#include "module.h" #include "lauxlib.h" #include "common.h" #include "legc.h" #include "lundump.h" #include "platform.h" #include "task/task.h" #include "vfs.h" #include "esp_system.h" #include "esp_log.h" #include "esp_sleep.h" #include "driver/rtc_io.h" #include "soc/efuse_reg.h" #include "ldebug.h" #include "esp_vfs.h" #include "lnodeaux.h" #include "lflash.h" #include "rom/rtc.h" // Lua: node.bootreason() static int node_bootreason( lua_State *L) { int panicval = panic_get_nvval(); RESET_REASON rr0 = rtc_get_reset_reason(0); unsigned rawinfo = 3; // rawinfo can take these values as defined in docs/modules/node.md // // 1, power-on // 2, reset (software?) // 3, hardware reset via reset pin or unknown reason // 4, WDT reset (watchdog timeout) // // extendedinfo can take these values as definded in docs/modules/node.md // // 0, power-on // 1, hardware watchdog reset // 2, exception reset // 3, software watchdog reset // 4, software restart // 5, wake from deep sleep // 6, external reset // added values from rom/rtc.h with offset 7 // 7: NO_MEAN = 0, // 8: POWERON_RESET = 1, /**<1, Vbat power on reset*/ // 9: // 10: SW_RESET = 3, /**<3, Software reset digital core*/ // 11: OWDT_RESET = 4, /**<4, Legacy watch dog reset digital core*/ // 12: DEEPSLEEP_RESET = 5, /**<3, Deep Sleep reset digital core*/ // 13: SDIO_RESET = 6, /**<6, Reset by SLC module, reset digital core*/ // 14: TG0WDT_SYS_RESET = 7, /**<7, Timer Group0 Watch dog reset digital core*/ // 15: TG1WDT_SYS_RESET = 8, /**<8, Timer Group1 Watch dog reset digital core*/ // 16: RTCWDT_SYS_RESET = 9, /**<9, RTC Watch dog Reset digital core*/ // 17: INTRUSION_RESET = 10, /**<10, Instrusion tested to reset CPU*/ // 18: TGWDT_CPU_RESET = 11, /**<11, Time Group reset CPU*/ // 19: SW_CPU_RESET = 12, /**<12, Software reset CPU*/ // 20: RTCWDT_CPU_RESET = 13, /**<13, RTC Watch dog Reset CPU*/ // 21: EXT_CPU_RESET = 14, /**<14, for APP CPU, reseted by PRO CPU*/ // 22: RTCWDT_BROWN_OUT_RESET = 15, /**<15, Reset when the vdd voltage is not stable*/ // 23: RTCWDT_RTC_RESET = 16 /**<16, RTC Watch dog reset digital core and rtc module*/` #if defined(CONFIG_IDF_TARGET_ESP32C3) # define SW_CPU_RESET RTC_SW_CPU_RESET # define SW_RESET RTC_SW_SYS_RESET #endif switch (rr0) { case POWERON_RESET: rawinfo = 1; break; case SW_CPU_RESET: case SW_RESET: rawinfo = 2; break; case NO_MEAN: #if !defined(CONFIG_IDF_TARGET_ESP32C3) case EXT_CPU_RESET: #endif case DEEPSLEEP_RESET: case SDIO_RESET: case TG0WDT_SYS_RESET: case TG1WDT_SYS_RESET: case INTRUSION_RESET: case RTCWDT_BROWN_OUT_RESET: case RTCWDT_RTC_RESET: rawinfo = 3; break; #if defined(CONFIG_IDF_TARGET_ESP32C3) case TG0WDT_CPU_RESET: case TG1WDT_CPU_RESET: case SUPER_WDT_RESET: #else case OWDT_RESET: case TGWDT_CPU_RESET: #endif case RTCWDT_CPU_RESET: case RTCWDT_SYS_RESET: rawinfo = 4; break; } lua_pushinteger(L, (lua_Integer)rawinfo); lua_pushinteger(L, (lua_Integer)rr0+7); if (rr0 == SW_CPU_RESET) { lua_pushinteger(L, (lua_Integer)panicval); return 3; } return 2; } #if !defined(CONFIG_IDF_TARGET_ESP32C3) // Lua: node.chipid() static int node_chipid( lua_State *L ) { // This matches the way esptool.py generates a chipid for the ESP32 as of // esptool commit e9e9179f6fc3f2ecfc568987d3224b5e53a05f06 // Oddly, this drops the lowest byte what's effectively the MAC address, so // it would seem plausible to encounter up to 256 chips with the same chipid uint64_t word16 = REG_READ(EFUSE_BLK0_RDATA1_REG); uint64_t word17 = REG_READ(EFUSE_BLK0_RDATA2_REG); const uint64_t MAX_UINT24 = 0xffffff; uint64_t cid = ((word17 & MAX_UINT24) << 24) | ((word16 >> 8) & MAX_UINT24); char chipid[17] = { 0 }; sprintf(chipid, "0x%llx", cid); lua_pushstring(L, chipid); return 1; } #endif // Lua: node.heap() static int node_heap( lua_State* L ) { uint32_t sz = esp_get_free_heap_size(); lua_pushinteger(L, sz); return 1; } static int node_restart (lua_State *L) { panic_clear_nvval(); esp_restart (); return 0; } static void node_sleep_set_uart (lua_State *L, int uart) { int err = esp_sleep_enable_uart_wakeup(uart); if (err) { luaL_error(L, "Error %d returned from esp_sleep_enable_uart_wakeup(%d)", err, uart); } } static bool node_sleep_get_time_options (lua_State *L, int64_t *usecs) { lua_getfield(L, 1, "us"); lua_getfield(L, 1, "secs"); bool option_present = !lua_isnil(L, 2) || !lua_isnil(L, 3); lua_pop(L, 2); *usecs = 0; if (option_present) { *usecs += opt_checkint(L, "us", 0); *usecs += (int64_t)opt_checkint(L, "secs", 0) * 1000000; } return option_present; } static void node_sleep_disable_wakeup_sources (lua_State *L) { // Start with known state, to ensure previous sleep calls don't leave any // settings left over int err = esp_sleep_disable_wakeup_source(ESP_SLEEP_WAKEUP_ALL); if (err) { luaL_error(L, "Error %d returned from esp_sleep_disable_wakeup_source", err); } } static int node_sleep (lua_State *L) { lua_settop(L, 1); luaL_checkanytable(L, 1); node_sleep_disable_wakeup_sources(L); // uart options: uart = num|{num, num, ...} lua_getfield(L, -1, "uart"); int type = lua_type(L, -1); if (type == LUA_TNUMBER) { node_sleep_set_uart(L, lua_tointeger(L, -1)); } else if (type == LUA_TTABLE) { for (int i = 1; ; i++) { lua_rawgeti(L, -1, i); if (lua_isnil(L, -1)) { lua_pop(L, 1); // uart[i] break; } int uart = lua_tointeger(L, -1); lua_pop(L, 1); // uart[i] node_sleep_set_uart(L, uart); } } else if (type != LUA_TNIL) { return opt_error(L, "uart", "must be integer or table"); } lua_pop(L, 1); // uart // gpio option: boolean (individual pins are configured in advance with gpio.wakeup()) // Make sure to do GPIO before touch, because esp_sleep_enable_gpio_wakeup() // seems to think touch is not compatible with GPIO wakeup and will error the // call if you order them the other way round, despite the fact that // esp_sleep_enable_touchpad_wakeup() does not have a similar check, and I've // tested using both GPIO and touch wakeups at once and it works fine for me. // I think this is simply a bug in the Espressif SDK, because sleep_modes.rst // only mentions compatibility issues with touch and EXT0 wakeup, which is // not the same as GPIO wakeup. if (opt_checkbool(L, "gpio", false)) { int err = esp_sleep_enable_gpio_wakeup(); if (err) { return