#include "module.h" #include "lauxlib.h" #include "common.h" #include "lundump.h" #include "platform.h" #include "task/task.h" #include "esp_system.h" #include "esp_log.h" #include "esp_sleep.h" #include "driver/rtc_io.h" #include "soc/efuse_reg.h" #include "ldebug.h" #include "esp_vfs.h" #include "lnodeaux.h" #include "lpanic.h" #include "rom/rtc.h" #include "freertos/FreeRTOS.h" #include "freertos/timers.h" static void restart_callback(TimerHandle_t timer) { (void)timer; esp_restart(); } static int default_onerror(lua_State *L) { /* Use Lua print to print the ToS */ lua_settop(L, 1); lua_getglobal(L, "print"); lua_insert(L, 1); lua_pcall(L, 1, 0, 0); /* One first time through set automatic restart after 2s delay */ static TimerHandle_t restart_timer; if (!restart_timer) { restart_timer = xTimerCreate( "error_restart", pdMS_TO_TICKS(2000), pdFALSE, NULL, restart_callback); if (xTimerStart(restart_timer, portMAX_DELAY) != pdPASS) esp_restart(); // should never happen, but Justin Case fallback } return 0; } // Lua: setonerror([function]) static int node_setonerror( lua_State* L ) { lua_settop(L, 1); if (!lua_isfunction(L, 1)) { lua_pop(L, 1); lua_pushcfunction(L, default_onerror); } lua_setfield(L, LUA_REGISTRYINDEX, "onerror"); return 0; } // Lua: node.bootreason() static int node_bootreason( lua_State *L) { int panicval = panic_get_nvval(); RESET_REASON rr0 = rtc_get_reset_reason(0); unsigned rawinfo = 3; // rawinfo can take these values as defined in docs/modules/node.md // // 1, power-on // 2, reset (software?) // 3, hardware reset via reset pin or unknown reason // 4, WDT reset (watchdog timeout) // // extendedinfo can take these values as definded in docs/modules/node.md // // 0, power-on // 1, hardware watchdog reset // 2, exception reset // 3, software watchdog reset // 4, software restart // 5, wake from deep sleep // 6, external reset // added values from rom/rtc.h with offset 7 // 7: NO_MEAN = 0, // 8: POWERON_RESET = 1, /**<1, Vbat power on reset*/ // 9: // 10: SW_RESET = 3, /**<3, Software reset digital core*/ // 11: OWDT_RESET = 4, /**<4, Legacy watch dog reset digital core*/ // 12: DEEPSLEEP_RESET = 5, /**<3, Deep Sleep reset digital core*/ // 13: SDIO_RESET = 6, /**<6, Reset by SLC module, reset digital core*/ // 14: TG0WDT_SYS_RESET = 7, /**<7, Timer Group0 Watch dog reset digital core*/ // 15: TG1WDT_SYS_RESET = 8, /**<8, Timer Group1 Watch dog reset digital core*/ // 16: RTCWDT_SYS_RESET = 9, /**<9, RTC Watch dog Reset digital core*/ // 17: INTRUSION_RESET = 10, /**<10, Instrusion tested to reset CPU*/ // 18: TGWDT_CPU_RESET = 11, /**<11, Time Group reset CPU*/ // 19: SW_CPU_RESET = 12, /**<12, Software reset CPU*/ // 20: RTCWDT_CPU_RESET = 13, /**<13, RTC Watch dog Reset CPU*/ // 21: EXT_CPU_RESET = 14, /**<14, for APP CPU, reseted by PRO CPU*/ // 22: RTCWDT_BROWN_OUT_RESET = 15, /**<15, Reset when the vdd voltage is not stable*/ // 23: RTCWDT_RTC_RESET = 16 /**<16, RTC Watch dog reset digital core and rtc module*/` #if !defined(CONFIG_IDF_TARGET_ESP32) # define SW_CPU_RESET