nodemcu-firmware/components/modules/uart.c

382 lines
10 KiB
C

// Module for interfacing with serial
#include "module.h"
#include "lauxlib.h"
#include "platform.h"
#include "linput.h"
#include "lmem.h"
#include <stdint.h>
#include <string.h>
typedef struct {
int receive_rf;
int error_rf;
char *line_buffer;
size_t line_position;
uint16_t need_len;
int16_t end_char;
} uart_cb_cfg_t;
static lua_State *gL = NULL;
static uart_cb_cfg_t uart_cb_cfg[NUM_UART];
static bool uart_on_data_cb(unsigned id, const char *buf, size_t len){
if(!buf || len==0)
return false;
if(uart_cb_cfg[id].receive_rf == LUA_NOREF)
return false;
if(!gL)
return false;
int top = lua_gettop(gL);
lua_rawgeti(gL, LUA_REGISTRYINDEX, uart_cb_cfg[id].receive_rf);
lua_pushlstring(gL, buf, len);
luaL_pcallx(gL, 1, 0);
lua_settop(gL, top);
return !run_input;
}
bool uart_on_error_cb(unsigned id, const char *buf, size_t len){
if(!buf || len==0)
return false;
if(uart_cb_cfg[id].error_rf == LUA_NOREF)
return false;
if(!gL)
return false;
int top = lua_gettop(gL);
lua_rawgeti(gL, LUA_REGISTRYINDEX, uart_cb_cfg[id].error_rf);
lua_pushlstring(gL, buf, len);
luaL_pcallx(gL, 1, 0);
lua_settop(gL, top);
return true;
}
bool uart_has_on_data_cb(unsigned id){
return uart_cb_cfg[id].receive_rf != LUA_NOREF;
}
void uart_feed_data(unsigned id, const char *buf, size_t len)
{
if (id >= NUM_UART)
return;
uart_cb_cfg_t *cfg = &uart_cb_cfg[id];
if (!cfg->line_buffer)
return;
for (unsigned i = 0; i < len; ++i)
{
char ch = buf[i];
cfg->line_buffer[cfg->line_position] = ch;
cfg->line_position++;
uint16_t need_len = cfg->need_len;
int16_t end_char = cfg->end_char;
size_t max_wanted =
(end_char >= 0 && need_len == 0) ? LUA_MAXINPUT : need_len;
bool at_end = (cfg->line_position >= max_wanted);
bool end_char_found =
(end_char >= 0 && (uint8_t)ch == (uint8_t)end_char);
if (at_end || end_char_found) {
uart_on_data_cb(id, cfg->line_buffer, cfg->line_position);
cfg->line_position = 0;
}
}
}
// Lua: uart.on([id], "method", [number/char], function, [run_input])
static int uart_on( lua_State* L )
{
unsigned id = CONFIG_ESP_CONSOLE_UART_NUM;
size_t sl, el;
int32_t run = 1;
uint8_t stack = 1;
const char *method;
if( lua_isnumber( L, stack ) ) {
id = ( unsigned )luaL_checkinteger( L, stack );
MOD_CHECK_ID( uart, id );
stack++;
}
uart_cb_cfg_t *cfg = &uart_cb_cfg[id];
method = luaL_checklstring( L, stack, &sl );
stack++;
if (method == NULL)
return luaL_error( L, "wrong arg type" );
if( lua_type( L, stack ) == LUA_TNUMBER )
{
cfg->need_len = (uint16_t)luaL_checkinteger(L, stack);
stack++;
cfg->end_char = -1;
if(cfg->need_len > 255)
{
cfg->need_len = 255;
return luaL_error( L, "wrong arg range" );
}
}
else if(lua_isstring(L, stack))
{
const char *end = luaL_checklstring( L, stack, &el );
stack++;
if(el!=1){
return luaL_error( L, "wrong arg range" );
}
cfg->end_char = (int16_t)end[0];
cfg->need_len = 0;
}
if (lua_isfunction(L, stack)) {
if ( lua_isnumber(L, stack+1) ){
run = lua_tointeger(L, stack+1);
}
lua_pushvalue(L, stack); // copy argument (func) to the top of stack