luaL_error(L, "Error %d returned from esp_sleep_enable_gpio_wakeup()", err); } } // time options: us, secs int64_t usecs = 0; if (node_sleep_get_time_options(L, &usecs)) { esp_sleep_enable_timer_wakeup(usecs); } #if !defined(CONFIG_IDF_TARGET_ESP32C3) // touch option: boolean if (opt_checkbool(L, "touch", false)) { int err = esp_sleep_enable_touchpad_wakeup(); if (err) { return luaL_error(L, "Error %d returned from esp_sleep_enable_touchpad_wakeup()", err); } } // ulp option: boolean if (opt_checkbool(L, "ulp", false)) { int err = esp_sleep_enable_ulp_wakeup(); if (err) { return luaL_error(L, "Error %d returned from esp_sleep_enable_ulp_wakeup()", err); } } #endif int err = esp_light_sleep_start(); if (err == ESP_ERR_INVALID_STATE) { return luaL_error(L, "WiFi and BT must be stopped before sleeping"); } else if (err) { return luaL_error(L, "Error %d returned from esp_light_sleep_start()", err); } esp_sleep_wakeup_cause_t cause = esp_sleep_get_wakeup_cause(); lua_pushinteger(L, (int)cause); return 1; } // Lua: node.dsleep (microseconds|{opts}) static int node_dsleep (lua_State *L) { lua_settop(L, 1); node_sleep_disable_wakeup_sources(L); bool enable_timer_wakeup = false; int64_t usecs = 0; int type = lua_type(L, 1); if (type == LUA_TNUMBER) { enable_timer_wakeup = true; usecs = lua_tointeger(L, 1); } else if (type == LUA_TTABLE) { enable_timer_wakeup = node_sleep_get_time_options(L, &usecs); // GPIO wakeup options: gpio = num|{num, num, ...} uint64_t pin_mask = 0; lua_getfield(L, -1, "gpio"); type = lua_type(L, -1); if (type == LUA_TNUMBER) { pin_mask |= 1ULL << lua_tointeger(L, -1); } else if (type == LUA_TTABLE) { for (int i = 1; ; i++) { lua_rawgeti(L, -1, i); int pin = lua_tointeger(L, -1); lua_pop(L, 1); if (!pin) { break; } pin_mask |= 1ULL << pin; } } lua_pop(L, 1); // gpio // Check pin validity here to get better error messages for (int pin = 0; pin < GPIO_PIN_COUNT; pin++) { if (pin_mask & (1ULL << pin)) { if (!rtc_gpio_is_valid_gpio(pin)) { return luaL_error(L, "Pin %d is not an RTC GPIO and cannot be used for wakeup", pin); } } } #if !defined(CONFIG_IDF_TARGET_ESP32C3) bool pull = opt_checkbool(L, "pull", false); if (opt_get(L, "isolate", LUA_TTABLE)) { for (int i = 1; ; i++) { lua_rawgeti(L, -1, i); if (lua_isnil(L, -1)) { lua_pop(L, 1); break; } int pin = lua_tointeger(L, -1); lua_pop(L, 1); int err = rtc_gpio_isolate(pin); if (err) { return luaL_error(L, "Error %d returned from rtc_gpio_isolate(%d)", err, pin); } } lua_pop(L, 1); // isolate table } if (pull) { // Keeping the peripheral domain powered keeps the pullups/downs working esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON); } int level = opt_checkint_range(L, "level", 1, 0, 1); if (pin_mask) { esp_sleep_ext1_wakeup_mode_t mode = (level == 1) ? ESP_EXT1_WAKEUP_ANY_HIGH : ESP_EXT1_WAKEUP_ALL_LOW; int err = esp_sleep_enable_ext1_wakeup(pin_mask, mode); if (err) { return luaL_error(L, "Error %d returned from esp_sleep_enable_ext1_wakeup", err); } } bool touch = opt_checkbool(L, "touch", false); if (touch) { esp_sleep_enable_touchpad_wakeup(); } #endif } else { luaL_argerror(L, 1, "Expected