// Module for interfacing with system #include "module.h" #include "lauxlib.h" #include "ldebug.h" #include "ldo.h" #include "lfunc.h" #include "lmem.h" #include "lobject.h" #include "lstate.h" #include "legc.h" #include "lopcodes.h" #include "lstring.h" #include "lundump.h" #include "platform.h" #include "lflash.h" #include #include #include "driver/uart.h" #include "user_interface.h" #include "flash_api.h" #include "vfs.h" #include "user_version.h" #include "rom.h" #include "task/task.h" #define CPU80MHZ 80 #define CPU160MHZ 160 // Lua: restart() static int node_restart( lua_State* L ) { system_restart(); return 0; } static int dsleepMax( lua_State *L ) { lua_pushnumber(L, (uint64_t)system_rtc_clock_cali_proc()*(0x80000000-1)/(0x1000)); return 1; } // Lua: dsleep( us, option ) static int node_deepsleep( lua_State* L ) { uint64 us; uint8 option; //us = luaL_checkinteger( L, 1 ); // Set deleep option, skip if nil if ( lua_isnumber(L, 2) ) { option = lua_tointeger(L, 2); if ( option < 0 || option > 4) return luaL_error( L, "wrong arg range" ); else system_deep_sleep_set_option( option ); } bool instant = false; if (lua_isnumber(L, 3)) instant = lua_tointeger(L, 3); // Set deleep time, skip if nil if ( lua_isnumber(L, 1) ) { us = luaL_checknumber(L, 1); // if ( us <= 0 ) if ( us < 0 ) return luaL_error( L, "wrong arg range" ); else { if (instant) system_deep_sleep_instant(us); else system_deep_sleep( us ); } } return 0; } #ifdef PMSLEEP_ENABLE #include "pm/pmSleep.h" int node_sleep_resume_cb_ref= LUA_NOREF; void node_sleep_resume_cb(void) { PMSLEEP_DBG("START"); pmSleep_execute_lua_cb(&node_sleep_resume_cb_ref); PMSLEEP_DBG("END"); } // Lua: node.sleep(table) static int node_sleep( lua_State* L ) { #ifdef TIMER_SUSPEND_ENABLE pmSleep_INIT_CFG(cfg); cfg.sleep_mode=LIGHT_SLEEP_T; if(lua_istable(L, 1)){ pmSleep_parse_table_lua(L, 1, &cfg, NULL, &node_sleep_resume_cb_ref); } else{ return luaL_argerror(L, 1, "must be table"); } cfg.resume_cb_ptr = &node_sleep_resume_cb; pmSleep_suspend(&cfg); #else dbg_printf("\n The option \"TIMER_SUSPEND_ENABLE\" in \"app/include/user_config.h\" was disabled during FW build!\n"); return luaL_error(L, "node.sleep() is unavailable"); #endif return 0; } #else static int node_sleep( lua_State* L ) { dbg_printf("\n The options \"TIMER_SUSPEND_ENABLE\" and \"PMSLEEP_ENABLE\" in \"app/include/user_config.h\" were disabled during FW build!\n"); return luaL_error(L, "node.sleep() is unavailable"); } #endif //PMSLEEP_ENABLE static int node_info( lua_State* L ) { lua_pushinteger(L, NODE_VERSION_MAJOR); lua_pushinteger(L, NODE_VERSION_MINOR); lua_pushinteger(L, NODE_VERSION_REVISION); lua_pushinteger(L, system_get_chip_id()); // chip id lua_pushinteger(L, spi_flash_get_id()); // flash id lua_pushinteger(L, flash_rom_get_size_byte() / 1024); // flash size in KB lua_pushinteger(L, flash_rom_get_mode()); lua_pushinteger(L, flash_rom_get_speed()); lua_pushstring(L, BUILDINFO_BRANCH); lua_pushstring(L, BUILDINFO_COMMIT_ID); lua_pushstring(L, BUILDINFO_RELEASE); lua_pushnumber(L, BUILDINFO_RELEASE_DTS); lua_pushboolean(L, BUILDINFO_SSL); lua_pushstring(L, BUILDINFO_LFS); lua_pushstring(L, BUILDINFO_MODULES); lua_pushstring(L, BUILDINFO_BUILD_TYPE); return 