nodemcu-firmware/app/modules/ads1115.c

599 lines
23 KiB
C

//***************************************************************************
// Si7021 module for ESP8266 with nodeMCU
// fetchbot @github
// MIT license, http://opensource.org/licenses/MIT
//***************************************************************************
#include "module.h"
#include "lauxlib.h"
#include "platform.h"
#include "osapi.h"
#include <stdlib.h>
//***************************************************************************
// CHIP
//***************************************************************************
#define ADS1115_ADS1015 ( 15)
#define ADS1115_ADS1115 (115)
//***************************************************************************
// I2C ADDRESS DEFINITON
//***************************************************************************
#define ADS1115_I2C_ADDR_GND (0x48)
#define ADS1115_I2C_ADDR_VDD (0x49)
#define ADS1115_I2C_ADDR_SDA (0x4A)
#define ADS1115_I2C_ADDR_SCL (0x4B)
#define IS_I2C_ADDR_VALID(addr) (((addr) & 0xFC) == 0x48)
//***************************************************************************
// POINTER REGISTER
//***************************************************************************
#define ADS1115_POINTER_MASK (0x03)
#define ADS1115_POINTER_CONVERSION (0x00)
#define ADS1115_POINTER_CONFIG (0x01)
#define ADS1115_POINTER_THRESH_LOW (0x02)
#define ADS1115_POINTER_THRESH_HI (0x03)
//***************************************************************************
// CONFIG REGISTER
//***************************************************************************
#define ADS1115_OS_MASK (0x8000)
#define ADS1115_OS_NON (0x0000)
#define ADS1115_OS_SINGLE (0x8000) // Write: Set to start a single-conversion
#define ADS1115_OS_BUSY (0x0000) // Read: Bit = 0 when conversion is in progress
#define ADS1115_OS_NOTBUSY (0x8000) // Read: Bit = 1 when device is not performing a conversion
#define ADS1115_MUX_MASK (0x7000)
#define ADS1115_MUX_DIFF_0_1 (0x0000) // Differential P = AIN0, N = AIN1 (default)
#define ADS1115_MUX_DIFF_0_3 (0x1000) // Differential P = AIN0, N = AIN3
#define ADS1115_MUX_DIFF_1_3 (0x2000) // Differential P = AIN1, N = AIN3
#define ADS1115_MUX_DIFF_2_3 (0x3000) // Differential P = AIN2, N = AIN3
#define ADS1115_MUX_SINGLE_0 (0x4000) // Single-ended AIN0
#define ADS1115_MUX_SINGLE_1 (0x5000) // Single-ended AIN1
#define ADS1115_MUX_SINGLE_2 (0x6000) // Single-ended AIN2
#define ADS1115_MUX_SINGLE_3 (0x7000) // Single-ended AIN3
#define IS_CHANNEL_VALID(channel) (((channel) & 0x8FFF) == 0)
#define ADS1115_PGA_MASK (0x0E00)
#define ADS1115_PGA_6_144V (0x0000) // +/-6.144V range = Gain 2/3
#define ADS1115_PGA_4_096V (0x0200) // +/-4.096V range = Gain 1
#define ADS1115_PGA_2_048V (0x0400) // +/-2.048V range = Gain 2 (default)
#define ADS1115_PGA_1_024V (0x0600) // +/-1.024V range = Gain 4
#define ADS1115_PGA_0_512V (0x0800) // +/-0.512V range = Gain 8