integer or table"); } if (enable_timer_wakeup) { esp_sleep_enable_timer_wakeup(usecs); } esp_deep_sleep_start(); // Note, above call does not actually return return 0; } extern lua_Load gLoad; extern bool user_process_input(bool force); // Lua: input("string") static int node_input( lua_State* L ) { size_t l = 0; const char *s = luaL_checklstring(L, 1, &l); if (s != NULL && l > 0 && l < LUA_MAXINPUT - 1) { lua_Load *load = &gLoad; if (load->line_position == 0) { memcpy(load->line, s, l); load->line[l + 1] = '\0'; load->line_position = strlen(load->line) + 1; load->done = 1; user_process_input(true); } } return 0; } // The implementation of node.output implies replacing stdout with a virtual write-only file of // which we can capture fwrite calls. // When there is any write to the replaced stdout, our function redir_write will be called. // we can then invoke the lua callback. static FILE *oldstdout; // keep the old stdout, e.g., the uart0 lua_ref_t output_redir = LUA_NOREF; // this will hold the Lua callback int serial_debug = 0; // whether or not to write also to uart const char *VFS_REDIR = "/redir"; // virtual filesystem mount point // redir_write will be called everytime any code writes to stdout when // redirection is active ssize_t redir_write(int fd, const void *data, size_t size) { if (serial_debug) // if serial_debug is nonzero, write to uart fwrite(data, sizeof(char), size, oldstdout); if (output_redir != LUA_NOREF) { // prepare lua call lua_State *L = lua_getstate(); lua_rawgeti(L, LUA_REGISTRYINDEX, output_redir); // push function reference lua_pushlstring(L, (char *)data, size); // push data lua_pcall(L, 1, 0, 0); // invoke callback } return size; } // redir_open is called when fopen() is called on /redir/xxx int redir_open(const char *path, int flags, int mode) { return 79; // since we only have one "file", just return some fd number to make the VFS system happy } // Lua: node.output(func, serial_debug) static int node_output(lua_State *L) { if (lua_type(L, 1) == LUA_TFUNCTION || lua_type(L, 1) == LUA_TLIGHTFUNCTION) { if (output_redir == LUA_NOREF) { // create an instance of a virtual filesystem so we can use fopen esp_vfs_t redir_fs = { .flags = ESP_VFS_FLAG_DEFAULT, .write = &redir_write, .open = &redir_open, .fstat = NULL, .close = NULL, .read = NULL, }; // register this filesystem under the `/redir` namespace ESP_ERROR_CHECK(esp_vfs_register(VFS_REDIR, &redir_fs, NULL)); oldstdout = stdout; // save the previous stdout stdout = fopen(VFS_REDIR, "w"); // open the new one for writing } else { luaX_unset_ref(L, &output_redir); // dereference previous callback } luaX_set_ref(L, 1, &output_redir); // set the callback } else { if (output_redir != LUA_NOREF) { fclose(stdout); // close the redirected stdout stdout = oldstdout; // restore original stdout ESP_ERROR_CHECK(esp_vfs_unregister(VFS_REDIR)); // unregister redir filesystem luaX_unset_ref(L, &output_redir); // forget callback } serial_debug = 1; return 0; } // second parameter indicates whether output will also be sent to old stdout if (lua_isnumber(L, 2)) { serial_debug = lua_tointeger(L, 