744 lines
23 KiB
C
744 lines
23 KiB
C
/*
|
|
Adaptation of Paul Stoffregen's One wire library to the NodeMcu
|
|
|
|
Ported to ESP32 RMT peripheral for low-level signal generation by Arnim Laeuger.
|
|
|
|
The latest version of this library may be found at:
|
|
http://www.pjrc.com/teensy/td_libs_OneWire.html
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining
|
|
a copy of this software and associated documentation files (the
|
|
"Software"), to deal in the Software without restriction, including
|
|
without limitation the rights to use, copy, modify, merge, publish,
|
|
distribute, sublicense, and/or sell copies of the Software, and to
|
|
permit persons to whom the Software is furnished to do so, subject to
|
|
the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be
|
|
included in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
Much of the code was inspired by Derek Yerger's code, though I don't
|
|
think much of that remains. In any event that was..
|
|
(copyleft) 2006 by Derek Yerger - Free to distribute freely.
|
|
|
|
The CRC code was excerpted and inspired by the Dallas Semiconductor
|
|
sample code bearing this copyright.
|
|
//---------------------------------------------------------------------------
|
|
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a
|
|
// copy of this software and associated documentation files (the "Software"),
|
|
// to deal in the Software without restriction, including without limitation
|
|
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
// and/or sell copies of the Software, and to permit persons to whom the
|
|
// Software is furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included
|
|
// in all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
|
|
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
// OTHER DEALINGS IN THE SOFTWARE.
|
|
//
|
|
// Except as contained in this notice, the name of Dallas Semiconductor
|
|
// shall not be used except as stated in the Dallas Semiconductor
|
|
// Branding Policy.
|
|
//--------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "platform.h"
|
|
|
|
#include "driver/rmt.h"
|
|
#include "driver/gpio.h"
|
|
#include "esp_log.h"
|
|
|
|
#define TRUE (1==1)
|
|
#define FALSE !TRUE
|
|
|
|
#undef OW_DEBUG
|
|
|
|
// *****************************************************************************
|
|
// Onewire platform interface
|
|
|
|
// bus reset: duration of low phase [us]
|
|
#define OW_DURATION_RESET 480
|
|
// overall slot duration
|
|
#define OW_DURATION_SLOT 75
|
|
// write 1 slot and read slot durations [us]
|
|
#define OW_DURATION_1_LOW 2
|
|
#define OW_DURATION_1_HIGH (OW_DURATION_SLOT - OW_DURATION_1_LOW)
|
|
// write 0 slot durations [us]
|
|
#define OW_DURATION_0_LOW 65
|
|
#define OW_DURATION_0_HIGH (OW_DURATION_SLOT - OW_DURATION_0_LOW)
|
|
// sample time for read slot
|
|
#define OW_DURATION_SAMPLE (15-2)
|
|
// RX idle threshold
|
|
// needs to be larger than any duration occurring during write slots
|
|
#define OW_DURATION_RX_IDLE (OW_DURATION_SLOT + 2)
|
|
|
|
// Strong pull-up aka power mode is implemented by the pad's push-pull driver.
|
|
// Open-drain configuration is used for normal operation.
