nodemcu-firmware/app/modules/rotary.c

415 lines
9.9 KiB
C

/*
* Module for interfacing with cheap rotary switches that
* are much used in the automtive industry as the cntrols for
* CD players and the like.
*
* Philip Gladstone, N1DQ
*/
#include "module.h"
#include "lauxlib.h"
#include "platform.h"
#include "c_types.h"
#include "user_interface.h"
#include "driver/rotary.h"
#include <stdlib.h>
#define MASK(x) (1 << ROTARY_ ## x ## _INDEX)
#define ROTARY_PRESS_INDEX 0
#define ROTARY_LONGPRESS_INDEX 1
#define ROTARY_RELEASE_INDEX 2
#define ROTARY_TURN_INDEX 3
#define ROTARY_CLICK_INDEX 4
#define ROTARY_DBLCLICK_INDEX 5
#define ROTARY_ALL 0x3f
#define LONGPRESS_DELAY_US 500000
#define CLICK_DELAY_US 500000
#define CALLBACK_COUNT 6
#ifdef LUA_USE_MODULES_ROTARY
#if !defined(GPIO_INTERRUPT_ENABLE) || !defined(GPIO_INTERRUPT_HOOK_ENABLE)
#error Must have GPIO_INTERRUPT and GPIO_INTERRUPT_HOOK if using ROTARY module
#endif
#endif
typedef struct {
int lastpos;
int last_recent_event_was_press : 1;
int last_recent_event_was_release : 1;
int timer_running : 1;
int possible_dbl_click : 1;
uint8_t id;
int click_delay_us;
int longpress_delay_us;
uint32_t last_event_time;
int callback[CALLBACK_COUNT];
ETSTimer timer;
} DATA;
static DATA *data[ROTARY_CHANNEL_COUNT];
static task_handle_t tasknumber;
static void lrotary_timer_done(void *param);
static void lrotary_check_timer(DATA *d, uint32_t time_us, bool dotimer);
static void callback_free_one(lua_State *L, int *cb_ptr)
{
if (*cb_ptr != LUA_NOREF) {
luaL_unref(L, LUA_REGISTRYINDEX, *cb_ptr);
*cb_ptr = LUA_NOREF;
}
}
static void callback_free(lua_State* L, unsigned int id, int mask)
{
DATA *d = data[id];
if (d) {
int i;
for (i = 0; i < CALLBACK_COUNT; i++) {
if (mask & (1 << i)) {
callback_free_one(L, &d->callback[i]);
}
}
}
}
static int callback_setOne(lua_State* L, int *cb_ptr, int arg_number)
{
if (lua_type(L, arg_number) == LUA_TFUNCTION || lua_type(L, arg_number) == LUA_TLIGHTFUNCTION) {
lua_pushvalue(L, arg_number); // copy argument (func) to the top of stack
callback_free_one(L, cb_ptr);
*cb_ptr = luaL_ref(L, LUA_REGISTRYINDEX);
return 0;
}
return -1;
}
static int callback_set(lua_State* L, int id, int mask, int arg_number)
{
DATA *d = data[id];
int result = 0;
int i;
for (i = 0; i < CALLBACK_COUNT; i++) {
if (mask & (1 << i)) {
result |= callback_setOne(L, &d->callback[i], arg_number);
}
}
return result;
}
static void callback_callOne(lua_State* L, int cb, int mask, int arg, uint32_t time)
{
if (cb != LUA_NOREF) {
lua_rawgeti(L, LUA_REGISTRYINDEX, cb);
lua_pushinteger(L, mask);
lua_pushinteger(L, arg);
lua_pushinteger(L, time);
lua_call(L, 3, 0);
}
}
static void callback_call(lua_State* L, DATA *d, int cbnum, int arg, uint32_t time)
{
if (d) {
callback_callOne(L, d->callback[cbnum], 1 << cbnum, arg, time);
}
}
int platform_rotary_exists( unsigned int id )
{
return (id < ROTARY_CHANNEL_COUNT);
}
#include "pm/swtimer.h"
// Lua: setup(id, phase_a, phase_b [, press])
static int lrotary_setup( lua_State* L )
{
unsigned int id;
id = luaL_checkinteger( L, 1 );
MOD_CHECK_ID( rotary, id );
if (rotary_close(id)) {
return luaL_error( L, "Unable to close switch." );
}
callback_free(L, id, ROTARY_ALL);
if (!data[id]) {
data[id] = (DATA *) calloc(1, sizeof(DATA));
if (!data[id]) {
return -1;
}
}
DATA *d = data[id];
memset(d, 0, sizeof(*d));
d->id = id;
os_timer_setfn(&d->timer, lrotary_timer_done, (void *) d);
SWTIMER_REG_CB(lrotary_timer_done, SWTIMER_RESUME);
//lrotary_timer_done checks time elapsed since last event
//My guess: Since proper functionality relies on some variables to be reset via timer callback and state would be invalid anyway.