2); if (serial_debug != 0) serial_debug = 1; } else { serial_debug = 1; // default to 1 } return 0; } // The implementation of node.osoutput redirect all OS logging to Lua space lua_ref_t os_output_redir = LUA_NOREF; // this will hold the Lua callback static vprintf_like_t oldvprintf; // keep the old vprintf // redir_vprintf will be called everytime the OS attempts to print a trace statement int redir_vprintf(const char *fmt, va_list ap) { static char data[128]; int size = vsnprintf(data, 128, fmt, ap); if (os_output_redir != LUA_NOREF) { // prepare lua call lua_State *L = lua_getstate(); lua_rawgeti(L, LUA_REGISTRYINDEX, os_output_redir); // push function reference lua_pushlstring(L, (char *)data, size); // push data lua_pcall(L, 1, 0, 0); // invoke callback } return size; } // Lua: node.output(func, serial_debug) static int node_osoutput(lua_State *L) { if (lua_type(L, 1) == LUA_TFUNCTION || lua_type(L, 1) == LUA_TLIGHTFUNCTION) { if (os_output_redir == LUA_NOREF) { // register our log redirect first time this is invoked oldvprintf = esp_log_set_vprintf(redir_vprintf); } else { luaX_unset_ref(L, &os_output_redir); // dereference previous callback } luaX_set_ref(L, 1, &os_output_redir); // set the callback } else { if (os_output_redir != LUA_NOREF) { esp_log_set_vprintf(oldvprintf); luaX_unset_ref(L, &os_output_redir); // forget callback } } return 0; } /* node.stripdebug([level[, function]]).  * level: 1 don't discard debug * 2 discard Local and Upvalue debug info * 3 discard Local, Upvalue and lineno debug info. * function: Function to be stripped as per setfenv except 0 not permitted. * If no arguments then the current default setting is returned. * If function is omitted, this is the default setting for future compiles * The function returns an estimated integer count of the bytes stripped. */ static int node_stripdebug (lua_State *L) { int level; if (L->top == L->base) { lua_pushlightuserdata(L, &luaG_stripdebug ); lua_gettable(L, LUA_REGISTRYINDEX); if (lua_isnil(L, -1)) { lua_pop(L, 1); lua_pushinteger(L, CONFIG_LUA_OPTIMIZE_DEBUG); } return 1; } level = luaL_checkint(L, 1); if ((level <= 0) || (level > 3)) luaL_argerror(L, 1, "must in range 1-3"); if (L->top == L->base + 1) { /* Store the default level in the registry if no function parameter */ lua_pushlightuserdata(L, &luaG_stripdebug); lua_pushinteger(L, level); lua_settable(L, LUA_REGISTRYINDEX); lua_settop(L,0); return 0; } if (level == 1) { lua_settop(L,0); lua_pushinteger(L, 0); return 1; } if (!lua_isfunction(L, 2)) { int scope = luaL_checkint(L, 2); if (scope > 0) { /* if the function parameter is a +ve integer then climb to find function */ lua_Debug ar; lua_pop(L, 1); /* pop level as getinfo will replace it by the function */ if (lua_getstack(L, scope, &ar)) { lua_getinfo(L, "f", &ar); } } } if(!lua_isfunction(L, 2) || lua_iscfunction(L, -1)) luaL_argerror(L, 2, "must be a Lua Function"); // lua_lock(L); Proto *f = clvalue(L->base + 1)->l.p; // lua_unlock(L); lua_settop(L,0); lua_pushinteger(L, luaG_stripdebug(L, f, level, 1)); return 1; } // Lua: node.egc.setmode( mode, [param]) // where the mode is one of the node.egc constants NOT_ACTIVE , ON_ALLOC_FAILURE, // ON_MEM_LIMIT, ALWAYS. In the case of ON_MEM_LIMIT an integer parameter is reqired // See legc.h and lecg.c. static int node_egc_setmode(lua_State* L) { unsigned mode = luaL_checkinteger(L, 1); unsigned limit = luaL_optinteger (L, 2, 0); luaL_argcheck(L, mode <= (EGC_ON_ALLOC_FAILURE | EGC_ON_MEM_LIMIT | EGC_ALWAYS), 1, "invalid mode"); luaL_argcheck(L, !