#define ADS1115_PGA_0_256V (0x0A00) // +/-0.256V range = Gain 16
#define ADS1115_MODE_MASK (0x0100)
#define ADS1115_MODE_CONTIN (0x0000) // Continuous conversion mode
#define ADS1115_MODE_SINGLE (0x0100) // Power-down single-shot mode (default)
#define ADS1115_DR_MASK (0x00E0)
#define ADS1115_DR_8SPS ( 8)
#define ADS1115_DR_16SPS ( 16)
#define ADS1115_DR_32SPS ( 32)
#define ADS1115_DR_64SPS ( 64)
#define ADS1115_DR_128SPS ( 128)
#define ADS1115_DR_250SPS ( 250)
#define ADS1115_DR_475SPS ( 475)
#define ADS1115_DR_490SPS ( 490)
#define ADS1115_DR_860SPS ( 860)
#define ADS1115_DR_920SPS ( 920)
#define ADS1115_DR_1600SPS (1600)
#define ADS1115_DR_2400SPS (2400)
#define ADS1115_DR_3300SPS (3300)
#define ADS1115_CMODE_MASK (0x0010)
#define ADS1115_CMODE_TRAD (0x0000) // Traditional comparator with hysteresis (default)
#define ADS1115_CMODE_WINDOW (0x0010) // Window comparator
#define ADS1115_CPOL_MASK (0x0008)
#define ADS1115_CPOL_ACTVLOW (0x0000) // ALERT/RDY pin is low when active (default)
#define ADS1115_CPOL_ACTVHI (0x0008) // ALERT/RDY pin is high when active
#define ADS1115_CLAT_MASK (0x0004) // Determines if ALERT/RDY pin latches once asserted
#define ADS1115_CLAT_NONLAT (0x0000) // Non-latching comparator (default)
#define ADS1115_CLAT_LATCH (0x0004) // Latching comparator
#define ADS1115_CQUE_MASK (0x0003)
#define ADS1115_CQUE_1CONV (0x0000) // Assert ALERT/RDY after one conversions
#define ADS1115_CQUE_2CONV (0x0001) // Assert ALERT/RDY after two conversions
#define ADS1115_CQUE_4CONV (0x0002) // Assert ALERT/RDY after four conversions
#define ADS1115_CQUE_NONE (0x0003) // Disable the comparator and put ALERT/RDY in high state (default)
#define ADS1115_DEFAULT_CONFIG_REG (0x8583) // Config register value after reset
// #define ADS1115_INCLUDE_TEST_FUNCTION
//***************************************************************************
static const uint8_t ads1115_i2c_id = 0;
static const uint8_t general_i2c_addr = 0x00;
static const uint8_t ads1115_i2c_reset = 0x06;
static const char metatable_name[] = "ads1115.device";
static const char unexpected_value[] = "unexpected value";
typedef struct {
uint8_t i2c_addr;
uint8_t chip_id;
uint16_t gain;
uint16_t samples_value; // sample per second
uint16_t samples; // register value
uint16_t comp;
uint16_t mode;
uint16_t threshold_low;
uint16_t threshold_hi;
uint16_t config;
int timer_ref;
os_timer_t timer;
} ads_ctrl_ud_t;
static int ads1115_lua_readoutdone(void * param);
static int ads1115_lua_register(lua_State *L, uint8_t chip_id);
static uint8_t write_reg(uint8_t ads_addr, uint8_t reg, uint16_t config) {
platform_i2c_send_start(ads1115_i2c_id);
platform_i2c_send_address(ads1115_i2c_id, ads_addr, PLATFORM_I2C_DIRECTION_TRANSMITTER);
platform_i2c_send_byte(ads1115_i2c_id, reg);
platform_i2c_send_byte(ads1115_i2c_id, (uint8_t)(config >> 8));
platform_i2c_send_byte(ads1115_i2c_id, (uint8_t)(config & 0xFF));
