#include "module.h" #include "lauxlib.h" #include "lmem.h" #include "platform.h" #include "c_stdlib.h" #include "c_string.h" #include "user_interface.h" #include "driver/uart.h" #include "osapi.h" #define CANARY_VALUE 0x32383132 #define MODE_SINGLE 0 #define MODE_DUAL 1 #define FADE_IN 1 #define FADE_OUT 0 #define SHIFT_LOGICAL 0 #define SHIFT_CIRCULAR 1 typedef struct { int size; uint8_t colorsPerLed; uint8_t values[0]; } ws2812_buffer; // Init UART1 to be able to stream WS2812 data to GPIO2 pin // If DUAL mode is selected, init UART0 to stream to TXD0 as well // You HAVE to redirect LUA's output somewhere else static int ws2812_init(lua_State* L) { const int mode = luaL_optinteger(L, 1, MODE_SINGLE); luaL_argcheck(L, mode == MODE_SINGLE || mode == MODE_DUAL, 1, "ws2812.SINGLE or ws2812.DUAL expected"); // Configure UART1 // Set baudrate of UART1 to 3200000 WRITE_PERI_REG(UART_CLKDIV(1), UART_CLK_FREQ / 3200000); // Set UART Configuration No parity / 6 DataBits / 1 StopBits / Invert TX WRITE_PERI_REG(UART_CONF0(1), UART_TXD_INV | (1 << UART_STOP_BIT_NUM_S) | (1 << UART_BIT_NUM_S)); if (mode == MODE_DUAL) { // Configure UART0 // Set baudrate of UART0 to 3200000 WRITE_PERI_REG(UART_CLKDIV(0), UART_CLK_FREQ / 3200000); // Set UART Configuration No parity / 6 DataBits / 1 StopBits / Invert TX WRITE_PERI_REG(UART_CONF0(0), UART_TXD_INV | (1 << UART_STOP_BIT_NUM_S) | (1 << UART_BIT_NUM_S)); } // Pull GPIO2 down platform_gpio_mode(4, PLATFORM_GPIO_OUTPUT, PLATFORM_GPIO_FLOAT); platform_gpio_write(4, 0); // Waits 10us to simulate a reset os_delay_us(10); // Redirect UART1 to GPIO2 // Disable GPIO2 GPIO_REG_WRITE(GPIO_ENABLE_W1TC_ADDRESS, BIT2); // Enable Function 2 for GPIO2 (U1TXD) PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U, FUNC_U1TXD_BK); return 0; } // Stream data using UART1 routed to GPIO2 // ws2812.init() should be called first // // NODE_DEBUG should not be activated because it also uses UART1 static void ICACHE_RAM_ATTR ws2812_write_data(const uint8_t *pixels, uint32_t length, const uint8_t *pixels2, uint32_t length2) { // Data are sent LSB first, with a start bit at 0, an end bit at 1 and all inverted // 0b00110111 => 110111 => [0]111011[1] => 10001000 => 00 // 0b00000111 => 000111 => [0]111000[1] => 10001110 => 01 // 0b00110100 => 110100 => [0]001011[1] => 11101000 => 10 // 0b00000100 => 000100 => [0]001000[1] => 11101110 => 11 // Array declared as static const to avoid runtime generation // But declared in ".data" section to avoid read penalty from FLASH static const __attribute__((section(".data._uartData"))) uint8_t _uartData[4] = { 0b00110111, 0b00000111, 0b00110100, 0b00000100 }; const uint8_t *end = pixels + length; const uint8_t *end2 = pixels2 + length2; do { // If something to send for first buffer and enough room // in FIFO buffer (we wants to write 4 bytes, so less than // 124 in the buffer) if (pixels < end && (((READ_PERI_REG(UART_STATUS(1)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT) <= 124)) { uint8_t value = *pixels++; // Fill the buffer WRITE_PERI_REG(UART_FIFO(1), _uartData[(value >> 6) & 3]); WRITE_PERI_REG(UART_FIFO(1), _uartData[(value >> 4) & 3]); WRITE_PERI_REG(UART_FIFO(1), _uartData[(value >> 2) & 3]); WRITE_PERI_REG(UART_FIFO(1), _uartData[(value >> 0) & 3]); } // Same for the second buffer if (pixels2 < end2 && (((READ_PERI_REG(UART_STATUS(0)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT) <= 