nodemcu-firmware/app/libc/c_stdlib.c

278 lines
5.9 KiB
C

//#include "user_interface.h"
#include "user_config.h"
#ifdef LUA_CROSS_COMPILER
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#define ICACHE_RODATA_ATTR
#define TRUE 1
#define FALSE 0
#else
#include "c_stdlib.h"
#include "c_types.h"
#include "c_string.h"
extern const char lua_init_value[];
const char *c_getenv(const char *__string)
{
if (c_strcmp(__string, "LUA_INIT") == 0)
{
return lua_init_value;
}
return NULL;
}
#include <_ansi.h>
//#include <reent.h>
//#include "mprec.h"
#endif
double powersOf10[] ICACHE_STORE_ATTR ICACHE_RODATA_ATTR = /* Table giving binary powers of 10. Entry */
{
10., /* is 10^2^i. Used to convert decimal */
100., /* exponents into floating-point numbers. */
1.0e4,
1.0e8,
1.0e16,
1.0e32,
1.0e64,
1.0e128,
1.0e256
};
double c_strtod(const char *string, char **endPtr)
{
int maxExponent = 511; /* Largest possible base 10 exponent. Any
* exponent larger than this will already
* produce underflow or overflow, so there's
* no need to worry about additional digits.
*/
int sign, expSign = FALSE;
double fraction, dblExp, *d;
register const char *p;
register int c;
int exp = 0; /* Exponent read from "EX" field. */
int fracExp = 0; /* Exponent that derives from the fractional
* part. Under normal circumstatnces, it is
* the negative of the number of digits in F.
* However, if I is very long, the last digits
* of I get dropped (otherwise a long I with a
* large negative exponent could cause an
* unnecessary overflow on I alone). In this
* case, fracExp is incremented one for each
* dropped digit. */
int mantSize; /* Number of digits in mantissa. */
int decPt; /* Number of mantissa digits BEFORE decimal
* point. */
const char *pExp; /* Temporarily holds location of exponent
* in string. */
/*
* Strip off leading blanks and check for a sign.
*/
p = string;
while (isspace((unsigned char)(*p)))
{
p += 1;
}
if (*p == '-')
{
sign = TRUE;
p += 1;
}
else
{
if (*p == '+')
{
p += 1;
}
sign = FALSE;
}
/*
* Count the number of digits in the mantissa (including the decimal
* point), and also locate the decimal point.
*/
decPt = -1;
for (mantSize = 0; ; mantSize += 1)
{
c = *p;
if (!isdigit(c))
{
if ((c != '.') || (decPt >= 0))
{
break;
}
decPt = mantSize;
}
p += 1;
}
/*
* Now suck up the digits in the mantissa. Use two integers to
* collect 9 digits each (this is faster than using floating-point).
* If the mantissa has more than 18 digits, ignore the extras, since
* they can't affect the value anyway.
*/
pExp = p;
p -= mantSize;
if (decPt < 0)
{
decPt = mantSize;
}
else
{
mantSize -= 1; /* One of the digits was the point. */
}
if (mantSize > 18)
{
fracExp = decPt - 18;
mantSize = 18;
}
else
{
fracExp = decPt - mantSize;
}
if (mantSize == 0)
{
fraction = 0.0;
p = string;
goto done;
}
else
{
int frac1, frac2;
frac1 = 0;
for ( ; mantSize > 9; mantSize -= 1)
{
c = *p;
p += 1;
if (c == '.')
{
c = *p;
p += 1;
}
frac1 = 10 * frac1 + (c - '0');
}
frac2 = 0;
for (; mantSize > 0; mantSize -= 1)
{
c = *p;
p += 1;
if (c == '.')
{
c = *p;
p += 1;
}
frac2 = 10 * frac2 + (c - '0');
}
fraction = (1.0e9 * frac1) + frac2;
}
/*
* Skim off the exponent.
*/
p = pExp;
if ((*p == 'E') || (*p == 'e'))
{
p += 1;
if (*p == '-')
{
expSign = TRUE;
p += 1;
}
else
{
if (*p == '+')
{
p += 1;
}
expSign = FALSE;
}
if (!isdigit((unsigned char)(*p)))
{
p = pExp;
goto done;
}
while (isdigit((unsigned char)(*p)))
{
exp = exp * 10 + (*p - '0');
p += 1;
}
}
if (expSign)
{
exp = fracExp - exp;
}
else
{
exp = fracExp + exp;
}
/*
* Generate a floating-point number that represents the exponent.
* Do this by processing the exponent one bit at a time to combine
* many powers of 2 of 10. Then combine the exponent with the
* fraction.
*/
if (exp < 0)
{
expSign = TRUE;
exp = -exp;
}
else
{
expSign = FALSE;
}
if (exp > maxExponent)
{
exp = maxExponent;
// errno = ERANGE;
}
dblExp = 1.0;
for (d = powersOf10; exp != 0; exp >>= 1, d += 1)
{
if (exp & 01)
{
dblExp *= *d;
}
}
if (expSign)
{
fraction /= dblExp;
}
else
{
fraction *= dblExp;
}
done:
if (endPtr != NULL)
{
*endPtr = (char *) p;
}
if (sign)
{
return -fraction;
}
return fraction;
}
// long c_strtol(const char *__n, char **__end_PTR, int __base){
// }
// unsigned long c_strtoul(const char *__n, char **__end_PTR, int __base){
// }
// long long c_strtoll(const char *__n, char **__end_PTR, int __base){
// }