platform_i2c_send_stop(ads1115_i2c_id);
}
static uint16_t read_reg(uint8_t ads_addr, uint8_t reg) {
platform_i2c_send_start(ads1115_i2c_id);
platform_i2c_send_address(ads1115_i2c_id, ads_addr, PLATFORM_I2C_DIRECTION_TRANSMITTER);
platform_i2c_send_byte(ads1115_i2c_id, reg);
platform_i2c_send_stop(ads1115_i2c_id);
platform_i2c_send_start(ads1115_i2c_id);
platform_i2c_send_address(ads1115_i2c_id, ads_addr, PLATFORM_I2C_DIRECTION_RECEIVER);
uint16_t buf = (platform_i2c_recv_byte(ads1115_i2c_id, 1) << 8);
buf += platform_i2c_recv_byte(ads1115_i2c_id, 0);
platform_i2c_send_stop(ads1115_i2c_id);
return buf;
}
// convert ADC value to voltage corresponding to PGA settings
// returned voltage is in milivolts
static double get_mvolt(uint16_t gain, uint16_t value) {
double volt = 0;
switch (gain) {
case (ADS1115_PGA_6_144V):
volt = (int16_t)value * 0.1875;
break;
case (ADS1115_PGA_4_096V):
volt = (int16_t)value * 0.125;
break;
case (ADS1115_PGA_2_048V):
volt = (int16_t)value * 0.0625;
break;
case (ADS1115_PGA_1_024V):
volt = (int16_t)value * 0.03125;
break;
case (ADS1115_PGA_0_512V):
volt = (int16_t)value * 0.015625;
break;
case (ADS1115_PGA_0_256V):
volt = (int16_t)value * 0.0078125;
break;
}
return volt;
}
// validates and convert threshold in volt to ADC value corresponding to PGA settings
// returns true if valid
static uint8_t get_value(uint16_t gain, uint16_t channel, int16_t *volt) {
switch (gain) {
case (ADS1115_PGA_6_144V):
if ((*volt >= 6144) || (*volt < -6144) || ((*volt < 0) && (channel >> 14))) return 0;
*volt = *volt / 0.1875;
break;
case (ADS1115_PGA_4_096V):
if ((*volt >= 4096) || (*volt < -4096) || ((*volt < 0) && (channel >> 14))) return 0;
*volt = *volt / 0.125;
break;
case (ADS1115_PGA_2_048V):
if ((*volt >= 2048) || (*volt < -2048) || ((*volt < 0) && (channel >> 14))) return 0;
*volt = *volt / 0.0625;
break;
case (ADS1115_PGA_1_024V):
if ((*volt >= 1024) || (*volt < -1024) || ((*volt < 0) && (channel >> 14))) return 0;
*volt = *volt / 0.03125;
break;
case (ADS1115_PGA_0_512V):
if ((*volt >= 512) || (*volt < -512) || ((*volt < 0) && (channel >> 14))) return 0;
*volt = *volt / 0.015625;
break;
case (ADS1115_PGA_0_256V):
if ((*volt >= 256) || (*volt < -256) || ((*volt < 0) && (channel >> 14))) return 0;
*volt = *volt / 0.0078125;
break;
}
return 1;
}
// Reset of all devices
// Lua: ads1115.reset()
static int ads1115_lua_reset(lua_State *L) {
platform_i2c_send_start(ads1115_i2c_id);
platform_i2c_send_address(ads1115_i2c_id, general_i2c_addr, PLATFORM_I2C_DIRECTION_TRANSMITTER);
platform_i2c_send_byte(ads1115_i2c_id, ads1115_i2c_reset);
platform_i2c_send_stop(ads1115_i2c_id);
return 0;
}
// Register an ADS device
// Lua: ads1115.ADS1115(I2C_ID, ADDRESS)
static int ads1115_lua_register_1115(lua_State *L) {
return ads1115_lua_register(L, ADS1115_ADS1115);
}
static int ads1115_lua_register_1015(lua_State *L) {