} else {
lua_pushnil(L);
}
if(sl == 4 && strcmp(method, "data") == 0){
if(id == CONFIG_ESP_CONSOLE_UART_NUM)
run_input = true;
if(cfg->receive_rf != LUA_NOREF){
luaL_unref(L, LUA_REGISTRYINDEX, cfg->receive_rf);
cfg->receive_rf = LUA_NOREF;
}
if(!lua_isnil(L, -1)){
cfg->receive_rf = luaL_ref(L, LUA_REGISTRYINDEX);
gL = L;
if(id == CONFIG_ESP_CONSOLE_UART_NUM && run==0)
run_input = false;
} else {
lua_pop(L, 1);
}
} else if(sl == 5 && strcmp(method, "error") == 0){
if(cfg->error_rf != LUA_NOREF){
luaL_unref(L, LUA_REGISTRYINDEX, cfg->error_rf);
cfg->error_rf = LUA_NOREF;
}
if(!lua_isnil(L, -1)){
cfg->error_rf = luaL_ref(L, LUA_REGISTRYINDEX);
gL = L;
} else {
lua_pop(L, 1);
}
} else {
lua_pop(L, 1);
return luaL_error( L, "method not supported" );
}
return 0;
}
// Lua: actualbaud = setup( id, baud, databits, parity, stopbits, echo )
static int uart_setup( lua_State* L )
{
unsigned id, databits, parity, stopbits;
uint32_t baud, res;
uart_pins_t pins;
uart_pins_t* pins_to_use = NULL;
memset(&pins, 0, sizeof(pins));
id = luaL_checkinteger( L, 1 );
MOD_CHECK_ID( uart, id );
baud = luaL_checkinteger( L, 2 );
databits = luaL_checkinteger( L, 3 );
parity = luaL_checkinteger( L, 4 );
stopbits = luaL_checkinteger( L, 5 );
if (!lua_isnoneornil(L, 6)) {
if(id == CONFIG_ESP_CONSOLE_UART_NUM){
input_echo = luaL_checkinteger(L, 6) > 0;
} else {
luaL_checktable(L, 6);
lua_getfield (L, 6, "tx");
pins.tx_pin = luaL_checkint(L, -1);
lua_getfield (L, 6, "rx");
pins.rx_pin = luaL_checkint(L, -1);
lua_getfield (L, 6, "cts");
pins.cts_pin = luaL_optint(L, -1, -1);
lua_getfield (L, 6, "rts");
pins.rts_pin = luaL_optint(L, -1, -1);
lua_getfield (L, 6, "tx_inverse");
pins.tx_inverse = lua_toboolean(L, -1);
lua_getfield (L, 6, "rx_inverse");
pins.rx_inverse = lua_toboolean(L, -1);
lua_getfield (L, 6, "cts_inverse");
pins.cts_inverse = lua_toboolean(L, -1);
lua_getfield (L, 6, "rts_inverse");
pins.rts_inverse = lua_toboolean(L, -1);
lua_getfield (L, 6, "flow_control");
pins.flow_control = luaL_optint(L, -1, PLATFORM_UART_FLOW_NONE);
pins_to_use = &pins;
}
}
res = platform_uart_setup( id, baud, databits, parity, stopbits, pins_to_use );
lua_pushinteger( L, res );
return 1;
}
static int uart_setmode(lua_State* L)
{
unsigned id, mode;
id = luaL_checkinteger( L, 1 );
MOD_CHECK_ID( uart, id );
mode = luaL_checkinteger( L, 2 );
platform_uart_setmode(id, mode);
return 0;
}
// Lua: write( id, string1, [string2], ..., [stringn] )
static int uart_write( lua_State* L )
{
unsigned id;
const char* buf;
size_t len;
int total = lua_gettop( L ), s;
id = luaL_checkinteger( L, 1 );
MOD_CHECK_ID( uart, id );
for( s = 2; s <= total; s ++ )
{
if( lua_type( L, s ) == LUA_TNUMBER )
{
len = lua_tointeger( L, s );
if( len > 255 )
return luaL_error( L, "invalid number" );
platform_uart_send( id, (uint8_t)len );
}
else
{
luaL_checktype( L, s, LUA_TSTRING );
buf = lua_tolstring( L, s, &len );
platform_uart_send_multi( id, buf, len );
}
}
platform_uart_flush( id );
return 0;
}
// Lua: stop( id )
