nodemcu-firmware/app/platform/common.c

262 lines
7.7 KiB
C

// Common code for all backends
#include "platform.h"
#include "common.h"
#include "c_string.h"
#include "c_stdio.h"
void cmn_platform_init(void)
{
}
// ****************************************************************************
// GPIO functions
int platform_gpio_exists( unsigned pin )
{
return pin < NUM_GPIO;
}
// ****************************************************************************
// CAN functions
int platform_can_exists( unsigned id )
{
return id < NUM_CAN;
}
// ****************************************************************************
// SPI functions
int platform_spi_exists( unsigned id )
{
return id < NUM_SPI;
}
// ****************************************************************************
// PWM functions
int platform_pwm_exists( unsigned id )
{
return ((id < NUM_PWM) && (id > 0));
}
// ****************************************************************************
// ADC functions
int platform_adc_exists( unsigned id )
{
return id < NUM_ADC;
}
// ****************************************************************************
// UART functions
int platform_uart_exists( unsigned id )
{
return id < NUM_UART;
}
// ****************************************************************************
// OneWire functions
int platform_ow_exists( unsigned id )
{
return ((id < NUM_OW) && (id > 0));
}
// ****************************************************************************
// Timer functions
int platform_tmr_exists( unsigned id )
{
return id < NUM_TMR;
}
// ****************************************************************************
// I2C support
int platform_i2c_exists( unsigned id )
{
#ifndef NUM_I2C
return 0;
#else
return id < NUM_I2C;
#endif
}
// ****************************************************************************
// Internal flash support functions
// This symbol must be exported by the linker command file and must reflect the
// TOTAL size of flash used by the eLua image (not only the code and constants,
// but also .data and whatever else ends up in the eLua image). FS will start
// at the next usable (aligned to a flash sector boundary) address after
// flash_used_size.
// extern char flash_used_size[];
extern char _flash_used_end[];
// Helper function: find the flash sector in which an address resides
// Return the sector number, as well as the start and end address of the sector
static uint32_t flashh_find_sector( uint32_t address, uint32_t *pstart, uint32_t *pend )
{
address -= INTERNAL_FLASH_START_ADDRESS;
#ifdef INTERNAL_FLASH_SECTOR_SIZE
// All the sectors in the flash have the same size, so just align the address
uint32_t sect_id = address / INTERNAL_FLASH_SECTOR_SIZE;
if( pstart )
*pstart = sect_id * INTERNAL_FLASH_SECTOR_SIZE + INTERNAL_FLASH_START_ADDRESS;
if( pend )
*pend = ( sect_id + 1 ) * INTERNAL_FLASH_SECTOR_SIZE + INTERNAL_FLASH_START_ADDRESS - 1;
return sect_id;
#else // #ifdef INTERNAL_FLASH_SECTOR_SIZE
// The flash has blocks of different size
// Their size is decribed in the INTERNAL_FLASH_SECTOR_ARRAY macro
const uint32_t flash_sect_size[] = INTERNAL_FLASH_SECTOR_ARRAY;
uint32_t total = 0, i = 0;
while( ( total <= address ) && ( i < sizeof( flash_sect_size ) / sizeof( uint32_t ) ) )
total += flash_sect_size[ i ++ ];
if( pstart )
*pstart = ( total - flash_sect_size[ i - 1 ] ) + INTERNAL_FLASH_START_ADDRESS;
if( pend )
*pend = total + INTERNAL_FLASH_START_ADDRESS - 1;
return i - 1;
#endif // #ifdef INTERNAL_FLASH_SECTOR_SIZE
}
uint32_t platform_flash_get_sector_of_address( uint32_t addr )
{
return flashh_find_sector( addr, NULL, NULL );
}
uint32_t platform_flash_get_num_sectors(void)
{
#ifdef INTERNAL_FLASH_SECTOR_SIZE
return INTERNAL_FLASH_SIZE / INTERNAL_FLASH_SECTOR_SIZE;
#else // #ifdef INTERNAL_FLASH_SECTOR_SIZE
