitlen, int16_t miso_bitlen ) { if ((cmd_bitlen > 16) || (addr_bitlen > 32) || (mosi_bitlen > 512) || (dummy_bitlen > 256) || (miso_bitlen > 512)) return PLATFORM_ERR; spi_mast_transaction( id, cmd_bitlen, cmd_data, addr_bitlen, addr_data, mosi_bitlen, dummy_bitlen, miso_bitlen ); return PLATFORM_OK; } // **************************************************************************** // Flash access functions /* * Assumptions: * > toaddr is INTERNAL_FLASH_WRITE_UNIT_SIZE aligned * > size is a multiple of INTERNAL_FLASH_WRITE_UNIT_SIZE */ uint32_t platform_s_flash_write( const void *from, uint32_t toaddr, uint32_t size ) { SpiFlashOpResult r; const uint32_t blkmask = INTERNAL_FLASH_WRITE_UNIT_SIZE - 1; uint32_t *apbuf = NULL; uint32_t fromaddr = (uint32_t)from; if( (fromaddr & blkmask ) || (fromaddr >= INTERNAL_FLASH_MAPPED_ADDRESS)) { apbuf = (uint32_t *)malloc(size); if(!apbuf) return 0; memcpy(apbuf, from, size); } system_soft_wdt_feed (); r = flash_write(toaddr, apbuf?(uint32 *)apbuf:(uint32 *)from, size); if(apbuf) free(apbuf); if(SPI_FLASH_RESULT_OK == r) return size; else{ NODE_ERR( "ERROR in flash_write: r=%d at %08X\n", ( int )r, ( unsigned )toaddr); return 0; } } /* * Assumptions: * > fromaddr is INTERNAL_FLASH_READ_UNIT_SIZE aligned * > size is a multiple of INTERNAL_FLASH_READ_UNIT_SIZE */ uint32_t platform_s_flash_read( void *to, uint32_t fromaddr, uint32_t size ) { if (size==0) return 0; SpiFlashOpResult r; system_soft_wdt_feed (); const uint32_t blkmask = (INTERNAL_FLASH_READ_UNIT_SIZE - 1); if( ((uint32_t)to) & blkmask ) { uint32_t size2=size-INTERNAL_FLASH_READ_UNIT_SIZE; uint32* to2=(uint32*)((((uint32_t)to)&(~blkmask))+INTERNAL_FLASH_READ_UNIT_SIZE); r = flash_read(fromaddr, to2, size2); if(SPI_FLASH_RESULT_OK == r) { memmove(to,to2,size2); char back[ INTERNAL_FLASH_READ_UNIT_SIZE ] __attribute__ ((aligned(INTERNAL_FLASH_READ_UNIT_SIZE))); r=flash_read(fromaddr+size2,(uint32*)back,INTERNAL_FLASH_READ_UNIT_SIZE); os_memcpy((uint8_t*)to+size2,back,INTERNAL_FLASH_READ_UNIT_SIZE); } } else r = flash_read(fromaddr, (uint32 *)to, size); if(SPI_FLASH_RESULT_OK == r) return size; else{ NODE_ERR( "ERROR in flash_read: r=%d at %08X\n", ( int )r, ( unsigned )fromaddr); return 0; } } int platform_flash_erase_sector( uint32_t sector_id ) { system_soft_wdt_feed (); return flash_erase( sector_id ) == SPI_FLASH_RESULT_OK ? PLATFORM_OK : PLATFORM_ERR; } uint32_t platform_flash_mapped2phys (uint32_t mapped_addr) { uint32_t cache_ctrl = READ_PERI_REG(CACHE_FLASH_CTRL_REG); if (!(cache_ctrl & CACHE_FLASH_ACTIVE)) return -1; bool b0 = (cache_ctrl & CACHE_FLASH_MAPPED0) ? 1 : 0; bool b1 = (cache_ctrl & CACHE_FLASH_MAPPED1) ? 1 : 0; uint32_t meg = (b1 << 1) | b0; return mapped_addr - INTERNAL_FLASH_MAPPED_ADDRESS + meg * 0x100000; }