16; } // Lua: chipid() static int node_chipid( lua_State* L ) { uint32_t id = system_get_chip_id(); lua_pushinteger(L, id); return 1; } // deprecated, moved to adc module // Lua: readvdd33() // static int node_readvdd33( lua_State* L ) // { // uint32_t vdd33 = readvdd33(); // lua_pushinteger(L, vdd33); // return 1; // } // Lua: flashid() static int node_flashid( lua_State* L ) { uint32_t id = spi_flash_get_id(); lua_pushinteger( L, id ); return 1; } // Lua: flashsize() static int node_flashsize( lua_State* L ) { uint32_t sz = flash_rom_get_size_byte(); lua_pushinteger( L, sz ); return 1; } // Lua: heap() static int node_heap( lua_State* L ) { uint32_t sz = system_get_free_heap_size(); lua_pushinteger(L, sz); return 1; } extern int lua_put_line(const char *s, size_t l); extern bool user_process_input(bool force); // Lua: input("string") static int node_input( lua_State* L ) { size_t l = 0; const char *s = luaL_checklstring(L, 1, &l); if (lua_put_line(s, l)) { NODE_DBG("Result (if any):\n"); user_process_input(true); } return 0; } static int output_redir_ref = LUA_NOREF; static int serial_debug = 1; void output_redirect(const char *str) { lua_State *L = lua_getstate(); // if(strlen(str)>=TX_BUFF_SIZE){ // NODE_ERR("output too long.\n"); // return; // } if (output_redir_ref == LUA_NOREF) { uart0_sendStr(str); return; } if (serial_debug != 0) { uart0_sendStr(str); } lua_rawgeti(L, LUA_REGISTRYINDEX, output_redir_ref); lua_pushstring(L, str); lua_call(L, 1, 0); // this call back function should never user output. } // Lua: output(function(c), debug) static int node_output( lua_State* L ) { // luaL_checkanyfunction(L, 1); if (lua_type(L, 1) == LUA_TFUNCTION || lua_type(L, 1) == LUA_TLIGHTFUNCTION) { lua_pushvalue(L, 1); // copy argument (func) to the top of stack if (output_redir_ref != LUA_NOREF) luaL_unref(L, LUA_REGISTRYINDEX, output_redir_ref); output_redir_ref = luaL_ref(L, LUA_REGISTRYINDEX); } else { // unref the key press function if (output_redir_ref != LUA_NOREF) luaL_unref(L, LUA_REGISTRYINDEX, output_redir_ref); output_redir_ref = LUA_NOREF; serial_debug = 1; return 0; } if ( lua_isnumber(L, 2) ) { serial_debug = lua_tointeger(L, 2); if (serial_debug != 0) serial_debug = 1; } else { serial_debug = 1; // default to 1 } return 0; } static int writer(lua_State* L, const void* p, size_t size, void* u) { UNUSED(L); int file_fd = *( (int *)u ); if (!file_fd) return 1; NODE_DBG("get fd:%d,size:%d\n", file_fd, size); if (size != 0 && (size != vfs_write(file_fd, (const char *)p, size)) ) return 1; NODE_DBG("write fd:%d,size:%d\n", file_fd, size); return 0; } #define toproto(L,i) (clvalue(L->top+(i))->l.p) // Lua: compile(filename) -- compile lua file into lua bytecode, and save to .lc static int node_compile( lua_State* L ) { Proto* f; int file_fd = 0; size_t len; const char *fname = luaL_checklstring( L, 1, &len ); const char *basename = vfs_basename( fname ); luaL_argcheck(L, strlen(basename) <= FS_OBJ_NAME_LEN && strlen(fname) == len, 1, "filename invalid"); char *output = luaM_malloc( L, len+1 ); strcpy(output, fname); // check here that filename end with ".lua". if (len < 4 || (strcmp( output + len - 4, ".lua") != 0) ) { luaM_free( L, output ); return luaL_error(L, "not a .lua file"); } output[strlen(output) - 2] = 'c'; output[strlen(output) - 1] = '\0'; NODE_DBG(output); NODE_DBG("\n"); if (luaL_loadfsfile(L, fname) != 0) { luaM_free( L, output ); return luaL_error(L, lua_tostring(L, -1)); } f = toproto(L, -1); int stripping = 1; /* strip debug information? */ file_fd = vfs_open(output, "w+"); if (!file_fd) { luaM_free( L, output ); return luaL_error(L, "cannot open/write to file"); } lua_lock(L); int result = luaU_dump(L, f, writer, &file_fd, stripping); lua_unlock(L); if (vfs_flush(file_fd) != VFS_RES_OK) { // overwrite Lua error, like writer() does in case of a file io error result = 1; } vfs_close(file_fd); file_fd = 0; luaM_free( L, output ); if (result == LUA_ERR_CC_INTOVERFLOW) { return luaL_error(L, "value too big or small for target integer type"); } if (result == LUA_ERR_CC_NOTINTEGER) { return luaL_error(L, "target lua_Number is integral but fractional value found"); } if (result == 1) { // result status generated by writer() or fs_flush() fail return luaL_error(L, "writing to file failed"); } return 0; } // Task callback handler for node.task.post() static task_handle_t do_node_task_handle; static void do_node_task (task_param_t task_fn_ref, uint8_t prio) { lua_State* L = lua_getstate(); lua_rawgeti(L, LUA_REGISTRYINDEX, (int)task_fn_ref); luaL_unref(L, LUA_REGISTRYINDEX, (int)task_fn_ref); lua_pushinteger(L, prio); lua_call(L, 1, 0); } // Lua: node.task.post([priority],task_cb) -- schedule a task for execution next static int node_task_post( lua_State* L ) { int n = 1, Ltype = lua_type(L, 1); unsigned priority = TASK_PRIORITY_MEDIUM; if (Ltype == LUA_TNUMBER) { priority = (unsigned) luaL_checkint(L, 1); luaL_argcheck(L, priority <= TASK_PRIORITY_HIGH, 1, "invalid priority"); Ltype = lua_type(L, ++n); } luaL_argcheck(L, Ltype == LUA_TFUNCTION || Ltype == LUA_TLIGHTFUNCTION, n, "invalid function"); lua_pushvalue(L, n); int task_fn_ref = luaL_ref(L, LUA_REGISTRYINDEX); if (!do_node_task_handle) // bind the task handle to do_node_task on 1st call do_node_task_handle = task_get_id(do_node_task); if(!task_post(priority, do_node_task_handle, (task_param_t)task_fn_ref)) { luaL_unref(L, LUA_REGISTRYINDEX, task_fn_ref); luaL_error(L, "Task queue overflow. Task not posted"); } return 0; } // Lua: setcpufreq(mhz) // mhz is either CPU80MHZ od CPU160MHZ static int node_setcpufreq(lua_State* L) { // http://www.esp8266.com/viewtopic.php?f=21&t=1369 uint32_t new_freq = luaL_checkinteger(L, 1); if (new_freq == CPU160MHZ){ REG_SET_BIT(0x3ff00014, BIT(0)); ets_update_cpu_frequency(CPU160MHZ); } else { REG_CLR_BIT(0x3ff00014, BIT(0)); ets_update_cpu_frequency(CPU80MHZ); } new_freq = ets_get_cpu_frequency(); lua_pushinteger(L, new_freq); return 1; } // Lua: freq = node.getcpufreq() static int node_getcpufreq(lua_State* L) { lua_pushinteger(L, system_get_cpu_freq()); return 1; } // Lua: code, reason [, exccause, epc1, epc2, epc3, excvaddr, depc ] = bootreason() static int node_bootreason (lua_State *L) { const struct rst_info *ri = system_get_rst_info (); uint32_t arr[8] = { rtc_get_reset_reason(), ri->reason, ri->exccause, ri->epc1, ri->epc2, ri->epc3, ri->excvaddr, ri->depc }; int i, n = ((ri->reason != REASON_EXCEPTION_RST) ? 