/* * Driver for interfacing to cheap rotary switches that * have a quadrature output with an optional press button * * This sets up the relevant gpio as interrupt and then keeps track of * the position of the switch in software. Changes are enqueued to task * level and a task message posted when required. If the queue fills up * then moves are ignored, but the last press/release will be included. * * Philip Gladstone, N1DQ */ #include "platform.h" #include #include #include #include "task/task.h" #include "rotary_driver.h" #include "driver/gpio.h" #include "esp_timer.h" // // Queue is empty if read == write. // However, we always want to keep the previous value // so writing is only allowed if write - read < QUEUE_SIZE - 1 #define QUEUE_SIZE 8 #define GET_LAST_STATUS(d) (d->queue[(d->write_offset-1) & (QUEUE_SIZE - 1)]) #define GET_PREV_STATUS(d) (d->queue[(d->write_offset-2) & (QUEUE_SIZE - 1)]) #define HAS_QUEUED_DATA(d) (d->read_offset < d->write_offset) #define HAS_QUEUE_SPACE(d) (d->read_offset + QUEUE_SIZE - 1 > d->write_offset) #define REPLACE_STATUS(d, x) (d->queue[(d->write_offset-1) & (QUEUE_SIZE - 1)] = (rotary_event_t) { (x), esp_timer_get_time() }) #define QUEUE_STATUS(d, x) (d->queue[(d->write_offset++) & (QUEUE_SIZE - 1)] = (rotary_event_t) { (x), esp_timer_get_time() }) #define GET_READ_STATUS(d) (d->queue[d->read_offset & (QUEUE_SIZE - 1)]) #define ADVANCE_IF_POSSIBLE(d) if (d->read_offset < d->write_offset) { d->read_offset++; } #define STATUS_IS_PRESSED(x) (((x) & 0x80000000) != 0) typedef struct rotary_driver_handle { int8_t phase_a_pin; int8_t phase_b_pin; int8_t press_pin; int8_t task_queued; uint32_t read_offset; // Accessed by task uint32_t write_offset; // Accessed by ISR uint32_t last_press_change_time; int tasknumber; rotary_event_t queue[QUEUE_SIZE]; void *callback_arg; } *rotary_driver_handle_t; static void set_gpio_mode(int pin, gpio_int_type_t intr) { gpio_config_t config = { .pin_bit_mask = 1LL << pin, .mode = GPIO_MODE_INPUT, .pull_up_en = GPIO_PULLUP_ENABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE, .intr_type = intr }; gpio_config(&config); } static void rotary_clear_pin(int pin) { if (pin >= 0) { gpio_isr_handler_remove(pin); set_gpio_mode(pin, GPIO_INTR_DISABLE); } } // Just takes the channel number. Cleans up the resources used. int rotary_close(rotary_driver_handle_t d) { if (!d) { return 0; } rotary_clear_pin(d->phase_a_pin); rotary_clear_pin(d->phase_b_pin); rotary_clear_pin(d->press_pin); free(d); return 0; } static void rotary_interrupt(void *arg) { // This function runs with high priority rotary_driver_handle_t d = (rotary_driver_handle_t)arg; uint32_t last_status = GET_LAST_STATUS(d).pos; uint32_t now = esp_timer_get_time(); uint32_t new_status; new_status = last_status & 0x80000000; // This is the debounce logic for the press switch. We ignore changes // for 10ms after a change. if (now - d->last_press_change_time > 10 * 1000) { new_status = gpio_get_level(d->press_pin) ? 0 : 0x80000000; if (STATUS_IS_PRESSED(new_status ^ last_status)) { d->last_press_change_time = now; } } // A B // 1 1 => 0 // 1 0 => 1 // 0 0 => 2 // 0 1 => 3 int micropos = 2; if (gpio_get_level(d->phase_b_pin)) { micropos = 3; } if (gpio_get_level(d->phase_a_pin)) { micropos ^= 3; } int32_t rotary_pos = last_status; switch ((micropos - last_status) & 3) { case 0: // No change, nothing to do break; case 1: // Incremented by 1 rotary_pos++; break; case 3: // Decremented by 1 rotary_pos--; break; default: // We missed an interrupt // We will ignore... but mark it. rotary_pos += 1000000; break; } new_status |= rotary_pos & 0x7fffffff; if (last_status != new_status) { // Either we overwrite the status or we add a new one if (!HAS_QUEUED_DATA(d) || STATUS_IS_PRESSED(last_status ^ new_status) || STATUS_IS_PRESSED(last_status ^ GET_PREV_STATUS(d).pos)) { if (HAS_QUEUE_SPACE(d)) { QUEUE_STATUS(d, new_status); if (!d->task_queued) { if (task_post_medium(d->tasknumber, (task_param_t) d->callback_arg)) { d->task_queued = 1; } } } else { REPLACE_STATUS(d, new_status); } } else { REPLACE_STATUS(d, new_status); } } } void rotary_event_handled(rotary_driver_handle_t d) { d->task_queued = 0; } // The pin numbers are actual platform GPIO numbers rotary_driver_handle_t rotary_setup(int phase_a, int phase_b, int press, task_handle_t tasknumber, void *arg) { rotary_driver_handle_t d = (rotary_driver_handle_t )calloc(1, sizeof(*d)); if (!d) { return NULL; } d->tasknumber = tasknumber; d->callback_arg = arg; set_gpio_mode(phase_a, GPIO_INTR_ANYEDGE); gpio_isr_handler_add(phase_a, rotary_interrupt, d); d->phase_a_pin = phase_a; set_gpio_mode(phase_b, GPIO_INTR_ANYEDGE); gpio_isr_handler_add(phase_b, rotary_interrupt, d); d->phase_b_pin = phase_b; if (press >= 0) { set_gpio_mode(press, GPIO_INTR_ANYEDGE); gpio_isr_handler_add(press, rotary_interrupt, d); } d->press_pin = press; return d; } bool rotary_has_queued_event(rotary_driver_handle_t d) { if (!d) { return false; } return HAS_QUEUED_DATA(d); } // Get the oldest event in the queue and remove it (if possible) bool rotary_getevent(rotary_driver_handle_t d, rotary_event_t *resultp) { rotary_event_t result = { 0 }; if (!d) { return false; } bool status = false; if (HAS_QUEUED_DATA(d)) { result = GET_READ_STATUS(d); d->read_offset++; status = true; } else { result = GET_LAST_STATUS(d); } *resultp = result; return status; } int rotary_getpos(rotary_driver_handle_t d) { if (!d) { return -1; } return GET_LAST_STATUS(d).pos; }