static int uart_stop( lua_State* L )
{
unsigned id;
id = luaL_checkinteger( L, 1 );
MOD_CHECK_ID( uart, id );
platform_uart_stop( id );
if (uart_cb_cfg[id].line_buffer)
{
luaM_freemem(L, uart_cb_cfg[id].line_buffer, LUA_MAXINPUT);
uart_cb_cfg[id].line_buffer = NULL;
}
return 0;
}
// Lua: start( id )
static int uart_start( lua_State* L )
{
unsigned id;
int err;
id = luaL_checkinteger( L, 1 );
MOD_CHECK_ID( uart, id );
if (!uart_cb_cfg[id].line_buffer)
uart_cb_cfg[id].line_buffer = luaM_malloc(L, LUA_MAXINPUT);
err = platform_uart_start( id );
lua_pushboolean( L, err == 0 );
return 1;
}
static int uart_getconfig(lua_State* L) {
uint32_t id, baud, databits, parity, stopbits;
id = luaL_checkinteger(L, 1);
MOD_CHECK_ID(uart, id);
int err = platform_uart_get_config(id, &baud, &databits, &parity, &stopbits);
if (err) {
luaL_error(L, "Error reading UART config");
}
lua_pushinteger(L, baud);
lua_pushinteger(L, databits);
lua_pushinteger(L, parity);
lua_pushinteger(L, stopbits);
return 4;
}
static int uart_wakeup (lua_State *L)
{
uint32_t id = luaL_checkinteger(L, 1);
MOD_CHECK_ID(uart, id);
int threshold = luaL_checkinteger(L, 2);
int err = platform_uart_set_wakeup_threshold(id, threshold);
if (err) {
return luaL_error(L, "Error %d from uart_set_wakeup_threshold()", err);
}
return 0;
}
static int luart_tx_flush (lua_State *L)
{
uint32_t id = luaL_checkinteger(L, 1);
MOD_CHECK_ID(uart, id);
platform_uart_flush(id);
return 0;
}
// Module function map
LROT_BEGIN(uart, NULL, 0)
LROT_FUNCENTRY( setup, uart_setup )
LROT_FUNCENTRY( write, uart_write )
LROT_FUNCENTRY( start, uart_start )
LROT_FUNCENTRY( stop, uart_stop )
LROT_FUNCENTRY( on, uart_on )
LROT_FUNCENTRY( setmode, uart_setmode )
LROT_FUNCENTRY( getconfig, uart_getconfig )
LROT_FUNCENTRY( wakeup, uart_wakeup )
LROT_FUNCENTRY( txflush, luart_tx_flush )
LROT_NUMENTRY( STOPBITS_1, PLATFORM_UART_STOPBITS_1 )
LROT_NUMENTRY( STOPBITS_1_5, PLATFORM_UART_STOPBITS_1_5 )
LROT_NUMENTRY( STOPBITS_2, PLATFORM_UART_STOPBITS_2 )
LROT_NUMENTRY( PARITY_NONE, PLATFORM_UART_PARITY_NONE )
LROT_NUMENTRY( PARITY_EVEN, PLATFORM_UART_PARITY_EVEN )
LROT_NUMENTRY( PARITY_ODD, PLATFORM_UART_PARITY_ODD )
LROT_NUMENTRY( FLOWCTRL_NONE, PLATFORM_UART_FLOW_NONE )
LROT_NUMENTRY( FLOWCTRL_CTS, PLATFORM_UART_FLOW_CTS )
LROT_NUMENTRY( FLOWCTRL_RTS, PLATFORM_UART_FLOW_RTS )
LROT_NUMENTRY( MODE_UART, PLATFORM_UART_MODE_UART )
LROT_NUMENTRY( MODE_RS485_COLLISION_DETECT, PLATFORM_UART_MODE_RS485_COLLISION_DETECT )
LROT_NUMENTRY( MODE_RS485_APP_CONTROL, PLATFORM_UART_MODE_RS485_APP_CONTROL )
LROT_NUMENTRY( MODE_RS485_HALF_DUPLEX, PLATFORM_UART_MODE_HALF_DUPLEX )
LROT_NUMENTRY( MODE_IRDA, PLATFORM_UART_MODE_IRDA )
LROT_END(uart, NULL, 0)
int luaopen_uart( lua_State *L ) {
for(int id = 0; id < sizeof(uart_cb_cfg)/sizeof(uart_cb_cfg[0]); id++)
{
uart_cb_cfg_t *cfg = &uart_cb_cfg[id];
cfg->receive_rf = LUA_NOREF;
cfg->error_rf = LUA_NOREF;
cfg->line_buffer = NULL;
cfg->line_position = 0;
cfg->need_len = 0;
cfg->end_char = -1;
}
return 0;
}
NODEMCU_MODULE(UART, "uart", uart, luaopen_uart);