return ads1115_lua_register(L, ADS1115_ADS1015);
}
static int ads1115_lua_register(lua_State *L, uint8_t chip_id) {
uint8_t i2c_id = luaL_checkinteger(L, 1);
luaL_argcheck(L, 0 == i2c_id, 1, "i2c_id must be 0");
uint8_t i2c_addr = luaL_checkinteger(L, 2);
luaL_argcheck(L, IS_I2C_ADDR_VALID(i2c_addr), 2, unexpected_value);
uint16_t config_read = read_reg(i2c_addr, ADS1115_POINTER_CONFIG);
if (config_read == 0xFFFF) {
return luaL_error(L, "found no device");
}
if (config_read != ADS1115_DEFAULT_CONFIG_REG) {
return luaL_error(L, "unexpected config value (%p) please reset device before calling this function", config_read);
}
ads_ctrl_ud_t *ads_ctrl = (ads_ctrl_ud_t *)lua_newuserdata(L, sizeof(ads_ctrl_ud_t));
if (NULL == ads_ctrl) {
return luaL_error(L, "ads1115 malloc: out of memory");
}
luaL_getmetatable(L, metatable_name);
lua_setmetatable(L, -2);
ads_ctrl->chip_id = chip_id;
ads_ctrl->i2c_addr = i2c_addr;
ads_ctrl->gain = ADS1115_PGA_6_144V;
ads_ctrl->samples = ADS1115_DR_128SPS;
ads_ctrl->samples_value = chip_id == ADS1115_ADS1115 ? 128 : 1600;
ads_ctrl->comp = ADS1115_CQUE_NONE;
ads_ctrl->mode = ADS1115_MODE_SINGLE;
ads_ctrl->threshold_low = 0x8000;
ads_ctrl->threshold_hi = 0x7FFF;
ads_ctrl->config = ADS1115_DEFAULT_CONFIG_REG;
ads_ctrl->timer_ref = LUA_NOREF;
return 1;
}
// Change the ADC device settings
// Lua: ads1115.device:settings(GAIN,SAMPLES,CHANNEL,MODE[,CONVERSION_RDY][,COMPARATOR,THRESHOLD_LOW,THRESHOLD_HI[,COMP_MODE])
static int ads1115_lua_setting(lua_State *L) {
int argc = lua_gettop(L);
if (argc != 5 && argc != 6 && argc != 8 && argc != 9) { // user data counts
luaL_error(L, "invalid number of arguments to 'setting'");
}
ads_ctrl_ud_t *ads_ctrl = luaL_checkudata(L, 1, metatable_name);
// gain
uint16_t gain = luaL_checkinteger(L, 2);
luaL_argcheck(L, (gain == ADS1115_PGA_6_144V) || (gain == ADS1115_PGA_4_096V) || (gain == ADS1115_PGA_2_048V) ||
(gain == ADS1115_PGA_1_024V) || (gain == ADS1115_PGA_0_512V) || (gain == ADS1115_PGA_0_256V),
2, unexpected_value);
ads_ctrl->gain = gain;
// samples
uint16_t samples_value = luaL_checkinteger(L, 3);
uint16_t samples = 0;
if (ads_ctrl->chip_id == ADS1115_ADS1115) {
switch(samples_value) {
case ADS1115_DR_8SPS:
samples = 0;
break;
case ADS1115_DR_16SPS:
samples = 0x20;
break;
case ADS1115_DR_32SPS:
samples = 0x40;
break;
case ADS1115_DR_64SPS:
samples = 0x60;
break;
case ADS1115_DR_128SPS: // default
samples = 0x80;
break;
case ADS1115_DR_250SPS:
samples = 0xA0;
break;
case ADS1115_DR_475SPS:
samples = 0xC0;
break;
case ADS1115_DR_860SPS:
samples = 0xE0;
break;
default:
luaL_argerror(L, 3, unexpected_value);
}
} else { // ADS1115_ADS1015
switch(samples_value) {
case ADS1115_DR_128SPS:
samples = 0;
break;
case ADS1115_DR_250SPS:
samples = 0x20;
break;
case ADS1115_DR_490SPS:
samples = 0x40;
break;
case ADS1115_DR_920SPS:
samples = 0x60;
break;
case ADS1115_DR_1600SPS: // default
samples = 0x80;