const uint32_t flash_sect_size[] = INTERNAL_FLASH_SECTOR_ARRAY;
return sizeof( flash_sect_size ) / sizeof( uint32_t );
#endif // #ifdef INTERNAL_FLASH_SECTOR_SIZE
}
uint32_t platform_flash_get_first_free_block_address( uint32_t *psect )
{
// Round the total used flash size to the closest flash block address
uint32_t start, end, sect;
NODE_DBG("_flash_used_end:%08x\n", (uint32_t)_flash_used_end);
if(_flash_used_end>0){ // find the used sector
// sect = flashh_find_sector( ( uint32_t )flash_used_size + INTERNAL_FLASH_START_ADDRESS - 1, NULL, &end );
sect = flashh_find_sector( ( uint32_t )_flash_used_end - 1, NULL, &end );
if( psect )
*psect = sect + 1;
return end + 1;
}else{
sect = flashh_find_sector( INTERNAL_FLASH_START_ADDRESS, &start, NULL ); // find the first free sector
if( psect )
*psect = sect;
return start;
}
}
uint32_t platform_flash_write( const void *from, uint32_t toaddr, uint32_t size )
{
#ifndef INTERNAL_FLASH_WRITE_UNIT_SIZE
return platform_s_flash_write( from, toaddr, size );
#else // #ifindef INTERNAL_FLASH_WRITE_UNIT_SIZE
uint32_t temp, rest, ssize = size;
unsigned i;
char tmpdata[ INTERNAL_FLASH_WRITE_UNIT_SIZE ];
const uint8_t *pfrom = ( const uint8_t* )from;
const uint32_t blksize = INTERNAL_FLASH_WRITE_UNIT_SIZE;
const uint32_t blkmask = INTERNAL_FLASH_WRITE_UNIT_SIZE - 1;
// Align the start
if( toaddr & blkmask )
{
rest = toaddr & blkmask;
temp = toaddr & ~blkmask; // this is the actual aligned address
// c_memcpy( tmpdata, ( const void* )temp, blksize );
platform_s_flash_read( tmpdata, temp, blksize );
for( i = rest; size && ( i < blksize ); i ++, size --, pfrom ++ )
tmpdata[ i ] = *pfrom;
platform_s_flash_write( tmpdata, temp, blksize );
if( size == 0 )
return ssize;
toaddr = temp + blksize;
}
// The start address is now a multiple of blksize
// Compute how many bytes we can write as multiples of blksize
rest = size & blkmask;
temp = size & ~blkmask;
// Program the blocks now
if( temp )
{
platform_s_flash_write( pfrom, toaddr, temp );
toaddr += temp;
pfrom += temp;
}
// And the final part of a block if needed
if( rest )
{
// c_memcpy( tmpdata, ( const void* )toaddr, blksize );
platform_s_flash_read( tmpdata, toaddr, blksize );
for( i = 0; size && ( i < rest ); i ++, size --, pfrom ++ )
tmpdata[ i ] = *pfrom;
platform_s_flash_write( tmpdata, toaddr, blksize );
}
return ssize;
#endif // #ifndef INTERNAL_FLASH_WRITE_UNIT_SIZE
}
uint32_t platform_flash_read( void *to, uint32_t fromaddr, uint32_t size )
{
#ifndef INTERNAL_FLASH_READ_UNIT_SIZE
return platform_s_flash_read( to, fromaddr, size );
#else // #ifindef INTERNAL_FLASH_READ_UNIT_SIZE
uint32_t temp, rest, ssize = size;
unsigned i;
char tmpdata[ INTERNAL_FLASH_READ_UNIT_SIZE ] __attribute__ ((aligned(INTERNAL_FLASH_READ_UNIT_SIZE)));
uint8_t *pto = ( uint8_t* )to;
const uint32_t blksize = INTERNAL_FLASH_READ_UNIT_SIZE;
const uint32_t blkmask = INTERNAL_FLASH_READ_UNIT_SIZE - 1;
// Align the start
if( fromaddr & blkmask )
{
rest = fromaddr & blkmask;
temp = fromaddr & ~blkmask; // this is the actual aligned address
platform_s_flash_read( tmpdata, temp, blksize );
for( i = rest; size && ( i < blksize ); i ++, size --, pto ++ )
*pto = tmpdata[ i ];
if( size == 0 )
return ssize;
fromaddr = temp + blksize;
}
// The start address is now a multiple of blksize
// Compute how many bytes we can read as multiples of blksize
rest = size & blkmask;
temp = size & ~blkmask;
// Program the blocks now
if( temp )
{
platform_s_flash_read( pto, fromaddr, temp );
fromaddr += temp;
pto += temp;
}
// And the final part of a block if needed
if( rest )
{
platform_s_flash_read( tmpdata, fromaddr, blksize );
for( i = 0; size && ( i < rest ); i ++, size --, pto ++ )
*pto = tmpdata[ i ];
}
return ssize;
#endif // #ifndef INTERNAL_FLASH_READ_UNIT_SIZE
}