2 : 8); for (i = 0; i < n; ++i) lua_pushinteger (L, arr[i]); return n; } // Lua: restore() static int node_restore (lua_State *L) { system_restore(); return 0; } #ifdef LUA_OPTIMIZE_DEBUG /* node.stripdebug([level[, function]]).  * level: 1 don't discard debug * 2 discard Local and Upvalue debug info * 3 discard Local, Upvalue and lineno debug info. * function: Function to be stripped as per setfenv except 0 not permitted. * If no arguments then the current default setting is returned. * If function is omitted, this is the default setting for future compiles * The function returns an estimated integer count of the bytes stripped. */ static int node_stripdebug (lua_State *L) { int level; if (L->top == L->base) { lua_pushlightuserdata(L, &luaG_stripdebug ); lua_gettable(L, LUA_REGISTRYINDEX); if (lua_isnil(L, -1)) { lua_pop(L, 1); lua_pushinteger(L, LUA_OPTIMIZE_DEBUG); } return 1; } level = luaL_checkint(L, 1); if ((level <= 0) || (level > 3)) luaL_argerror(L, 1, "must in range 1-3"); if (L->top == L->base + 1) { /* Store the default level in the registry if no function parameter */ lua_pushlightuserdata(L, &luaG_stripdebug); lua_pushinteger(L, level); lua_settable(L, LUA_REGISTRYINDEX); lua_settop(L,0); return 0; } if (level == 1) { lua_settop(L,0); lua_pushinteger(L, 0); return 1; } if (!lua_isfunction(L, 2)) { int scope = luaL_checkint(L, 2); if (scope > 0) { /* if the function parameter is a +ve integer then climb to find function */ lua_Debug ar; lua_pop(L, 1); /* pop level as getinfo will replace it by the function */ if (lua_getstack(L, scope, &ar)) { lua_getinfo(L, "f", &ar); } } } if(!lua_isfunction(L, 2) || lua_iscfunction(L, -1)) luaL_argerror(L, 2, "must be a Lua Function"); // lua_lock(L); Proto *f = clvalue(L->base + 1)->l.p; // lua_unlock(L); lua_settop(L,0); lua_pushinteger(L, luaG_stripdebug(L, f, level, 1)); return 1; } #endif // Lua: node.egc.setmode( mode, [param]) // where the mode is one of the node.egc constants NOT_ACTIVE , ON_ALLOC_FAILURE, // ON_MEM_LIMIT, ALWAYS. In the case of ON_MEM_LIMIT an integer parameter is reqired // See legc.h and lecg.c. static int node_egc_setmode(lua_State* L) { unsigned mode = luaL_checkinteger(L, 1); int limit = luaL_optinteger (L, 2, 0); luaL_argcheck(L, mode <= (EGC_ON_ALLOC_FAILURE | EGC_ON_MEM_LIMIT | EGC_ALWAYS), 1, "invalid mode"); luaL_argcheck(L, !(mode & EGC_ON_MEM_LIMIT) || limit!=0, 1, "limit must be non-zero"); legc_set_mode( L, mode, limit ); return 0; } // totalallocated, estimatedused = node.egc.meminfo() static int node_egc_meminfo(lua_State *L) { global_State *g = G(L); lua_pushinteger(L, g->totalbytes); lua_pushinteger(L, g->estimate); return 2; } // // Lua: osprint(true/false) // Allows you to turn on the native Espressif SDK printing static int node_osprint( lua_State* L ) { if (lua_toboolean(L, 1)) { system_set_os_print(1); } else { system_set_os_print(0); } return 0; } int