|
|
// power bus by disabling open-drain:
|
|
#define OW_POWER(g) GPIO.pin[g].pad_driver = 0
|
|
// de-power bus by enabling open-drain:
|
|
#define OW_DEPOWER(g) GPIO.pin[g].pad_driver = 1
|
|
|
|
// grouped information for RMT management
|
|
static struct {
|
|
int tx, rx;
|
|
RingbufHandle_t rb;
|
|
int gpio;
|
|
} ow_rmt = {-1, -1, NULL, -1};
|
|
|
|
// default power mode for generic write operations
|
|
static const uint8_t owDefaultPower = 0;
|
|
|
|
static int onewire_rmt_init( uint8_t gpio_num )
|
|
{
|
|
// acquire an RMT module for TX and RX each
|
|
if ((ow_rmt.tx = platform_rmt_allocate( 1 )) >= 0) {
|
|
if ((ow_rmt.rx = platform_rmt_allocate( 1 )) >= 0) {
|
|
|
|
#ifdef OW_DEBUG
|
|
ESP_LOGI("ow", "RMT TX channel: %d", ow_rmt.tx);
|
|
ESP_LOGI("ow", "RMT RX channel: %d", ow_rmt.rx);
|
|
#endif
|
|
|
|
rmt_config_t rmt_tx;
|
|
rmt_tx.channel = ow_rmt.tx;
|
|
rmt_tx.gpio_num = gpio_num;
|
|
rmt_tx.mem_block_num = 1;
|
|
rmt_tx.clk_div = 80;
|
|
rmt_tx.tx_config.loop_en = false;
|
|
rmt_tx.tx_config.carrier_en = false;
|
|
rmt_tx.tx_config.idle_level = 1;
|
|
rmt_tx.tx_config.idle_output_en = true;
|
|
rmt_tx.rmt_mode = RMT_MODE_TX;
|
|
if (rmt_config( &rmt_tx ) == ESP_OK) {
|
|
if (rmt_driver_install( rmt_tx.channel, 0, 0 ) == ESP_OK) {
|
|
|
|
rmt_config_t rmt_rx;
|
|
rmt_rx.channel = ow_rmt.rx;
|
|
rmt_rx.gpio_num = gpio_num;
|
|
rmt_rx.clk_div = 80;
|
|
rmt_rx.mem_block_num = 1;
|
|
rmt_rx.rmt_mode = RMT_MODE_RX;
|
|
rmt_rx.rx_config.filter_en = true;
|
|
rmt_rx.rx_config.filter_ticks_thresh = 30;
|
|
rmt_rx.rx_config.idle_threshold = OW_DURATION_RX_IDLE;
|
|
if (rmt_config( &rmt_rx ) == ESP_OK) {
|
|
if (rmt_driver_install( rmt_rx.channel, 512, 0 ) == ESP_OK) {
|
|
|
|
rmt_get_ringbuf_handler( ow_rmt.rx, &ow_rmt.rb );
|
|
|
|
ow_rmt.gpio = gpio_num;
|
|
|
|
return PLATFORM_OK;
|
|
|
|
}
|
|
}
|
|
|
|
rmt_driver_uninstall( rmt_tx.channel );
|
|
}
|
|
}
|
|
|
|
platform_rmt_release( ow_rmt.rx );
|
|
}
|
|
|
|
platform_rmt_release( ow_rmt.tx );
|
|
}
|
|
|
|
return PLATFORM_ERR;
|
|
}
|
|
|
|
// flush any pending/spurious traces from the RX channel
|
|
static void onewire_flush_rmt_rx_buf( void )
|
|
{
|
|
void *p;
|
|
size_t s;
|
|
|
|
while ((p = xRingbufferReceive( ow_rmt.rb, &s, 0 )))
|
|
vRingbufferReturnItem( ow_rmt.rb, p );
|
|
}
|
|
|
|
// check rmt TX&RX channel assignment and eventually attach them to the requested pin
|
|
static int onewire_rmt_attach_pin( uint8_t gpio_num )
|
|
{
|
|
if (ow_rmt.tx < 0 || ow_rmt.rx < 0)
|
|
return PLATFORM_ERR;
|
|
|
|
if (gpio_num != ow_rmt.gpio) {
|
|
// attach GPIO to previous pin
|
|
if (gpio_num < 32) {
|
|
GPIO.enable_w1ts = (0x1 << gpio_num);
|
|
} else {
|
|
GPIO.enable1_w1ts.data = (0x1 << (gpio_num - 32));
|
|
}
|
|
gpio_matrix_out( ow_rmt.gpio, SIG_GPIO_OUT_IDX, 0, 0 );
|
|
|
|
// attach RMT channels to new gpio pin
|
|
rmt_set_pin( ow_rmt.tx, RMT_MODE_TX, gpio_num );
|
|
rmt_set_pin( ow_rmt.rx, RMT_MODE_RX, gpio_num );
|
|
|
|
ow_rmt.gpio = gpio_num;
|
|
}
|
|
|
|
return PLATFORM_OK;
|
|
}
|
|
|
|
int platform_onewire_init( uint8_t gpio_num )
|
|
{
|
|
if (ow_rmt.tx < 0 || ow_rmt.rx < 0) {
