/* * Module for interfacing with cheap matrix keyboards like telephone keypads * * The idea is to have pullups on all the rows, and drive the columns low. * WHen a key is pressed, one of the rows will go low and trigger an interrupt. Disable * all the row interrupts. * Then we disable all the columns and then drive each column low in turn. Hopefully * one of the rows will go low. This is a keypress. We only report the first keypress found. * we start a timer to handle debounce. * On timer expiry, see if any key is pressed, if so, just wait again * If no key is pressed, run timer again. On timer expiry, re-enable interrupts. * * Philip Gladstone, N1DQ */ #include "module.h" #include "lauxlib.h" #include "platform.h" #include "task/task.h" #include "esp_timer.h" #include #include #include #include "driver/gpio.h" #define MATRIX_PRESS_INDEX 0 #define MATRIX_RELEASE_INDEX 1 #define MASK(x) (1 << MATRIX_##x##_INDEX) #define MATRIX_ALL 0x3 #define CALLBACK_COUNT 2 #define QUEUE_SIZE 8 typedef struct { int32_t character; // 1 + character for press, -1 - character for release uint32_t time_us; } matrix_event_t; typedef enum { WAITING_FOR_PRESS, WAITING_FOR_RELEASE, WAITING_FOR_DEBOUNCE } state_t; typedef struct { uint8_t column_count; uint8_t row_count; uint8_t *columns; uint8_t *rows; state_t state; bool open; int character_ref; int callback[CALLBACK_COUNT]; esp_timer_handle_t timer_handle; int8_t task_queued; uint32_t read_offset; // Accessed by task uint32_t write_offset; // Accessed by ISR uint8_t last_character; matrix_event_t queue[QUEUE_SIZE]; } DATA; static task_handle_t tasknumber; static void lmatrix_timer_done(void *param); // // Queue is empty if read == write. // However, we always want to keep the previous value // so writing is only allowed if write - read < QUEUE_SIZE - 1 #define GET_LAST_STATUS(d) (d->queue[(d->write_offset - 1) & (QUEUE_SIZE - 1)]) #define GET_PREV_STATUS(d) (d->queue[(d->write_offset - 2) & (QUEUE_SIZE - 1)]) #define HAS_QUEUED_DATA(d) (d->read_offset < d->write_offset) #define HAS_QUEUE_SPACE(d) (d->read_offset + QUEUE_SIZE - 1 > d->write_offset) #define REPLACE_IT(d, x) \ (d->queue[(d->write_offset - 1) & (QUEUE_SIZE - 1)] = \ (matrix_event_t){(x), esp_timer_get_time()}) #define QUEUE_IT(d, x) \ (d->queue[(d->write_offset++) & (QUEUE_SIZE - 1)] = \ (matrix_event_t){(x), esp_timer_get_time()}) #define GET_READ_STATUS(d) (d->queue[d->read_offset & (QUEUE_SIZE - 1)]) #define ADVANCE_IF_POSSIBLE(d) \ if (d->read_offset < d->write_offset) { \ d->read_offset++; \ } static esp_err_t set_gpio_mode_input(int pin, gpio_int_type_t intr) { gpio_config_t config = {.pin_bit_mask = 1LL << pin, .mode = GPIO_MODE_INPUT, .pull_up_en = GPIO_PULLUP_ENABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE, .intr_type = intr}; return gpio_config(&config); } static esp_err_t set_gpio_mode_output(int pin) { gpio_config_t config = {.pin_bit_mask = 1LL << pin, .mode = GPIO_MODE_OUTPUT_OD, .pull_up_en = GPIO_PULLUP_DISABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE }; return gpio_config(&config); } static void set_columns(DATA *d, int level) { for (int i = 0; i < d->column_count; i++) { gpio_set_level(d->columns[i], level); } } static void initialize_pins(lua_State *L, DATA *d) { for (int i = 0; i < d->column_count; i++) { if (set_gpio_mode_output(d->columns[i]) != ESP_OK) { luaL_error(L, "Unable to configure pins"); } } set_columns(d, 0); for (int i = 0; i < d->row_count; i++) { if (set_gpio_mode_input(d->rows[i], GPIO_INTR_NEGEDGE) != ESP_OK) { luaL_error(L, "Unable to configure pins"); } } } static void disable_row_interrupts(DATA *d) { for (int i = 0; i < d->row_count; i++) { gpio_set_intr_type(d->rows[i], GPIO_INTR_DISABLE); } } // Just takes the channel number. Cleans up the resources used. static int matrix_close(DATA *d) { if (!d) { return 0; } disable_row_interrupts(d); for (int i = 0; i < d->row_count; i++) { gpio_isr_handler_remove(d->rows[i]); } for (int i = 0; i < d->column_count; i++) { set_gpio_mode_input(d->columns[i], GPIO_INTR_DISABLE); } return 0; } // Character returned is 0 .. max if pressed. -1 if not. static int matrix_get_character(DATA *d) { set_columns(d, 1); disable_row_interrupts(d); int character = -1; // We are either waiting for a negative edge (keypress) or a positive edge // (keyrelease) for (int i = 0; i < d->column_count && character < 0; i++) { gpio_set_level(d->columns[i], 0); for (int j = 0; j < d->row_count && character < 0; j++) { if (gpio_get_level(d->rows[j]) == 0) { // We found a keypress character = j * d->column_count + i; } } gpio_set_level(d->columns[i], 1); } return character; } static void matrix_queue_character(DATA *d, int character) { // If character is >= 0 then we have found the character -- so send it. if ((d->state == WAITING_FOR_PRESS && character >= 0) || (d->state == WAITING_FOR_RELEASE && character < 0)) { if (character >= 0) { character++; d->last_character = character; } else { character = -d->last_character; } if (HAS_QUEUE_SPACE(d)) { QUEUE_IT(d, character); if (!d->task_queued) { if (task_post_medium(tasknumber, (task_param_t)d)) { d->task_queued = 1; } } } } } static void matrix_interrupt(void *arg) { // This function runs with high priority DATA *d = (DATA *)arg; int character = matrix_get_character(d); matrix_queue_character(d, character); d->state = character >= 0 ? WAITING_FOR_RELEASE : WAITING_FOR_PRESS; esp_timer_start_once(d->timer_handle, 5000); } static bool matrix_has_queued_event(DATA *d) { if (!d) { return false; } return HAS_QUEUED_DATA(d); } // Get the oldest event in the queue and remove it (if possible) static bool matrix_getevent(DATA *d, matrix_event_t *resultp) { matrix_event_t result = {0}; if (!d) { return false; } bool status = false; if (HAS_QUEUED_DATA(d)) { result = GET_READ_STATUS(d); d->read_offset++; status = true; } else { result = GET_LAST_STATUS(d); } *resultp = result; return status; } static void callback_free_one(lua_State *L, int *cb_ptr) { if (*cb_ptr != LUA_NOREF) { luaL_unref(L, LUA_REGISTRYINDEX, *cb_ptr); *cb_ptr = LUA_NOREF; } } static void callback_free(lua_State* L, DATA *d, int mask) { if (d) { int i; for (i = 0; i < CALLBACK_COUNT; i++) { if (mask & (1 << i)) { callback_free_one(L, &d->callback[i]); } } } } static int callback_setOne(lua_State* L, int *cb_ptr, int arg_number) { if (lua_isfunction(L, arg_number)) { lua_pushvalue(L, arg_number); // copy argument (func) to the top of stack callback_free_one(L, cb_ptr); *cb_ptr = luaL_ref(L, LUA_REGISTRYINDEX); return 0; } return -1; } static int callback_set(lua_State* L, DATA *d, int mask, int arg_number) { int result = 0; int i; for (i = 0; i < CALLBACK_COUNT; i++) { if (mask & (1 << i)) { result |= callback_setOne(L, &d->callback[i], arg_number); } } return result; } static void callback_callOne(lua_State* L, int cb, int mask, int arg, uint32_t time) { if (cb != LUA_NOREF) { lua_rawgeti(L, LUA_REGISTRYINDEX, cb); lua_pushinteger(L, mask); lua_pushvalue(L, arg - 2); lua_pushinteger(L, time); luaL_pcallx(L, 3, 0); } } static void callback_call(lua_State* L, DATA *d, int cbnum, int key, uint32_t time) { if (d) { lua_rawgeti(L, LUA_REGISTRYINDEX, d->character_ref); lua_rawgeti(L, -1, key); if (lua_type(L, -1) != LUA_TNIL) { callback_callOne(L, d->callback[cbnum], 1 << cbnum, -1, time); } lua_pop(L, 2); } } static void getpins(lua_State *L, int argno, int count, uint8_t *dest) { for (int i = 1; i <= count; i++) { lua_rawgeti(L, argno, i); *dest++ = lua_tonumber(L, -1); lua_pop(L, 1); } } // Lua: setup({cols}, {rows}, {characters}) static int lmatrix_setup( lua_State* L ) { luaL_checktype(L, 1, LUA_TTABLE); luaL_checktype(L, 2, LUA_TTABLE); luaL_checktype(L, 3, LUA_TTABLE); // Get the sizes of the first two tables size_t columns = lua_rawlen(L, 1); size_t rows = lua_rawlen(L, 2); if (columns > 255 || rows > 255 || !rows || !columns) { return luaL_error(L, "Number of rows or columns out of range"); } DATA *d = (DATA *)lua_newuserdata(L, sizeof(DATA) + rows + columns); if (!d) return luaL_error(L, "not enough memory"); memset(d, 0, sizeof(*d) + rows + columns); luaL_getmetatable(L, "matrix.keyboard"); lua_setmetatable(L, -2); d->columns = (uint8_t *) (d + 1); d->rows = d->columns + columns; d->column_count = columns; d->row_count = rows; esp_timer_create_args_t timer_args = { .callback = lmatrix_timer_done, .dispatch_method = ESP_TIMER_TASK, .name = "matrix_timer", .arg = d }; d->open = true; esp_timer_create(&timer_args, &d->timer_handle); for (int i = 0; i < CALLBACK_COUNT; i++) { d->callback[i] = LUA_NOREF; } getpins(L, 1, columns, d->columns); getpins(L, 2, rows, d->rows); lua_pushvalue(L, 3); d->character_ref = luaL_ref(L, LUA_REGISTRYINDEX); for (int i = 0; i < d->row_count; i++) { gpio_isr_handler_add(d->rows[i], matrix_interrupt, d); } initialize_pins(L, d); return 1; } // Lua: close( ) static int lmatrix_close( lua_State* L ) { DATA *d = (DATA *)luaL_checkudata(L, 1, "matrix.keyboard"); if (d->open) { callback_free(L, d, MATRIX_ALL); if (matrix_close( d )) { return luaL_error( L, "Unable to close switch." ); } esp_timer_stop(d->timer_handle); esp_timer_delete(d->timer_handle); luaL_unref(L, LUA_REGISTRYINDEX, d->character_ref); d->open = false; } return 0; } // Lua: on( mask[, cb] ) static int lmatrix_on( lua_State* L ) { DATA *d = (DATA *)luaL_checkudata(L, 1, "matrix.keyboard"); int mask = luaL_checkinteger(L, 2); if (lua_gettop(L) >= 3) { if (callback_set(L, d, mask, 3)) { return luaL_error( L, "Unable to set callback." ); } } else { callback_free(L, d, mask); } return 0; } // Returns TRUE if there maybe/is more stuff to do static bool lmatrix_dequeue_single(lua_State* L, DATA *d) { bool something_pending = false; if (d) { matrix_event_t result; if (matrix_getevent(d, &result)) { int character = result.character; callback_call(L, d, character > 0 ? MATRIX_PRESS_INDEX : MATRIX_RELEASE_INDEX, character < 0 ? -character : character, result.time_us); d->task_queued = 0; something_pending = matrix_has_queued_event(d); } } return something_pending; } static void lmatrix_timer_done(void *param) { DATA *d = (DATA *) param; // We need to see if the key is still pressed, and if so, enable rising edge interrupts int character = matrix_get_character(d); matrix_queue_character(d, character); if (d->state == WAITING_FOR_RELEASE && character < 0) { d->state = WAITING_FOR_DEBOUNCE; } else if (character >= 0) { d->state = WAITING_FOR_RELEASE; } else { d->state = WAITING_FOR_PRESS; } if (d->state == WAITING_FOR_PRESS) { for (int i = 0; i < d->row_count; i++) { gpio_set_intr_type(d->rows[i], GPIO_INTR_NEGEDGE); } set_columns(d, 0); } else { esp_timer_start_once(d->timer_handle, 40000); } } static void lmatrix_task(task_param_t param, task_prio_t prio) { (void) prio; bool need_to_post = false; lua_State *L = lua_getstate(); DATA *d = (DATA *) param; if (d) { if (lmatrix_dequeue_single(L, d)) { need_to_post = true; } } if (need_to_post) { // If there is pending stuff, queue another task task_post_medium(tasknumber, param); } } // Module function map LROT_BEGIN(matrix, NULL, 0) LROT_FUNCENTRY( setup, lmatrix_setup ) LROT_NUMENTRY( PRESS, MASK(PRESS) ) LROT_NUMENTRY( RELEASE, MASK(RELEASE) ) LROT_NUMENTRY( ALL, MATRIX_ALL ) LROT_END(matrix, NULL, 0) // Module function map LROT_BEGIN(matrix_keyboard, NULL, LROT_MASK_GC_INDEX) LROT_FUNCENTRY(__gc, lmatrix_close) LROT_TABENTRY(__index, matrix_keyboard) LROT_FUNCENTRY(on, lmatrix_on) LROT_FUNCENTRY(close, lmatrix_close) LROT_END(matrix_keyboard, NULL, LROT_MASK_GC_INDEX) static int matrix_open(lua_State *L) { luaL_rometatable(L, "matrix.keyboard", LROT_TABLEREF(matrix_keyboard)); // create metatable tasknumber = task_get_id(lmatrix_task); return 0; } NODEMCU_MODULE(MATRIX, "matrix", matrix, matrix_open);