break;
case ADS1115_DR_2400SPS:
samples = 0xA0;
break;
case ADS1115_DR_3300SPS:
samples = 0xC0;
break;
default:
luaL_argerror(L, 3, unexpected_value);
}
}
ads_ctrl->samples = samples;
ads_ctrl->samples_value = samples_value;
// channel
uint16_t channel = luaL_checkinteger(L, 4);
luaL_argcheck(L, IS_CHANNEL_VALID(channel), 4, unexpected_value);
// mode
uint16_t mode = luaL_checkinteger(L, 5);
luaL_argcheck(L, (mode == ADS1115_MODE_SINGLE) || (mode == ADS1115_MODE_CONTIN), 5, unexpected_value);
ads_ctrl->mode = mode;
uint16_t os = mode == ADS1115_MODE_SINGLE ? ADS1115_OS_SINGLE : ADS1115_OS_NON;
uint16_t comp = ADS1115_CQUE_NONE;
// Parse optional parameters
if (argc > 5) {
// comparator or conversion count
comp = luaL_checkinteger(L, 6);
luaL_argcheck(L, (comp == ADS1115_CQUE_1CONV) || (comp == ADS1115_CQUE_2CONV) || (comp == ADS1115_CQUE_4CONV),
6, unexpected_value);
uint16_t threshold_low = 0x7FFF;
uint16_t threshold_hi = 0x8000;
if (argc > 6) {
// comparator thresholds
threshold_low = luaL_checkinteger(L, 7);
threshold_hi = luaL_checkinteger(L, 8);
luaL_argcheck(L, (int16_t)threshold_low <= (int16_t)threshold_hi, 7, "threshold_low > threshold_hi");
luaL_argcheck(L, get_value(gain, channel, &threshold_low), 7, unexpected_value);
luaL_argcheck(L, get_value(gain, channel, &threshold_hi), 8, unexpected_value);
}
ads_ctrl->threshold_low = threshold_low;
ads_ctrl->threshold_hi = threshold_hi;
NODE_DBG("ads1115 low: %04x\n", threshold_low);
NODE_DBG("ads1115 hi : %04x\n", threshold_hi);
write_reg(ads_ctrl->i2c_addr, ADS1115_POINTER_THRESH_LOW, threshold_low);
write_reg(ads_ctrl->i2c_addr, ADS1115_POINTER_THRESH_HI, threshold_hi);
}
ads_ctrl->comp = comp;
uint16_t comparator_mode = ADS1115_CMODE_TRAD;
if (argc == 9) {
comparator_mode = luaL_checkinteger(L, 9);
luaL_argcheck(L, (comparator_mode == ADS1115_CMODE_WINDOW) || (comparator_mode == ADS1115_CMODE_TRAD),
9, unexpected_value);
}
uint16_t config = (os | channel | gain | mode | samples | comparator_mode | ADS1115_CPOL_ACTVLOW | ADS1115_CLAT_NONLAT | comp);
ads_ctrl->config = config;
NODE_DBG("ads1115 config: %04x\n", ads_ctrl->config);
write_reg(ads_ctrl->i2c_addr, ADS1115_POINTER_CONFIG, config);
return 0;
}
// Read the conversion register from the ADC device
// Lua: ads1115.device:startread(function(volt, voltdec, adc, sign) print(volt,voltdec,adc,sign) end)
static int ads1115_lua_startread(lua_State *L) {
ads_ctrl_ud_t *ads_ctrl = luaL_checkudata(L, 1, metatable_name);
if (((ads_ctrl->comp == ADS1115_CQUE_1CONV) ||
(ads_ctrl->comp == ADS1115_CQUE_2CONV) ||
(ads_ctrl->comp == ADS1115_CQUE_4CONV)) &&
(ads_ctrl->threshold_low == 0x7FFF) &&
(ads_ctrl->threshold_hi == 0x8000)) {
// conversion ready mode
if (ads_ctrl->mode == ADS1115_MODE_SINGLE) {
NODE_DBG("ads1115 trigger config: %04x", ads_ctrl->config);
write_reg(ads_ctrl->i2c_addr, ADS1115_POINTER_CONFIG, ads_ctrl->config);
}
return 0;
}