RTC_SW_CPU_RESET # define SW_RESET RTC_SW_SYS_RESET #endif switch (rr0) { case POWERON_RESET: rawinfo = 1; break; case SW_CPU_RESET: case SW_RESET: rawinfo = 2; break; case NO_MEAN: #if defined(CONFIG_IDF_TARGET_ESP32) case EXT_CPU_RESET: #endif case DEEPSLEEP_RESET: #if defined(CONFIG_IDF_TARGET_ESP32) case SDIO_RESET: #endif #if defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3) || defined(CONFIG_IDF_TARGET_ESP32C3) case GLITCH_RTC_RESET: #endif #if defined(CONFIG_IDF_TARGET_ESP32S3) || defined(CONFIG_IDF_TARGET_ESP32C3) case EFUSE_RESET: case USB_UART_CHIP_RESET: case USB_JTAG_CHIP_RESET: case POWER_GLITCH_RESET: #endif case TG0WDT_SYS_RESET: case TG1WDT_SYS_RESET: case INTRUSION_RESET: case RTCWDT_BROWN_OUT_RESET: case RTCWDT_RTC_RESET: rawinfo = 3; break; #if defined(CONFIG_IDF_TARGET_ESP32) case OWDT_RESET: case TGWDT_CPU_RESET: #else case TG0WDT_CPU_RESET: case TG1WDT_CPU_RESET: case SUPER_WDT_RESET: #endif case RTCWDT_CPU_RESET: case RTCWDT_SYS_RESET: rawinfo = 4; break; } lua_pushinteger(L, (lua_Integer)rawinfo); lua_pushinteger(L, (lua_Integer)rr0+7); if (rr0 == SW_CPU_RESET) { lua_pushinteger(L, (lua_Integer)panicval); return 3; } return 2; } // Lua: node.chipid() static int node_chipid( lua_State *L ) { #ifdef EFUSE_BLK0_DATA1_REG // This matches the way esptool.py generates a chipid for the ESP32 as of // esptool commit e9e9179f6fc3f2ecfc568987d3224b5e53a05f06 // Oddly, this drops the lowest byte what's effectively the MAC address, so // it would seem plausible to encounter up to 256 chips with the same chipid uint64_t word16 = REG_READ(EFUSE_BLK0_DATA1_REG); uint64_t word17 = REG_READ(EFUSE_BLK0_DATA2_REG); const uint64_t MAX_UINT24 = 0xffffff; uint64_t cid = ((word17 & MAX_UINT24) << 24) | ((word16 >> 8) & MAX_UINT24); #else uint8_t mac[8]; esp_read_mac(mac, ESP_MAC_WIFI_STA); uint64_t cid = ((uint64_t) mac[0] << 40) | ((uint64_t) mac[1] << 32) | (mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5]; #endif char chipid[17] = { 0 }; sprintf(chipid, "0x%llx", cid); lua_pushstring(L, chipid); return 1; } // Lua: node.heap() static int node_heap( lua_State* L ) { uint32_t sz = esp_get_free_heap_size(); lua_pushinteger(L, sz); return 1; } static int node_restart (lua_State *L) { panic_clear_nvval(); esp_restart (); return 0; } static void node_sleep_set_uart (lua_State *L, int uart) { int err = esp_sleep_enable_uart_wakeup(uart); if (err) { luaL_error(L, "Error %d returned from esp_sleep_enable_uart_wakeup(%d)", err, uart); } } static bool node_sleep_get_time_options (lua_State *L, int64_t *usecs) { lua_getfield(L, 1, "us"); lua_getfield(L, 1, "secs"); bool option_present = !lua_isnil(L, 2) || !lua_isnil(L, 3); lua_pop(L, 2); *usecs = 0; if (option_present) { *usecs += opt_checkint(L, "us", 0); *usecs += (int64_t)opt_checkint(L, "secs", 0) * 1000000; } return option_present; } static void node_sleep_disable_wakeup_sources (lua_State *L) { // Start with known state, to ensure previous sleep calls don't leave any // settings left over int err = esp_sleep_disable_wakeup_source(ESP_SLEEP_WAKEUP_ALL); if (err) { luaL_error(L, "Error %d returned from esp_sleep_disable_wakeup_source", err); } } static int node_sleep (lua_State *L) { lua_settop(L, 1); luaL_checktable(L, 1); node_sleep_disable_wakeup_sources(L); // uart options: uart = num|{num, num, ...