(mode & EGC_ON_MEM_LIMIT) || limit>0, 1, "limit must be non-zero"); legc_set_mode( L, mode, limit ); return 0; } static int writer(lua_State* L, const void* p, size_t size, void* u) { UNUSED(L); int file_fd = *( (int *)u ); if (!file_fd) return 1; NODE_DBG("get fd:%d,size:%d\n", file_fd, size); if (size != 0 && (size != vfs_write(file_fd, (const char *)p, size)) ) return 1; NODE_DBG("write fd:%d,size:%d\n", file_fd, size); return 0; } #define toproto(L,i) (clvalue(L->top+(i))->l.p) // Lua: compile(filename) -- compile lua file into lua bytecode, and save to .lc static int node_compile( lua_State* L ) { Proto* f; int file_fd = 0; size_t len; const char *fname = luaL_checklstring( L, 1, &len ); const char *basename = vfs_basename( fname ); luaL_argcheck(L, strlen(basename) <= CONFIG_NODEMCU_FS_OBJ_NAME_LEN && strlen(fname) == len, 1, "filename invalid"); char *output = luaM_malloc( L, len+1 ); strcpy(output, fname); // check here that filename end with ".lua". if (len < 4 || (strcmp( output + len - 4, ".lua") != 0) ) { luaM_free( L, output ); return luaL_error(L, "not a .lua file"); } output[strlen(output) - 2] = 'c'; output[strlen(output) - 1] = '\0'; NODE_DBG(output); NODE_DBG("\n"); if (luaL_loadfsfile(L, fname) != 0) { luaM_free( L, output ); return luaL_error(L, lua_tostring(L, -1)); } f = toproto(L, -1); int stripping = 1; /* strip debug information? */ file_fd = vfs_open(output, "w+"); if (!file_fd) { luaM_free( L, output ); return luaL_error(L, "cannot open/write to file"); } lua_lock(L); int result = luaU_dump(L, f, writer, &file_fd, stripping); lua_unlock(L); if (vfs_flush(file_fd) != VFS_RES_OK) { // overwrite Lua error, like writer() does in case of a file io error result = 1; } vfs_close(file_fd); file_fd = 0; luaM_free( L, output ); if (result == LUA_ERR_CC_INTOVERFLOW) { return luaL_error(L, "value too big or small for target integer type"); } if (result == LUA_ERR_CC_NOTINTEGER) { return luaL_error(L, "target lua_Number is integral but fractional value found"); } if (result == 1) { // result status generated by writer() or fs_flush() fail return luaL_error(L, "writing to file failed"); } return 0; } // Task callback handler for node.task.post() static task_handle_t do_node_task_handle; static void do_node_task (task_param_t task_fn_ref, task_prio_t prio) { lua_State* L = lua_getstate(); lua_rawgeti(L, LUA_REGISTRYINDEX, (int)task_fn_ref); luaL_unref(L, LUA_REGISTRYINDEX, (int)task_fn_ref); lua_pushinteger(L, prio); lua_call(L, 1, 0); } // Lua: node.task.post([priority],task_cb) -- schedule a task for execution next static int node_task_post( lua_State* L ) { int n = 1, Ltype = lua_type(L, 1); unsigned priority = TASK_PRIORITY_MEDIUM; if (Ltype == LUA_TNUMBER) { priority = (unsigned) luaL_checkint(L, 1); luaL_argcheck(L, priority <= TASK_PRIORITY_HIGH, 1, "invalid priority"); Ltype = lua_type(L, ++n); } luaL_argcheck(L, Ltype == LUA_TFUNCTION || Ltype == LUA_TLIGHTFUNCTION, n, "invalid function"); lua_pushvalue(L, n); int task_fn_ref = luaL_ref(L, LUA_REGISTRYINDEX); if (!do_node_task_handle) // bind the task handle to do_node_task on 1st call do_node_task_handle = task_get_id(do_node_task); if(!task_post(priority, do_node_task_handle, (task_param_t)task_fn_ref)) { luaL_unref(L, LUA_REGISTRYINDEX, task_fn_ref); luaL_error(L, "Task queue overflow. Task not posted"); } return 0; } static int node_osprint (lua_State *L) { if (lua_toboolean (L, 1)) esp_log_level_set ("*", CONFIG_LOG_DEFAULT_LEVEL); else esp_log_level_set ("*", ESP_LOG_NONE); return 0; } static int node_uptime(lua_State *L) { uint64_t now = esp_timer_get_time(); #ifdef LUA_NUMBER_INTEGRAL lua_pushinteger(L, (lua_Integer)(now & 0x7FFFFFFF)); lua_pushinteger(L, (lua_Integer)((now >> 31) & 0x7FFFFFFF)); #else // The largest double that doesn't lose whole-number precision is 2^53, so the // mask we apply is (2^53)-1 which is 0x1FFFFFFFFFFFFF. In practice this is // long enough the timer should never wrap, but it interesting nonetheless. lua_pushnumber(L, (lua_Number)(now & 0x1FFFFFFFFFFFFFull)); lua_pushinteger(L, (lua_Integer)(now >> 53)); #endif return 2; } LROT_BEGIN(node_egc) LROT_FUNCENTRY( setmode, node_egc_setmode ) LROT_NUMENTRY ( NOT_ACTIVE, EGC_NOT_ACTIVE ) LROT_NUMENTRY ( ON_ALLOC_FAILURE, EGC_ON_ALLOC_FAILURE ) LROT_NUMENTRY ( ON_MEM_LIMIT, EGC_ON_MEM_LIMIT ) LROT_NUMENTRY ( ALWAYS, EGC_ALWAYS ) LROT_END(node_egc, NULL, 0) LROT_BEGIN(node_task) LROT_FUNCENTRY( post, node_task_post ) LROT_NUMENTRY ( LOW_PRIORITY, TASK_PRIORITY_LOW ) LROT_NUMENTRY ( MEDIUM_PRIORITY, TASK_PRIORITY_MEDIUM ) LROT_NUMENTRY ( HIGH_PRIORITY, TASK_PRIORITY_HIGH ) LROT_END(node_task, NULL, 0) // Wakup reasons LROT_BEGIN(node_wakeup) LROT_NUMENTRY ( GPIO, ESP_SLEEP_WAKEUP_GPIO ) LROT_NUMENTRY ( TIMER, ESP_SLEEP_WAKEUP_TIMER ) LROT_NUMENTRY ( TOUCHPAD, ESP_SLEEP_WAKEUP_TOUCHPAD ) LROT_NUMENTRY ( UART, ESP_SLEEP_WAKEUP_UART ) LROT_NUMENTRY ( ULP, ESP_SLEEP_WAKEUP_ULP ) LROT_END(node_wakeup, NULL, 0) LROT_BEGIN(node) LROT_FUNCENTRY( bootreason, node_bootreason ) #if !defined(CONFIG_IDF_TARGET_ESP32C3) LROT_FUNCENTRY( chipid, node_chipid ) #endif LROT_FUNCENTRY( compile, node_compile ) LROT_FUNCENTRY( dsleep, node_dsleep ) LROT_TABENTRY ( egc, node_egc ) LROT_FUNCENTRY( flashreload,luaN_reload_reboot ) LROT_FUNCENTRY( flashindex, luaN_index ) LROT_FUNCENTRY( heap, node_heap ) LROT_FUNCENTRY( input, node_input ) LROT_FUNCENTRY( output, node_output ) LROT_FUNCENTRY( osoutput, node_osoutput ) LROT_FUNCENTRY( osprint, node_osprint ) LROT_FUNCENTRY( restart, node_restart ) LROT_FUNCENTRY( sleep, node_sleep ) LROT_FUNCENTRY( stripdebug, node_stripdebug ) LROT_TABENTRY ( task, node_task ) LROT_FUNCENTRY( uptime, node_uptime ) LROT_TABENTRY ( wakeup, node_wakeup ) LROT_END(node, NULL, 0) NODEMCU_MODULE(NODE, "node", node, NULL);