node_random_range(int l, int u) { // The range is the number of different values to return unsigned int range = u + 1 - l; // If this is very large then use simpler code if (range >= 0x7fffffff) { unsigned int v; // This cannot loop more than half the time while ((v = os_random()) >= range) { } // Now v is in the range [0, range) return v + l; } // Easy case, with only one value, we know the result if (range == 1) { return l; } // Another easy case -- uniform 32-bit if (range == 0) { return os_random(); } // Now we have to figure out what a large multiple of range is // that just fits into 32 bits. // The limit will be less than 1 << 32 by some amount (not much) uint32_t limit = ((0x80000000 / ((range + 1) >> 1)) - 1) * range; uint32_t v; while ((v = os_random()) >= limit) { } // Now v is uniformly distributed in [0, limit) and limit is a multiple of range return (v % range) + l; } static int node_random (lua_State *L) { int u; int l; switch (lua_gettop(L)) { /* check number of arguments */ case 0: { /* no arguments */ #ifdef LUA_NUMBER_INTEGRAL lua_pushnumber(L, 0); /* Number between 0 and 1 - always 0 with ints */ #else lua_pushnumber(L, (lua_Number)os_random() / (lua_Number)(1LL << 32)); #endif return 1; } case 1: { /* only upper limit */ l = 1; u = luaL_checkint(L, 1); break; } case 2: { /* lower and upper limits */ l = luaL_checkint(L, 1); u = luaL_checkint(L, 2); break; } default: return luaL_error(L, "wrong number of arguments"); } luaL_argcheck(L, l<=u, 2, "interval is empty"); lua_pushnumber(L, node_random_range(l, u)); /* int between `l' and `u' */ return 1; } #ifdef DEVELOPMENT_TOOLS // Lua: rec = node.readrcr(id) static int node_readrcr (lua_State *L) { int id = luaL_checkinteger(L, 1); char *data; int n = platform_rcr_read(id, (void **)&data); if (n == ~0) return 0; lua_pushlstring(L, data, n); return 1; } // Lua: n = node.writercr(id,rec) static int node_writercr (lua_State *L) { int id = luaL_checkinteger(L, 1),l; const char *data = lua_tolstring(L, 2, &l); int n = platform_rcr_write(id, data, l); lua_pushinteger(L, n); return 1; } #endif typedef enum pt_t { lfs_addr=0, lfs_size, spiffs_addr, spiffs_size, max_pt} pt_t; LROT_BEGIN(pt) LROT_NUMENTRY( lfs_addr, lfs_addr ) LROT_NUMENTRY( lfs_size, lfs_size ) LROT_NUMENTRY( spiffs_addr, spiffs_addr ) LROT_NUMENTRY( spiffs_size, spiffs_size ) LROT_END( pt, NULL, 0 ) // Lua: ptinfo = node.getpartitiontable() static int node_getpartitiontable (lua_State *L) { uint32_t param[max_pt] = {0}; param[lfs_size] = platform_flash_get_partition(NODEMCU_LFS0_PARTITION, param + lfs_addr); param[spiffs_size] = platform_flash_get_partition(NODEMCU_SPIFFS0_PARTITION, param + spiffs_addr); lua_settop(L, 0); lua_createtable (L, 0, max_pt); /* at index 1 */ lua_pushrotable(L, (void*)pt_map); /* at index 2 */ lua_pushnil(L); /* first key at index 3 */ while (lua_next(L, 2) != 0) { /* key at index 3, and v at index 4 */ lua_pushvalue(L, 3); /* dup key to index 5 */ lua_pushinteger(L, param[lua_tointeger(L, 4)]); /* param [v] at index 6 */ lua_rawset(L, 1); lua_pop(L, 1); /* discard v */ } lua_pop(L, 1); /* discard pt_map reference */ return 1; } static void