} lua_getfield(L, -1, "uart"); int type = lua_type(L, -1); if (type == LUA_TNUMBER) { node_sleep_set_uart(L, lua_tointeger(L, -1)); } else if (type == LUA_TTABLE) { for (int i = 1; ; i++) { lua_rawgeti(L, -1, i); if (lua_isnil(L, -1)) { lua_pop(L, 1); // uart[i] break; } int uart = lua_tointeger(L, -1); lua_pop(L, 1); // uart[i] node_sleep_set_uart(L, uart); } } else if (type != LUA_TNIL) { return opt_error(L, "uart", "must be integer or table"); } lua_pop(L, 1); // uart // gpio option: boolean (individual pins are configured in advance with gpio.wakeup()) // Make sure to do GPIO before touch, because esp_sleep_enable_gpio_wakeup() // seems to think touch is not compatible with GPIO wakeup and will error the // call if you order them the other way round, despite the fact that // esp_sleep_enable_touchpad_wakeup() does not have a similar check, and I've // tested using both GPIO and touch wakeups at once and it works fine for me. // I think this is simply a bug in the Espressif SDK, because sleep_modes.rst // only mentions compatibility issues with touch and EXT0 wakeup, which is // not the same as GPIO wakeup. if (opt_checkbool(L, "gpio", false)) { int err = esp_sleep_enable_gpio_wakeup(); if (err) { return luaL_error(L, "Error %d returned from esp_sleep_enable_gpio_wakeup()", err); } } // time options: us, secs int64_t usecs = 0; if (node_sleep_get_time_options(L, &usecs)) { esp_sleep_enable_timer_wakeup(usecs); } #if !defined(CONFIG_IDF_TARGET_ESP32C3) // touch option: boolean if (opt_checkbool(L, "touch", false)) { int err = esp_sleep_enable_touchpad_wakeup(); if (err) { return luaL_error(L, "Error %d returned from esp_sleep_enable_touchpad_wakeup()", err); } } // ulp option: boolean if (opt_checkbool(L, "ulp", false)) { int err = esp_sleep_enable_ulp_wakeup(); if (err) { return luaL_error(L, "Error %d returned from esp_sleep_enable_ulp_wakeup()", err); } } #endif int err = esp_light_sleep_start(); if (err == ESP_ERR_INVALID_STATE) { return luaL_error(L, "WiFi and BT must be stopped before sleeping"); } else if (err) { return luaL_error(L, "Error %d returned from esp_light_sleep_start()", err); } esp_sleep_wakeup_cause_t cause = esp_sleep_get_wakeup_cause(); lua_pushinteger(L, (int)cause); return 1; } // Lua: node.dsleep (microseconds|{opts}) static int node_dsleep (lua_State *L) { lua_settop(L, 1); node_sleep_disable_wakeup_sources(L); bool enable_timer_wakeup = false; int64_t usecs = 0; int type = lua_type(L, 1); if (type == LUA_TNUMBER) { enable_timer_wakeup = true; usecs = lua_tointeger(L, 1); } else if (type == LUA_TTABLE) { enable_timer_wakeup = node_sleep_get_time_options(L, &usecs); // GPIO wakeup options: gpio = num|{num, num, ...