124)) { uint8_t value = *pixels2++; // Fill the buffer WRITE_PERI_REG(UART_FIFO(0), _uartData[(value >> 6) & 3]); WRITE_PERI_REG(UART_FIFO(0), _uartData[(value >> 4) & 3]); WRITE_PERI_REG(UART_FIFO(0), _uartData[(value >> 2) & 3]); WRITE_PERI_REG(UART_FIFO(0), _uartData[(value >> 0) & 3]); } } while(pixels < end || pixels2 < end2); // Until there is still something to send } // Lua: ws2812.write("string") // Byte triples in the string are interpreted as G R B values. // // ws2812.init() should be called first // // ws2812.write(string.char(0, 255, 0)) sets the first LED red. // ws2812.write(string.char(0, 0, 255):rep(10)) sets ten LEDs blue. // ws2812.write(string.char(255, 0, 0, 255, 255, 255)) first LED green, second LED white. // // In DUAL mode 'ws2812.init(ws2812.DUAL)', you may pass a second string as parameter // It will be sent through TXD0 in parallel static int ws2812_write(lua_State* L) { size_t length1, length2; const char *buffer1, *buffer2; // First mandatory parameter int type = lua_type(L, 1); if (type == LUA_TNIL) { buffer1 = 0; length1 = 0; } else if(type == LUA_TSTRING) { buffer1 = lua_tolstring(L, 1, &length1); } else if (type == LUA_TUSERDATA) { ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer"); buffer1 = buffer->values; length1 = buffer->colorsPerLed*buffer->size; } else { luaL_argerror(L, 1, "ws2812.buffer or string expected"); } // Second optionnal parameter type = lua_type(L, 2); if (type == LUA_TNONE || type == LUA_TNIL) { buffer2 = 0; length2 = 0; } else if (type == LUA_TSTRING) { buffer2 = lua_tolstring(L, 2, &length2); } else if (type == LUA_TUSERDATA) { ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 2, "ws2812.buffer"); buffer2 = buffer->values; length2 = buffer->colorsPerLed*buffer->size; } else { luaL_argerror(L, 2, "ws2812.buffer or string expected"); } // Send the buffers ws2812_write_data(buffer1, length1, buffer2, length2); return 0; } static ptrdiff_t posrelat (ptrdiff_t pos, size_t len) { /* relative string position: negative means back from end */ if (pos < 0) pos += (ptrdiff_t)len + 1; return (pos >= 0) ? pos : 0; } static ws2812_buffer *allocate_buffer(lua_State *L, int leds, int colorsPerLed) { // Allocate memory size_t size = sizeof(ws2812_buffer) + colorsPerLed*leds*sizeof(uint8_t); ws2812_buffer * buffer = (ws2812_buffer*)lua_newuserdata(L, size); // Associate its metatable luaL_getmetatable(L, "ws2812.buffer"); lua_setmetatable(L, -2); // Save led strip size buffer->size = leds; buffer->colorsPerLed = colorsPerLed; return buffer; } // Handle a buffer where we can store led values static int ws2812_new_buffer(lua_State *L) { const int leds = luaL_checkint(L, 1); const int colorsPerLed = luaL_checkint(L, 2); luaL_argcheck(L, leds > 0, 1, "should be a positive integer"); luaL_argcheck(L, colorsPerLed > 0, 2, "should be a positive integer"); ws2812_buffer * buffer = allocate_buffer(L, leds, colorsPerLed); c_memset(buffer->values, 0, colorsPerLed * leds); return 1; } static int ws2812_buffer_fill(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer"); // Grab colors int i, j; int * colors = luaM_malloc(L, buffer->colorsPerLed * sizeof(int)); for (i = 0; i < buffer->colorsPerLed; i++) { colors[i] = luaL_checkinteger(L, 2+i); } // Fill buffer uint8_t * p = &buffer->values[0]; for(i = 0; i < buffer->size; i++) { for (j = 0; j < buffer->colorsPerLed; j++) { *p++ = colors[j]; } } // Free memory luaM_free(L, colors); return 0; } static int ws2812_buffer_fade(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer"); const int fade = luaL_checkinteger(L, 2); unsigned direction = luaL_optinteger( L, 3, FADE_OUT ); luaL_argcheck(L, fade > 0, 2, "fade value should be a strict positive number"); uint8_t * p = &buffer->values[0]; int val = 0; int i; for(i = 0; i < buffer->size * buffer->colorsPerLed; i++) { if (direction == FADE_OUT) { *p++ /= fade; } else { // as fade in can result in value overflow, an int is used to perform the check afterwards val = *p * fade; if (val > 255) val = 255; *p++ = val; } } return 0; } static int ws2812_buffer_shift(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer"); const int shiftValue = luaL_checkinteger(L, 2); const unsigned shift_type = luaL_optinteger( L, 3, SHIFT_LOGICAL ); ptrdiff_t start = posrelat(luaL_optinteger(L, 4, 1), buffer->size); ptrdiff_t end = posrelat(luaL_optinteger(L, 5, -1), buffer->size); if (start < 1) start = 1; if (end > (ptrdiff_t)buffer->size) end = (ptrdiff_t)buffer->size; start--; int size = end - start; size_t offset = start * buffer->colorsPerLed; luaL_argcheck(L, shiftValue > 0-size && shiftValue < size, 2, "shifting more elements than buffer size"); int shift = shiftValue >= 0 ? shiftValue : -shiftValue; // check if we want to shift at all if (shift == 0 || size <= 0) { return 0; } uint8_t * tmp_pixels = luaM_malloc(L, buffer->colorsPerLed * sizeof(uint8_t) * shift); int i,j; size_t shift_len, remaining_len; // calculate length of shift section and remaining section shift_len = shift*buffer->colorsPerLed; remaining_len = (size-shift)*buffer->colorsPerLed; if (shiftValue > 0) { // Store the values which are moved out of the array (last n pixels) c_memcpy(tmp_pixels, &buffer->values[offset + (size-shift)*buffer->colorsPerLed], shift_len); // Move pixels to end os_memmove(&buffer->values[offset + shift*buffer->colorsPerLed], &buffer->values[offset], remaining_len); // Fill beginning with temp data if (shift_type == SHIFT_LOGICAL) { c_memset(&buffer->values[offset], 0, shift_len); } else { c_memcpy(&buffer->values[offset], tmp_pixels, shift_len); } } else { // Store the values which are moved out of the array (last n pixels) c_memcpy(tmp_pixels, &buffer->values[offset], shift_len); // Move pixels to end os_memmove(&buffer->values[offset], &buffer->values[offset + shift*buffer->colorsPerLed], remaining_len); // Fill beginning with temp data if (shift_type == SHIFT_LOGICAL) { c_memset(&buffer->values[offset + (size-shift)*buffer->colorsPerLed], 0, shift_len); } else { c_memcpy(&buffer->values[offset + (size-shift)*buffer->colorsPerLed], tmp_pixels, shift_len); } } // Free memory luaM_free(L, tmp_pixels); return 0; } static int ws2812_buffer_dump(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer"); lua_pushlstring(L, buffer->values, buffer->size * buffer->colorsPerLed); return 1; } static int ws2812_buffer_replace(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer"); size_t l = buffer->size; ptrdiff_t start = posrelat(luaL_optinteger(L, 3, 1), l); uint8_t *src; size_t srcLen; if (lua_type(L, 2) == LUA_TSTRING) { size_t length; src = (uint8_t *) lua_tolstring(L, 2, &length); srcLen = length / buffer->colorsPerLed; } else { ws2812_buffer * rhs = (ws2812_buffer*)luaL_checkudata(L, 2, "ws2812.buffer"); src = rhs->values; srcLen = rhs->size; luaL_argcheck(L, rhs->colorsPerLed == buffer->colorsPerLed, 2, "Buffers have different colors"); } luaL_argcheck(L, srcLen + start - 1 <= buffer->size, 2, "Does not fit into destination"); c_memcpy(buffer->values + (start - 1) * buffer->colorsPerLed, src, srcLen * buffer->colorsPerLed); return 0; } // buffer:mix(factor1, buffer1, ..) // factor is 256 for 100% // uses saturating arithmetic (one buffer at a time) static int ws2812_buffer_mix(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer"); int pos = 2; size_t cells = buffer->size * buffer->colorsPerLed; int n_sources = (lua_gettop(L) - 1) / 2; struct { int factor; const uint8_t *values; } source[n_sources]; int src; for (src = 0; src < n_sources; src++, pos += 2) { int factor = luaL_checkinteger(L, pos); ws2812_buffer *src_buffer = (ws2812_buffer*) luaL_checkudata(L, pos + 1, "ws2812.buffer"); luaL_argcheck(L, src_buffer->size == buffer->size && src_buffer->colorsPerLed == buffer->colorsPerLed, pos + 1, "Buffer not same shape"); source[src].factor = factor; source[src].values = src_buffer->values; } size_t i; for (i = 0; i < cells; i++) { int val = 0; for (src = 0; src < n_sources; src++) { val += ((int)(source[src].values[i] * source[src].factor) >> 8); } if (val < 0) { val = 0; } else if (val > 255) { val = 255; } buffer->values[i] = val; } return 0; } // Returns the total of all channels static int ws2812_buffer_power(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer"); size_t cells = buffer->size * buffer->colorsPerLed; size_t i; int total = 0; for (i = 0; i < cells; i++) { total += buffer->values[i]; } lua_pushnumber(L, total); return 1; } static int ws2812_buffer_get(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer"); const int led = luaL_checkinteger(L, 2) - 1; luaL_argcheck(L, led >= 0 && led < buffer->size, 2, "index out of range"); int i; for (i = 0; i < buffer->colorsPerLed; i++) { lua_pushnumber(L, buffer->values[buffer->colorsPerLed*led+i]); } return buffer->colorsPerLed; } static int ws2812_buffer_set(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer"); const int led = luaL_checkinteger(L, 2) - 1; luaL_argcheck(L, led >= 0 && led < buffer->size, 2, "index out of range"); int type = lua_type(L, 3); if(type == LUA_TTABLE) { int i; for (i = 0; i < buffer->colorsPerLed; i++) { // Get value and push it on stack lua_rawgeti(L, 3, i+1); // Convert it as int and store them in buffer buffer->values[buffer->colorsPerLed*led+i] = lua_tonumber(L, -1); } // Clean up the stack lua_pop(L, buffer->colorsPerLed); } else if(type == LUA_TSTRING) { size_t len; const char * buf = lua_tolstring(L, 3, &len); // Overflow check if( buffer->colorsPerLed*led + len > buffer->colorsPerLed*buffer->size ) { return luaL_error(L, "string size will exceed strip length"); } c_memcpy(&buffer->values[buffer->colorsPerLed*led], buf, len); } else { int i; for (i = 0; i < buffer->colorsPerLed; i++) { buffer->values[buffer->colorsPerLed*led+i] = luaL_checkinteger(L, 3+i); } } return 0; } static int ws2812_buffer_size(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer"); lua_pushnumber(L, buffer->size); return 1; } static int ws2812_buffer_sub(lua_State* L) { ws2812_buffer * lhs = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer"); size_t l = lhs->size; ptrdiff_t start = posrelat(luaL_checkinteger(L, 2), l); ptrdiff_t end = posrelat(luaL_optinteger(L, 3, -1), l); if (start < 1) start = 1; if (end > (ptrdiff_t)l) end = (ptrdiff_t)l; if (start <= end) { ws2812_buffer *result = allocate_buffer(L, end - start + 1, lhs->colorsPerLed); c_memcpy(result->values, lhs->values + lhs->colorsPerLed * (start - 1), lhs->colorsPerLed * (end - start + 1)); } else { ws2812_buffer *result = allocate_buffer(L, 0, lhs->colorsPerLed); } return 1; } static int ws2812_buffer_concat(lua_State* L) { ws2812_buffer * lhs = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer"); ws2812_buffer * rhs = (ws2812_buffer*)luaL_checkudata(L, 2, "ws2812.buffer"); luaL_argcheck(L, lhs->colorsPerLed == rhs->colorsPerLed, 1, "Can only concatenate buffers with same colors"); int colorsPerLed = lhs->colorsPerLed; int leds = lhs->size + rhs->size; ws2812_buffer * buffer = allocate_buffer(L, leds, colorsPerLed); c_memcpy(buffer->values, lhs->values, lhs->colorsPerLed * lhs->size); c_memcpy(buffer->values + lhs->colorsPerLed * lhs->size, rhs->values, rhs->colorsPerLed * rhs->size); return 1; } static int ws2812_buffer_tostring(lua_State* L) { ws2812_buffer * buffer = (ws2812_buffer*)luaL_checkudata(L, 1, "ws2812.buffer"); luaL_Buffer result; luaL_buffinit(L, &result); luaL_addchar(&result, '['); int i; int p = 0; for (i = 0; i < buffer->size; i++) { int j; if (i > 0) { luaL_addchar(&result, ','); } luaL_addchar(&result, '('); for (j = 0; j < buffer->colorsPerLed; j++, p++) { if (j > 0) { luaL_addchar(&result, ','); } char numbuf[5]; c_sprintf(numbuf, "%d", buffer->values[p]); luaL_addstring(&result, numbuf); } luaL_addchar(&result, ')'); } luaL_addchar(&result, ']'); luaL_pushresult(&result); return 1; } static const LUA_REG_TYPE ws2812_buffer_map[] = { { LSTRKEY( "dump" ), LFUNCVAL( ws2812_buffer_dump )}, { LSTRKEY( "fade" ), LFUNCVAL( ws2812_buffer_fade )}, { LSTRKEY( "fill" ), LFUNCVAL( ws2812_buffer_fill )}, { LSTRKEY( "get" ), LFUNCVAL( ws2812_buffer_get )}, { LSTRKEY( "replace" ), LFUNCVAL( ws2812_buffer_replace )}, { LSTRKEY( "mix" ), LFUNCVAL( ws2812_buffer_mix )}, { LSTRKEY( "power" ), LFUNCVAL( ws2812_buffer_power )}, { LSTRKEY( "set" ), LFUNCVAL( ws2812_buffer_set )}, { LSTRKEY( "shift" ), LFUNCVAL( ws2812_buffer_shift )}, { LSTRKEY( "size" ), LFUNCVAL( ws2812_buffer_size )}, { LSTRKEY( "sub" ), LFUNCVAL( ws2812_buffer_sub )}, { LSTRKEY( "__concat" ),LFUNCVAL( ws2812_buffer_concat )}, { LSTRKEY( "__index" ), LROVAL( ws2812_buffer_map )}, { LSTRKEY( "__tostring" ), LFUNCVAL( ws2812_buffer_tostring )}, { LNILKEY, LNILVAL} }; static const LUA_REG_TYPE ws2812_map[] = { { LSTRKEY( "init" ), LFUNCVAL( ws2812_init )}, { LSTRKEY( "newBuffer" ), LFUNCVAL( ws2812_new_buffer )}, { LSTRKEY( "write" ), LFUNCVAL( ws2812_write )}, { LSTRKEY( "FADE_IN" ), LNUMVAL( FADE_IN ) }, { LSTRKEY( "FADE_OUT" ), LNUMVAL( FADE_OUT ) }, { LSTRKEY( "MODE_SINGLE" ), LNUMVAL( MODE_SINGLE ) }, { LSTRKEY( "MODE_DUAL" ), LNUMVAL( MODE_DUAL ) }, { LSTRKEY( "SHIFT_LOGICAL" ), LNUMVAL( SHIFT_LOGICAL ) }, { LSTRKEY( "SHIFT_CIRCULAR" ), LNUMVAL( SHIFT_CIRCULAR ) }, { LNILKEY, LNILVAL} }; int luaopen_ws2812(lua_State *L) { // TODO: Make sure that the GPIO system is initialized luaL_rometatable(L, "ws2812.buffer", (void *)ws2812_buffer_map); // create metatable for ws2812.buffer return 0; } NODEMCU_MODULE(WS2812, "ws2812", ws2812_map, luaopen_ws2812);