//It is probably best to resume this timer so it can reset it's state variables
int i;
for (i = 0; i < CALLBACK_COUNT; i++) {
d->callback[i] = LUA_NOREF;
}
d->click_delay_us = CLICK_DELAY_US;
d->longpress_delay_us = LONGPRESS_DELAY_US;
int phase_a = luaL_checkinteger(L, 2);
luaL_argcheck(L, platform_gpio_exists(phase_a) && phase_a > 0, 2, "Invalid pin");
int phase_b = luaL_checkinteger(L, 3);
luaL_argcheck(L, platform_gpio_exists(phase_b) && phase_b > 0, 3, "Invalid pin");
int press;
if (lua_gettop(L) >= 4) {
press = luaL_checkinteger(L, 4);
luaL_argcheck(L, platform_gpio_exists(press) && press > 0, 4, "Invalid pin");
} else {
press = -1;
}
if (lua_gettop(L) >= 5) {
d->longpress_delay_us = 1000 * luaL_checkinteger(L, 5);
luaL_argcheck(L, d->longpress_delay_us > 0, 5, "Invalid timeout");
}
if (lua_gettop(L) >= 6) {
d->click_delay_us = 1000 * luaL_checkinteger(L, 6);
luaL_argcheck(L, d->click_delay_us > 0, 6, "Invalid timeout");
}
if (rotary_setup(id, phase_a, phase_b, press, tasknumber)) {
return luaL_error(L, "Unable to setup rotary switch.");
}
return 0;
}
// Lua: close( id )
static int lrotary_close( lua_State* L )
{
unsigned int id;
id = luaL_checkinteger( L, 1 );
MOD_CHECK_ID( rotary, id );
callback_free(L, id, ROTARY_ALL);
DATA *d = data[id];
if (d) {
data[id] = NULL;
free(d);
}
if (rotary_close( id )) {
return luaL_error( L, "Unable to close switch." );
}
return 0;
}
// Lua: on( id, mask[, cb] )
static int lrotary_on( lua_State* L )
{
unsigned int id;
id = luaL_checkinteger( L, 1 );
MOD_CHECK_ID( rotary, id );
int mask = luaL_checkinteger(L, 2);
if (lua_gettop(L) >= 3) {
if (callback_set(L, id, mask, 3)) {
return luaL_error( L, "Unable to set callback." );
}
} else {
callback_free(L, id, mask);
}
return 0;
}
// Lua: getpos( id ) -> pos, PRESS/RELEASE
static int lrotary_getpos( lua_State* L )
{
unsigned int id;
id = luaL_checkinteger( L, 1 );
MOD_CHECK_ID( rotary, id );
int pos = rotary_getpos(id);
if (pos == -1) {
return 0;
}
lua_pushnumber(L, (pos << 1) >> 1);
lua_pushnumber(L, (pos & 0x80000000) ? MASK(PRESS) : MASK(RELEASE));
return 2;
}
// Returns TRUE if there maybe/is more stuff to do
static bool lrotary_dequeue_single(lua_State* L, DATA *d)
{
bool something_pending = FALSE;
if (d) {
// This chnnel is open
rotary_event_t result;
if (rotary_getevent(d->id, &result)) {
int pos = result.pos;
lrotary_check_timer(d, result.time_us, 0);
if (pos != d->lastpos) {
// We have something to enqueue
if ((pos ^ d->lastpos) & 0x7fffffff) {
// Some turning has happened
callback_call(L, d, ROTARY_TURN_INDEX, (pos << 1) >> 1, result.time_us);
}
if ((pos ^ d->lastpos) & 0x80000000) {
// pressing or releasing has happened
callback_call(L, d, (pos & 0x80000000) ? ROTARY_PRESS_INDEX : ROTARY_RELEASE_INDEX, (pos << 1) >> 1, result.time_us);
if (pos & 0x80000000) {
// Press
if (d->last_recent_event_was_release && result.time_us - d->last_event_time < d->click_delay_us) {