} uint64_t pin_mask = 0; lua_getfield(L, -1, "gpio"); type = lua_type(L, -1); if (type == LUA_TNUMBER) { pin_mask |= 1ULL << lua_tointeger(L, -1); } else if (type == LUA_TTABLE) { for (int i = 1; ; i++) { lua_rawgeti(L, -1, i); int pin = lua_tointeger(L, -1); lua_pop(L, 1); if (!pin) { break; } pin_mask |= 1ULL << pin; } } lua_pop(L, 1); // gpio // Check pin validity here to get better error messages for (int pin = 0; pin < GPIO_PIN_COUNT; pin++) { if (pin_mask & (1ULL << pin)) { if (!rtc_gpio_is_valid_gpio(pin)) { return luaL_error(L, "Pin %d is not an RTC GPIO and cannot be used for wakeup", pin); } } } #if !defined(CONFIG_IDF_TARGET_ESP32C3) bool pull = opt_checkbool(L, "pull", false); if (opt_get(L, "isolate", LUA_TTABLE)) { for (int i = 1; ; i++) { lua_rawgeti(L, -1, i); if (lua_isnil(L, -1)) { lua_pop(L, 1); break; } int pin = lua_tointeger(L, -1); lua_pop(L, 1); int err = rtc_gpio_isolate(pin); if (err) { return luaL_error(L, "Error %d returned from rtc_gpio_isolate(%d)", err, pin); } } lua_pop(L, 1); // isolate table } if (pull) { // Keeping the peripheral domain powered keeps the pullups/downs working esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON); } int level = opt_checkint_range(L, "level", 1, 0, 1); if (pin_mask) { esp_sleep_ext1_wakeup_mode_t mode = (level == 1) ? ESP_EXT1_WAKEUP_ANY_HIGH : ESP_EXT1_WAKEUP_ALL_LOW; int err = esp_sleep_enable_ext1_wakeup(pin_mask, mode); if (err) { return luaL_error(L, "Error %d returned from esp_sleep_enable_ext1_wakeup", err); } } bool touch = opt_checkbool(L, "touch", false); if (touch) { esp_sleep_enable_touchpad_wakeup(); } #endif } else { luaL_argerror(L, 1, "Expected integer or table"); } if (enable_timer_wakeup) { esp_sleep_enable_timer_wakeup(usecs); } esp_deep_sleep_start(); // Note, above call does not actually return return 0; } // Lua: input("string") static int node_input( lua_State* L ) { size_t l = 0; const char *s = luaL_checklstring(L, 1, &l); if (l > 0 && l < LUA_MAXINPUT - 1) lua_input_string(s, l); return 0; } // The implementation of node.output implies replacing stdout with a virtual write-only file of // which we can capture fwrite calls. // When there is any write to the replaced stdout, our function redir_write will be called. // we can then invoke the lua callback. // A buffer size that should be sufficient for most cases, yet not so large // as to present an issue. # define OUTPUT_CHUNK_SIZE 127 typedef struct { uint8_t used; uint8_t bytes[OUTPUT_CHUNK_SIZE]; } output_chunk_t; static task_handle_t output_task; // for getting output into the LVM thread static lua_ref_t output_redir = LUA_NOREF; // this will hold the Lua callback static FILE *serial_debug; // the console uart, if wanted static const char *VFS_REDIR = "/redir"; // virtual filesystem mount point // redir_write will be called everytime any code writes to stdout when // redirection is active, from ANY RTOS thread ssize_t redir_write(int fd, const void *data, size_t size) { UNUSED(fd); if (size) { size_t n = (size > OUTPUT_CHUNK_SIZE) ? OUTPUT_CHUNK_SIZE : size; output_chunk_t *chunk = malloc(sizeof(output_chunk_t)); chunk->used = (uint8_t)n; memcpy(chunk->bytes, data, n); _Static_assert(sizeof(task_param_t) >= sizeof(chunk), "cast error below"); if (!task_post_high(output_task, (task_param_t)chunk)) { static const char overflow[] = "E: output overflow\n"; fwrite(overflow, sizeof(overflow) -1, sizeof(char), serial_debug); free(chunk); return -1; } if (serial_debug) { size_t written = 0; while (written < n) { size_t w = fwrite( data + written, sizeof(char), n - written, serial_debug); if (w > 0) written += w; else break; } } return n; } else return 0; } void redir_output(task_param_t param, task_prio_t prio) { UNUSED(prio); output_chunk_t *chunk = (output_chunk_t *)param; bool redir_active = (output_redir != LUA_NOREF); if (redir_active) { lua_State *L = lua_getstate(); lua_rawgeti(L, LUA_REGISTRYINDEX, output_redir); lua_pushlstring(L, (char *)chunk->bytes, chunk->used); luaL_pcallx(L, 1, 0); } free(chunk); } #if !defined(CONFIG_ESP_CONSOLE_NONE) static const char *default_console_name(void) { return #if defined(CONFIG_ESP_CONSOLE_UART) # define STRINGIFY(x) STRINGIFY2(x) # define STRINGIFY2(x) #x "/dev/uart/" STRINGIFY(CONFIG_ESP_CONSOLE_UART_NUM); #undef STRINGIFY2 #undef STRINGIFY #elif defined(CONFIG_ESP_CONSOLE_USB_CDC) "/dev/cdcacm"; #elif defined(CONFIG_ESP_CONSOLE_USB_SERIAL_JTAG) "/dev/usbserjtag"; #endif } #endif // redir_open is called when fopen() is called on /redir/xxx int redir_open(const char *path, int flags, int mode) { return 79; // since we only have one "file", just return some fd number to make the VFS system happy } // Lua: node.output(func, serial_debug) static int node_output(lua_State *L) { if (serial_debug) { fclose(serial_debug); serial_debug = NULL; } if (lua_isfunction(L, 1)) { if (output_redir == LUA_NOREF) { // create an instance of a virtual filesystem so we can use fopen esp_vfs_t redir_fs = { .flags = ESP_VFS_FLAG_DEFAULT, .write = &redir_write, .open = &redir_open, .fstat = NULL, .close = NULL, .read = NULL, }; // register this filesystem under the `/redir` namespace ESP_ERROR_CHECK(esp_vfs_register(VFS_REDIR, &redir_fs, NULL)); freopen(VFS_REDIR, "w", stdout); if (lua_isnoneornil(L, 2) || (lua_isnumber(L, 2) && lua_tonumber(L, 2))) serial_debug = fopen(default_console_name(), "w"); } else { luaX_unset_ref(L, &output_redir); // dereference previous callback } luaX_set_ref(L, 1, &output_redir); // set the callback } else { if (output_redir != LUA_NOREF) { #if defined(CONFIG_ESP_CONSOLE_NONE) fclose(stdout); #else // reopen the console device onto the stdout stream freopen(default_console_name(), "w", stdout); #endif ESP_ERROR_CHECK(esp_vfs_unregister(VFS_REDIR)); luaX_unset_ref(L, &output_redir); } } return 0; } /* node.stripdebug([level[, function]]).  * level: 1 don't discard debug * 2 discard Local and Upvalue debug info * 3 discard Local, Upvalue and lineno debug info. * function: Function to be stripped as per setfenv except 0 not permitted. * If no arguments then the current default setting is returned. * If function is omitted, this is the default setting for future compiles * The function returns an estimated integer count of the bytes stripped. */ static int node_stripdebug (lua_State *L) { int n = lua_gettop(L); int strip = 0; lua_settop(L, 2); if (!lua_isnil(L, 1)) { strip = lua_tointeger(L, 1); luaL_argcheck(L, strip > 0 && strip < 4, 1, "Invalid strip level"); } if (lua_isnumber(L, 2)) { /* Use debug interface to replace stack level by corresponding function */ int scope = luaL_checkinteger(L, 2); if (scope > 0) { lua_Debug ar; lua_pop(L, 1); if (lua_getstack(L, scope, &ar)) { lua_getinfo(L, "f", &ar); /* put function at [2] (ToS) */ } } } int isfunc = lua_isfunction(L, 2); luaL_argcheck(L, n < 2 || isfunc, 2, "not a valid function"); /* return result of lua_stripdebug, adding 1 if this is get/set level) */ lua_pushinteger(L, lua_stripdebug(L, strip - 1) + (isfunc ? 0 : 1)); return 1; } #if defined(CONFIG_LUA_VERSION_51) // Lua: node.egc.setmode( mode, [param]) // where the mode is one of the node.egc constants NOT_ACTIVE , ON_ALLOC_FAILURE, // ON_MEM_LIMIT, ALWAYS. In the case of ON_MEM_LIMIT an integer parameter is reqired // See legc.h and lecg.c. static int node_egc_setmode(lua_State* L) { unsigned mode = luaL_checkinteger(L, 1); unsigned limit = luaL_optinteger (L, 2, 0); luaL_argcheck(L, mode <= (EGC_ON_ALLOC_FAILURE | EGC_ON_MEM_LIMIT | EGC_ALWAYS), 1, "invalid mode"); luaL_argcheck(L, !(mode & EGC_ON_MEM_LIMIT) || limit>0, 1, "limit must be non-zero"); lua_setegcmode( L, mode, limit ); return 0; } #endif static int writer(lua_State* L, const void* p, size_t size, void* u) { UNUSED(L); FILE *file = (FILE *)u; if (!file) return 1; if (size != 0 && (fwrite((const char *)p, size, 1, file) != 1) ) return 1; return 0; } #define toproto(L,i) (clvalue(L->top+(i))->l.p) // Lua: compile(filename) -- compile lua file into lua bytecode, and save to .lc static int node_compile( lua_State* L ) { Proto* f; FILE *file = 0; size_t len; const char *fname = luaL_checklstring( L, 1, &len ); char *output = luaM_malloc( L, len+1 ); strcpy(output, fname); // check here that filename end with ".lua". if (len < 4 || (strcmp( output + len - 4, ".lua") != 0) ) { luaM_free( L, output ); return luaL_error(L, "not a .lua file"); } output[strlen(output) - 2] = 'c'; output[strlen(output) - 1] = '\0'; NODE_DBG(output); NODE_DBG("\n"); if (luaL_loadfile(L, fname) != 0) { luaM_free( L, output ); return luaL_error(L, lua_tostring(L, -1)); } f = toproto(L, -1); int stripping = 1; /* strip debug information? */ file = fopen(output, "w+"); if (!file) { luaM_free( L, output ); return luaL_error(L, "cannot open/write to file"); } lua_lock(L); int result = luaU_dump(L, f, writer, file, stripping); lua_unlock(L); if (fflush(file) != 0) { // overwrite Lua error, like writer() does in case of a file io error result = 1; } fclose(file); luaM_free( L, output ); if (result == LUA_ERR_CC_INTOVERFLOW) { return luaL_error(L, "value too big or small for target integer type"); } if (result == LUA_ERR_CC_NOTINTEGER) { return luaL_error(L, "target lua_Number is integral but fractional value found"); } if (result == 1) { // result status generated by writer() or fs_flush() fail return luaL_error(L, "writing to file failed"); } return 0; } // Task callback handler for node.task.post() static task_handle_t do_node_task_handle; static void do_node_task (task_param_t task_fn_ref, task_prio_t prio) { lua_State* L = lua_getstate(); lua_rawgeti(L, LUA_REGISTRYINDEX, (int)task_fn_ref); luaL_unref(L, LUA_REGISTRYINDEX, (int)task_fn_ref); lua_pushinteger(L, prio); luaL_pcallx(L, 1, 0); } // Lua: node.task.post([priority],task_cb) -- schedule a task for execution next static int node_task_post( lua_State* L ) { int n = 1, Ltype = lua_type(L, 1); unsigned priority = TASK_PRIORITY_MEDIUM; if (Ltype == LUA_TNUMBER) { priority = (unsigned) luaL_checkint(L, 1); luaL_argcheck(L, priority <= TASK_PRIORITY_HIGH, 1, "invalid priority"); Ltype = lua_type(L, ++n); } luaL_argcheck(L, Ltype == LUA_TFUNCTION, n, "invalid function"); lua_pushvalue(L, n); int task_fn_ref = luaL_ref(L, LUA_REGISTRYINDEX); if (!do_node_task_handle) // bind the task handle to do_node_task on 1st call do_node_task_handle = task_get_id(do_node_task); if(!task_post(priority, do_node_task_handle, (task_param_t)task_fn_ref)) { luaL_unref(L, LUA_REGISTRYINDEX, task_fn_ref); luaL_error(L, "Task queue overflow. Task not posted"); } return 0; } static int node_osprint (lua_State *L) { if (lua_toboolean (L, 1)) esp_log_level_set ("*", CONFIG_LOG_DEFAULT_LEVEL); else esp_log_level_set ("*", ESP_LOG_NONE); return 0; } static int node_uptime(lua_State *L) { uint64_t now = esp_timer_get_time(); #ifdef LUA_NUMBER_INTEGRAL lua_pushinteger(L, (lua_Integer)(now & 0x7FFFFFFF)); lua_pushinteger(L, (lua_Integer)((now >> 31) & 0x7FFFFFFF)); #else // The largest double that doesn't lose whole-number precision is 2^53, so the // mask we apply is (2^53)-1 which is 0x1FFFFFFFFFFFFF. In practice this is // long enough the timer should never wrap, but it interesting nonetheless. lua_pushnumber(L, (lua_Number)(now & 0x1FFFFFFFFFFFFFull)); lua_pushinteger(L, (lua_Integer)(now >> 53)); #endif return 2; } // Lua: n = node.LFS.reload(lfsimage) static int node_lfsreload (lua_State *L) { lua_settop(L, 1); luaL_lfsreload(L); return 1; } // Lua: n = node.flashreload(lfsimage) static int node_lfsreload_deprecated (lua_State *L) { platform_print_deprecation_note("node.flashreload", "soon. Use node.LFS interface instead"); return node_lfsreload (L); } // Lua: n = node.flashindex(module) // Lua: n = node.LFS.get(module) static int node_lfsindex (lua_State *L) { lua_settop(L, 1); luaL_pushlfsmodule(L); return 1; } // Lua: n = node.LFS.list([option]) // Note that option is ignored in this release static int node_lfslist (lua_State *L) { lua_settop(L, 1); luaL_pushlfsmodules(L); if (lua_istable(L, -1) && lua_getglobal(L, "table") == LUA_TTABLE) { lua_getfield(L, -1, "sort"); lua_remove(L, -2); /* remove table table */ lua_pushvalue(L, -2); /* dup array of modules ref to ToS */ lua_call(L, 1, 0); } return 1; } //== node.LFS Table emulator ==============================================// static