insert_partition(partition_item_t *p, int n, uint32_t type, uint32_t addr) { if (n>0) memmove(p+1, p, n*sizeof(partition_item_t)); /* overlapped so must be move not cpy */ p->type = type; p->addr = addr; p->size = 0; } static void delete_partition(partition_item_t *p, int n) { if (n>0) memmove(p, p+1, n*sizeof(partition_item_t)); /* overlapped so must be move not cpy */ } #define SKIP (~0) #define IROM0_PARTITION (SYSTEM_PARTITION_CUSTOMER_BEGIN + NODEMCU_IROM0TEXT_PARTITION) #define LFS_PARTITION (SYSTEM_PARTITION_CUSTOMER_BEGIN + NODEMCU_LFS0_PARTITION) #define SPIFFS_PARTITION (SYSTEM_PARTITION_CUSTOMER_BEGIN + NODEMCU_SPIFFS0_PARTITION) // Lua: node.setpartitiontable(pt_settings) static int node_setpartitiontable (lua_State *L) { partition_item_t *rcr_pt = NULL, *pt; uint32_t flash_size = flash_rom_get_size_byte(); uint32_t i = platform_rcr_read(PLATFORM_RCR_PT, (void **) &rcr_pt); uint32_t last = 0; uint32_t n = i / sizeof(partition_item_t); uint32_t param[max_pt] = {SKIP, SKIP, SKIP, SKIP}; luaL_argcheck(L, lua_istable(L, 1), 1, "must be table"); lua_settop(L, 1); /* convert input table into 4 option array */ lua_pushrotable(L, (void*)pt_map); /* at index 2 */ lua_pushnil(L); /* first key at index 3 */ while (lua_next(L, 1) != 0) { /* 'key' (at index 3) and 'value' (at index 4) */ luaL_argcheck(L, lua_isstring(L, 3) && lua_isnumber(L, 4), 1, "invalid partition setting"); lua_pushvalue(L, 3); /* dup key to index 5 */ lua_rawget(L, 2); /* lookup in pt_map */ luaL_argcheck(L, !lua_isnil(L, -1), 1, "invalid partition setting"); param[lua_tointeger(L, 5)] = lua_tointeger(L, 4); /* removes 'value'; keeps 'key' for next iteration */ lua_pop(L, 2); /* discard value and lookup */ } /* * Allocate a scratch Partition Table as userdata on the Lua stack, and copy the * current Flash PT into this for manipulation */ lua_newuserdata(L, (n+2)*sizeof(partition_item_t)); pt = lua_touserdata (L, -1); memcpy(pt, rcr_pt, n*sizeof(partition_item_t)); pt[n].type = 0; pt[n+1].type = 0; for (i = 0; i < n; i ++) { partition_item_t *p = pt + i; if (p->type == IROM0_PARTITION && p[1].type != LFS_PARTITION) { // if the LFS partition is not following IROM0 then slot a blank one in insert_partition(p + 1, n-i-1, LFS_PARTITION, p->addr + p->size); n++; } else if (p->type == LFS_PARTITION) { if (p[1].type != SPIFFS_PARTITION) { // if the SPIFFS partition is not following LFS then slot a blank one in insert_partition(p + 1, n-i-1, SPIFFS_PARTITION, 0); n++; } // update the LFS options if set if (param[lfs_addr] != SKIP) { p->addr = param[lfs_addr]; } if (param[lfs_size] != SKIP) { p->size = param[lfs_size]; } } else if (p->type == SPIFFS_PARTITION) { // update the SPIFFS options if set if (param[spiffs_addr] != SKIP) { p->addr = param[spiffs_addr]; p->size = SKIP; } if (param[spiffs_size] != SKIP) { // BOTCH: - at the moment the firmware doesn't boot if the SPIFFS partition // is deleted so the minimum SPIFFS size is 64Kb p->size = param[spiffs_size] > 0x10000 ? param[spiffs_size] : 0x10000; } if (p->size == SKIP) { if (p->addr < 0) { // This allocate all the remaining flash to SPIFFS p->addr = last; p->size = flash_size - last; } else { p->size = flash_size - p->addr; } } else if (/* size is specified && */ p->addr == 0) { // if the is addr not specified then start SPIFFS at 1Mb // boundary if the size will fit otherwise make it consecutive // to the previous partition. p->addr = (p->size <= flash_size - 0x100000) ? 