d->possible_dbl_click = 1;
}
d->last_recent_event_was_press = 1;
d->last_recent_event_was_release = 0;
} else {
// Release
d->last_recent_event_was_press = 0;
if (d->possible_dbl_click) {
callback_call(L, d, ROTARY_DBLCLICK_INDEX, (pos << 1) >> 1, result.time_us);
d->possible_dbl_click = 0;
// Do this to suppress the CLICK event
d->last_recent_event_was_release = 0;
} else {
d->last_recent_event_was_release = 1;
}
}
d->last_event_time = result.time_us;
}
d->lastpos = pos;
}
something_pending = rotary_has_queued_event(d->id);
}
lrotary_check_timer(d, system_get_time(), 1);
}
return something_pending;
}
static void lrotary_timer_done(void *param)
{
DATA *d = (DATA *) param;
d->timer_running = 0;
lrotary_check_timer(d, system_get_time(), 1);
}
static void lrotary_check_timer(DATA *d, uint32_t time_us, bool dotimer)
{
uint32_t delay = time_us - d->last_event_time;
if (d->timer_running) {
os_timer_disarm(&d->timer);
d->timer_running = 0;
}
int timeout = -1;
if (d->last_recent_event_was_press) {
if (delay > d->longpress_delay_us) {
callback_call(lua_getstate(), d, ROTARY_LONGPRESS_INDEX, (d->lastpos << 1) >> 1, d->last_event_time + d->longpress_delay_us);
d->last_recent_event_was_press = 0;
} else {
timeout = (d->longpress_delay_us - delay) / 1000;
}
}
if (d->last_recent_event_was_release) {
if (delay > d->click_delay_us) {
callback_call(lua_getstate(), d, ROTARY_CLICK_INDEX, (d->lastpos << 1) >> 1, d->last_event_time + d->click_delay_us);
d->last_recent_event_was_release = 0;
} else {
timeout = (d->click_delay_us - delay) / 1000;
}
}
if (dotimer && timeout >= 0) {
d->timer_running = 1;
os_timer_arm(&d->timer, timeout + 1, 0);
}
}
static void lrotary_task(os_param_t param, uint8_t prio)
{
(void) param;
(void) prio;
uint8_t *task_queue_ptr = (uint8_t*) param;
if (task_queue_ptr) {
// Signal that new events may need another task post
*task_queue_ptr = 0;
}
int id;
bool need_to_post = FALSE;
lua_State *L = lua_getstate();
for (id = 0; id < ROTARY_CHANNEL_COUNT; id++) {
DATA *d = data[id];
if (d) {
if (lrotary_dequeue_single(L, d)) {
need_to_post = TRUE;
}
}
}
if (need_to_post) {
// If there is pending stuff, queue another task
task_post_medium(tasknumber, 0);
}
}
static int rotary_open(lua_State *L)
{
tasknumber = task_get_id(lrotary_task);
return 0;
}
// Module function map
LROT_BEGIN(rotary)
LROT_FUNCENTRY( setup, lrotary_setup )
LROT_FUNCENTRY( close, lrotary_close )
LROT_FUNCENTRY( on, lrotary_on )
LROT_FUNCENTRY( getpos, lrotary_getpos )
LROT_NUMENTRY( TURN, MASK(TURN) )
LROT_NUMENTRY( PRESS, MASK(PRESS) )
LROT_NUMENTRY( RELEASE, MASK(RELEASE) )
LROT_NUMENTRY( LONGPRESS, MASK(LONGPRESS) )
LROT_NUMENTRY( CLICK, MASK(CLICK) )
LROT_NUMENTRY( DBLCLICK, MASK(DBLCLICK) )
LROT_NUMENTRY( ALL, ROTARY_ALL )
LROT_END( rotary, NULL, 0 )
NODEMCU_MODULE(ROTARY, "rotary", rotary, rotary_open);