void add_int_field( lua_State* L, lua_Integer i, const char *name){ lua_pushinteger(L, i); lua_setfield(L, -2, name); } static void get_lfs_config ( lua_State* L ){ int config[5]; lua_getlfsconfig(L, config); lua_createtable(L, 0, 4); add_int_field(L, config[0], "lfs_mapped"); add_int_field(L, config[1], "lfs_base"); add_int_field(L, config[2], "lfs_size"); add_int_field(L, config[3], "lfs_used"); } static int node_lfs_func (lua_State* L) { /*T[1] = LFS, T[2] = fieldname */ lua_remove(L, 1); lua_settop(L, 1); const char *name = lua_tostring(L, 1); if (!name) { lua_pushnil(L); } else if (!strcmp(name, "config")) { get_lfs_config(L); } else if (!strcmp(name, "time")) { luaL_pushlfsdts(L); } else { luaL_pushlfsmodule(L); } return 1; } LROT_BEGIN(node_lfs_meta, NULL, LROT_MASK_INDEX) LROT_FUNCENTRY( __index, node_lfs_func) LROT_END(node_lfs_meta, NULL, LROT_MASK_INDEX) LROT_BEGIN(node_lfs, LROT_TABLEREF(node_lfs_meta), 0) LROT_FUNCENTRY( list, node_lfslist) LROT_FUNCENTRY( get, node_lfsindex) LROT_FUNCENTRY( reload, node_lfsreload ) LROT_END(node_lfs, LROT_TABLEREF(node_lfs_meta), 0) #if defined(CONFIG_LUA_VERSION_51) LROT_BEGIN(node_egc, NULL, 0) LROT_FUNCENTRY( setmode, node_egc_setmode ) LROT_NUMENTRY ( NOT_ACTIVE, EGC_NOT_ACTIVE ) LROT_NUMENTRY ( ON_ALLOC_FAILURE, EGC_ON_ALLOC_FAILURE ) LROT_NUMENTRY ( ON_MEM_LIMIT, EGC_ON_MEM_LIMIT ) LROT_NUMENTRY ( ALWAYS, EGC_ALWAYS ) LROT_END(node_egc, NULL, 0) #endif LROT_BEGIN(node_task, NULL, 0) LROT_FUNCENTRY( post, node_task_post ) LROT_NUMENTRY ( LOW_PRIORITY, TASK_PRIORITY_LOW ) LROT_NUMENTRY ( MEDIUM_PRIORITY, TASK_PRIORITY_MEDIUM ) LROT_NUMENTRY ( HIGH_PRIORITY, TASK_PRIORITY_HIGH ) LROT_END(node_task, NULL, 0) // Wakup reasons LROT_BEGIN(node_wakeup, NULL, 0) LROT_NUMENTRY ( GPIO, ESP_SLEEP_WAKEUP_GPIO ) LROT_NUMENTRY ( TIMER, ESP_SLEEP_WAKEUP_TIMER ) LROT_NUMENTRY ( TOUCHPAD, ESP_SLEEP_WAKEUP_TOUCHPAD ) LROT_NUMENTRY ( UART, ESP_SLEEP_WAKEUP_UART ) LROT_NUMENTRY ( ULP, ESP_SLEEP_WAKEUP_ULP ) LROT_END(node_wakeup, NULL, 0) LROT_BEGIN(node, NULL, 0) LROT_FUNCENTRY( bootreason, node_bootreason ) LROT_FUNCENTRY( chipid, node_chipid ) LROT_FUNCENTRY( compile, node_compile ) LROT_FUNCENTRY( dsleep, node_dsleep ) #if defined(CONFIG_LUA_VERSION_51) LROT_TABENTRY ( egc, node_egc ) #endif LROT_FUNCENTRY( flashreload,node_lfsreload_deprecated ) LROT_FUNCENTRY( flashindex, node_lfsindex ) LROT_TABENTRY( LFS, node_lfs ) LROT_FUNCENTRY( heap, node_heap ) LROT_FUNCENTRY( input, node_input ) LROT_FUNCENTRY( output, node_output ) LROT_FUNCENTRY( osprint, node_osprint ) LROT_FUNCENTRY( restart, node_restart ) LROT_FUNCENTRY( setonerror, node_setonerror ) LROT_FUNCENTRY( sleep, node_sleep ) LROT_FUNCENTRY( stripdebug, node_stripdebug ) LROT_TABENTRY ( task, node_task ) LROT_FUNCENTRY( uptime, node_uptime ) LROT_TABENTRY ( wakeup, node_wakeup ) LROT_END(node, NULL, 0) int luaopen_node(lua_State *L) { output_task = task_get_id(redir_output); lua_settop(L, 0); return node_setonerror(L); /* set default onerror action */ } NODEMCU_MODULE(NODE, "node", node, luaopen_node);