luaL_argcheck(L, lua_isfunction(L, 2), 2, "Must be function");
lua_pushvalue(L, 2);
ads_ctrl->timer_ref = luaL_ref(L, LUA_REGISTRYINDEX);
if (ads_ctrl->mode == ADS1115_MODE_SINGLE) {
write_reg(ads_ctrl->i2c_addr, ADS1115_POINTER_CONFIG, ads_ctrl->config);
}
// Start a timer to wait until ADC conversion is done
os_timer_disarm(&ads_ctrl->timer);
os_timer_setfn(&ads_ctrl->timer, (os_timer_func_t *)ads1115_lua_readoutdone, (void *)ads_ctrl);
int msec = 1; // ADS1115_DR_1600SPS, ADS1115_DR_2400SPS, ADS1115_DR_3300SPS
switch (ads_ctrl->samples_value) {
case ADS1115_DR_8SPS:
msec = 150;
break;
case ADS1115_DR_16SPS:
msec = 75;
break;
case ADS1115_DR_32SPS:
msec = 35;
break;
case ADS1115_DR_64SPS:
msec = 20;
break;
case ADS1115_DR_128SPS:
msec = 10;
break;
case ADS1115_DR_250SPS:
msec = 5;
break;
case ADS1115_DR_475SPS:
case ADS1115_DR_490SPS:
msec = 3;
break;
case ADS1115_DR_860SPS:
case ADS1115_DR_920SPS:
msec = 2;
}
os_timer_arm(&ads_ctrl->timer, msec, 0);
return 0;
}
static void read_common(ads_ctrl_ud_t * ads_ctrl, uint16_t raw, lua_State *L) {
double mvolt = get_mvolt(ads_ctrl->gain, raw);
#ifdef LUA_NUMBER_INTEGRAL
int sign;
if (mvolt == 0) {
sign = 0;
} else if (mvolt > 0) {
sign = 1;
} else {
sign = -1;
}
int uvolt;
if (sign >= 0) {
uvolt = (int)((mvolt - (int)mvolt) * 1000 + 0.5);
} else {
uvolt = -(int)((mvolt - (int)mvolt) * 1000 - 0.5);
mvolt = -mvolt;
}
lua_pushnumber(L, mvolt);
lua_pushinteger(L, uvolt);
lua_pushinteger(L, raw);
lua_pushinteger(L, sign);
#else
lua_pushnumber(L, mvolt);
lua_pushnil(L);
lua_pushinteger(L, raw);
lua_pushnil(L);
#endif
}
// adc conversion timer callback
static int ads1115_lua_readoutdone(void * param) {
ads_ctrl_ud_t * ads_ctrl = (ads_ctrl_ud_t *)param;
uint16_t raw = read_reg(ads_ctrl->i2c_addr, ADS1115_POINTER_CONVERSION);
lua_State *L = lua_getstate();
os_timer_disarm(&ads_ctrl->timer);
lua_rawgeti(L, LUA_REGISTRYINDEX, ads_ctrl->timer_ref);
luaL_unref(L, LUA_REGISTRYINDEX, ads_ctrl->timer_ref);
ads_ctrl->timer_ref = LUA_NOREF;
read_common(ads_ctrl, raw, L);
lua_call(L, 4, 0);
}
// Read the conversion register from the ADC device
// Lua: volt,voltdec,adc,sign = ads1115.device:read()
static int ads1115_lua_read(lua_State *L) {
ads_ctrl_ud_t *ads_ctrl = luaL_checkudata(L, 1, metatable_name);
uint16_t raw = read_reg(ads_ctrl->i2c_addr, ADS1115_POINTER_CONVERSION);
read_common(ads_ctrl, raw, L);
return 4;
}
#ifdef ADS1115_INCLUDE_TEST_FUNCTION
// this function simulates conversion using raw value provided as argument
// Lua: volt,volt_dec,adc,sign = ads1115.test_volt_conversion(-1)
static int test_volt_conversion(lua_State *L) {
ads_ctrl_ud_t *ads_ctrl = luaL_checkudata(L, 1, metatable_name);
uint16_t raw = luaL_checkinteger(L, 2);
read_common(ads_ctrl, raw, L);
return 4;
}
#endif
static int ads1115_lua_delete(lua_State *L) {
ads_ctrl_ud_t *ads_ctrl = luaL_checkudata(L, 1, metatable_name);
if (ads_ctrl->timer_ref != LUA_NOREF) {