0x100000 : last; } } if (p->size == 0) { // Delete 0-sized partitions as the SDK barfs on these delete_partition(p, n-i-1); n--; i--; } else { // Do consistency tests on the partition if (p->addr & (INTERNAL_FLASH_SECTOR_SIZE - 1) || p->size & (INTERNAL_FLASH_SECTOR_SIZE - 1) || p->addr < last || p->addr + p->size > flash_size) { luaL_error(L, "value out of range"); } } } // for (i = 0; i < n; i ++) // dbg_printf("Partition %d: %04x %06x %06x\n", i, pt[i].type, pt[i].addr, pt[i].size); platform_rcr_write(PLATFORM_RCR_PT, pt, n*sizeof(partition_item_t)); while(1); // Trigger WDT; the new PT will be loaded on reboot return 0; } // Module function map LROT_BEGIN(node_egc) LROT_FUNCENTRY( meminfo, node_egc_meminfo ) LROT_FUNCENTRY( setmode, node_egc_setmode ) LROT_NUMENTRY( NOT_ACTIVE, EGC_NOT_ACTIVE ) LROT_NUMENTRY( ON_ALLOC_FAILURE, EGC_ON_ALLOC_FAILURE ) LROT_NUMENTRY( ON_MEM_LIMIT, EGC_ON_MEM_LIMIT ) LROT_NUMENTRY( ALWAYS, EGC_ALWAYS ) LROT_END( node_egc, NULL, 0 ) LROT_BEGIN(node_task) LROT_FUNCENTRY( post, node_task_post ) LROT_NUMENTRY( LOW_PRIORITY, TASK_PRIORITY_LOW ) LROT_NUMENTRY( MEDIUM_PRIORITY, TASK_PRIORITY_MEDIUM ) LROT_NUMENTRY( HIGH_PRIORITY, TASK_PRIORITY_HIGH ) LROT_END( node_task, NULL, 0 ) LROT_BEGIN(node) LROT_FUNCENTRY( heap, node_heap ) LROT_FUNCENTRY( info, node_info ) LROT_TABENTRY( task, node_task ) LROT_FUNCENTRY( flashreload, luaN_reload_reboot ) LROT_FUNCENTRY( flashindex, luaN_index ) LROT_FUNCENTRY( restart, node_restart ) LROT_FUNCENTRY( dsleep, node_deepsleep ) LROT_FUNCENTRY( dsleepMax, dsleepMax ) LROT_FUNCENTRY( sleep, node_sleep ) #ifdef PMSLEEP_ENABLE PMSLEEP_INT_MAP #endif #ifdef DEVELOPMENT_TOOLS LROT_FUNCENTRY( readrcr, node_readrcr ) LROT_FUNCENTRY( writercr, node_writercr ) #endif LROT_FUNCENTRY( chipid, node_chipid ) LROT_FUNCENTRY( flashid, node_flashid ) LROT_FUNCENTRY( flashsize, node_flashsize ) LROT_FUNCENTRY( input, node_input ) LROT_FUNCENTRY( output, node_output ) // Moved to adc module, use adc.readvdd33() // LROT_FUNCENTRY( readvdd33, node_readvdd33 ) LROT_FUNCENTRY( compile, node_compile ) LROT_NUMENTRY( CPU80MHZ, CPU80MHZ ) LROT_NUMENTRY( CPU160MHZ, CPU160MHZ ) LROT_FUNCENTRY( setcpufreq, node_setcpufreq ) LROT_FUNCENTRY( getcpufreq, node_getcpufreq ) LROT_FUNCENTRY( bootreason, node_bootreason ) LROT_FUNCENTRY( restore, node_restore ) LROT_FUNCENTRY( random, node_random ) #ifdef LUA_OPTIMIZE_DEBUG LROT_FUNCENTRY( stripdebug, node_stripdebug ) #endif LROT_TABENTRY( egc, node_egc ) #ifdef DEVELOPMENT_TOOLS LROT_FUNCENTRY( osprint, node_osprint ) #endif LROT_FUNCENTRY( getpartitiontable, node_getpartitiontable ) LROT_FUNCENTRY( setpartitiontable, node_setpartitiontable ) // Combined to dsleep(us, option) // LROT_FUNCENTRY( dsleepsetoption, node_deepsleep_setoption ) LROT_END( node, NULL, 0 ) NODEMCU_MODULE(NODE, "node", node, NULL);