os_timer_disarm(&ads_ctrl->timer);
luaL_unref(L, LUA_REGISTRYINDEX, ads_ctrl->timer_ref);
}
return 0;
}
LROT_BEGIN(ads1115, NULL, 0)
LROT_FUNCENTRY( ads1115, ads1115_lua_register_1115 )
LROT_FUNCENTRY( ads1015, ads1115_lua_register_1015 )
LROT_FUNCENTRY( reset, ads1115_lua_reset )
LROT_NUMENTRY( ADDR_GND, ADS1115_I2C_ADDR_GND )
LROT_NUMENTRY( ADDR_VDD, ADS1115_I2C_ADDR_VDD )
LROT_NUMENTRY( ADDR_SDA, ADS1115_I2C_ADDR_SDA )
LROT_NUMENTRY( ADDR_SCL, ADS1115_I2C_ADDR_SCL )
LROT_NUMENTRY( SINGLE_SHOT, ADS1115_MODE_SINGLE )
LROT_NUMENTRY( CONTINUOUS, ADS1115_MODE_CONTIN )
LROT_NUMENTRY( DIFF_0_1, ADS1115_MUX_DIFF_0_1 )
LROT_NUMENTRY( DIFF_0_3, ADS1115_MUX_DIFF_0_3 )
LROT_NUMENTRY( DIFF_1_3, ADS1115_MUX_DIFF_1_3 )
LROT_NUMENTRY( DIFF_2_3, ADS1115_MUX_DIFF_2_3 )
LROT_NUMENTRY( SINGLE_0, ADS1115_MUX_SINGLE_0 )
LROT_NUMENTRY( SINGLE_1, ADS1115_MUX_SINGLE_1 )
LROT_NUMENTRY( SINGLE_2, ADS1115_MUX_SINGLE_2 )
LROT_NUMENTRY( SINGLE_3, ADS1115_MUX_SINGLE_3 )
LROT_NUMENTRY( GAIN_6_144V, ADS1115_PGA_6_144V )
LROT_NUMENTRY( GAIN_4_096V, ADS1115_PGA_4_096V )
LROT_NUMENTRY( GAIN_2_048V, ADS1115_PGA_2_048V )
LROT_NUMENTRY( GAIN_1_024V, ADS1115_PGA_1_024V )
LROT_NUMENTRY( GAIN_0_512V, ADS1115_PGA_0_512V )
LROT_NUMENTRY( GAIN_0_256V, ADS1115_PGA_0_256V )
LROT_NUMENTRY( DR_8SPS, ADS1115_DR_8SPS )
LROT_NUMENTRY( DR_16SPS, ADS1115_DR_16SPS )
LROT_NUMENTRY( DR_32SPS, ADS1115_DR_32SPS )
LROT_NUMENTRY( DR_64SPS, ADS1115_DR_64SPS )
LROT_NUMENTRY( DR_128SPS, ADS1115_DR_128SPS )
LROT_NUMENTRY( DR_250SPS, ADS1115_DR_250SPS )
LROT_NUMENTRY( DR_475SPS, ADS1115_DR_475SPS )
LROT_NUMENTRY( DR_490SPS, ADS1115_DR_490SPS )
LROT_NUMENTRY( DR_860SPS, ADS1115_DR_860SPS )
LROT_NUMENTRY( DR_920SPS, ADS1115_DR_920SPS )
LROT_NUMENTRY( DR_1600SPS, ADS1115_DR_1600SPS )
LROT_NUMENTRY( DR_2400SPS, ADS1115_DR_2400SPS )
LROT_NUMENTRY( DR_3300SPS, ADS1115_DR_3300SPS )
LROT_NUMENTRY( CONV_RDY_1, ADS1115_CQUE_1CONV )
LROT_NUMENTRY( CONV_RDY_2, ADS1115_CQUE_2CONV )
LROT_NUMENTRY( CONV_RDY_4, ADS1115_CQUE_4CONV )
LROT_NUMENTRY( COMP_1CONV, ADS1115_CQUE_1CONV )
LROT_NUMENTRY( COMP_2CONV, ADS1115_CQUE_2CONV )
LROT_NUMENTRY( COMP_4CONV, ADS1115_CQUE_4CONV )
LROT_NUMENTRY( CMODE_TRAD, ADS1115_CMODE_TRAD )
LROT_NUMENTRY( CMODE_WINDOW, ADS1115_CMODE_WINDOW )
LROT_END(ads1115, NULL, 0)
LROT_BEGIN(ads1115_instance, NULL, LROT_MASK_GC_INDEX)
LROT_TABENTRY( __index , ads1115_instance )
LROT_FUNCENTRY( __gc, ads1115_lua_delete )
LROT_FUNCENTRY( setting, ads1115_lua_setting )
LROT_FUNCENTRY( startread, ads1115_lua_startread )
LROT_FUNCENTRY( read, ads1115_lua_read )
#ifdef ADS1115_INCLUDE_TEST_FUNCTION
LROT_FUNCENTRY( test_volt_conversion, test_volt_conversion )
#endif
LROT_END(ads1115_instance, NULL, LROT_MASK_GC_INDEX)
int luaopen_ads1115(lua_State *L) {
luaL_rometatable(L, metatable_name, LROT_TABLEREF(ads1115_instance));
return 0;
}
NODEMCU_MODULE(ADS1115, "ads1115", ads1115, luaopen_ads1115);