|
|
if (onewire_rmt_init( gpio_num ) != PLATFORM_OK)
|
|
return PLATFORM_ERR;
|
|
}
|
|
|
|
// enable open-drain mode on pin
|
|
OW_DEPOWER(gpio_num);
|
|
|
|
// and prepare driving 1
|
|
// note: gpio module is *not necessarily* routed to the pin at this point
|
|
gpio_set_level( gpio_num, 1 );
|
|
|
|
return PLATFORM_OK;
|
|
}
|
|
|
|
int platform_onewire_reset( uint8_t gpio_num, uint8_t *presence )
|
|
{
|
|
rmt_item32_t tx_items[1];
|
|
uint8_t _presence = 0;
|
|
int res = PLATFORM_OK;
|
|
|
|
if (onewire_rmt_attach_pin( gpio_num ) != PLATFORM_OK)
|
|
return PLATFORM_ERR;
|
|
|
|
OW_DEPOWER( gpio_num );
|
|
|
|
tx_items[0].duration0 = OW_DURATION_RESET;
|
|
tx_items[0].level0 = 0;
|
|
tx_items[0].duration1 = 0;
|
|
tx_items[0].level1 = 1;
|
|
|
|
uint16_t old_rx_thresh;
|
|
rmt_get_rx_idle_thresh( ow_rmt.rx, &old_rx_thresh );
|
|
rmt_set_rx_idle_thresh( ow_rmt.rx, OW_DURATION_RESET+60 );
|
|
|
|
onewire_flush_rmt_rx_buf();
|
|
rmt_rx_start( ow_rmt.rx, true );
|
|
if (rmt_write_items( ow_rmt.tx, tx_items, 1, true ) == ESP_OK) {
|
|
|
|
size_t rx_size;
|
|
rmt_item32_t* rx_items = (rmt_item32_t *)xRingbufferReceive( ow_rmt.rb, &rx_size, 100 / portTICK_PERIOD_MS );
|
|
|
|
if (rx_items) {
|
|
if (rx_size >= 1 * sizeof( rmt_item32_t )) {
|
|
|
|
#ifdef OW_DEBUG
|
|
for (int i = 0; i < rx_size / 4; i++) {
|
|
ESP_LOGI("ow", "level: %d, duration %d", rx_items[i].level0, rx_items[i].duration0);
|
|
ESP_LOGI("ow", "level: %d, duration %d", rx_items[i].level1, rx_items[i].duration1);
|
|
}
|
|
#endif
|
|
|
|
// parse signal and search for presence pulse
|
|
if ((rx_items[0].level0 == 0) && (rx_items[0].duration0 >= OW_DURATION_RESET - 2))
|
|
if ((rx_items[0].level1 == 1) && (rx_items[0].duration1 > 0))
|
|
if (rx_items[1].level0 == 0)
|
|
_presence = 1;
|
|
}
|
|
|
|
vRingbufferReturnItem( ow_rmt.rb, (void *)rx_items );
|
|
} else {
|
|
// time out occurred, this indicates an unconnected / misconfigured bus
|
|
res = PLATFORM_ERR;
|
|
}
|
|
|
|
} else {
|
|
// error in tx channel
|
|
res = PLATFORM_ERR;
|
|
}
|
|
|
|
rmt_rx_stop( ow_rmt.rx );
|
|
rmt_set_rx_idle_thresh( ow_rmt.rx, old_rx_thresh );
|
|
|
|
*presence = _presence;
|
|
return res;
|
|
}
|
|
|
|
static rmt_item32_t onewire_encode_write_slot( uint8_t val )
|
|
{
|
|
rmt_item32_t item;
|
|
|
|
item.level0 = 0;
|
|
item.level1 = 1;
|
|
if (val) {
|
|
// write "1" slot
|
|
item.duration0 = OW_DURATION_1_LOW;
|
|
item.duration1 = OW_DURATION_1_HIGH;
|
|
} else {
|
|
// write "0" slot
|
|
item.duration0 = OW_DURATION_0_LOW;
|
|
item.duration1 = OW_DURATION_0_HIGH;
|
|
}
|
|
|
|
return item;
|
|
}
|
|
|
|
static int onewire_write_bits( uint8_t gpio_num, uint8_t data, uint8_t num, uint8_t power )
|
|
{
|
|
rmt_item32_t tx_items[num+1];
|
|
|
|
if (num > 8)
|
|
return PLATFORM_ERR;
|
|
|
|
if (onewire_rmt_attach_pin( gpio_num ) != PLATFORM_OK)
|
|
return PLATFORM_ERR;
|
|
|
|
if (power) {
|
|
// apply strong driver to power the bus
|
|
OW_POWER(gpio_num);
|
|
} else {
|
|
// switch to open-drain mode, bus is powered by external pull-up
|
|
OW_DEPOWER(gpio_num);
|
|
}
|
|
|
|
// write requested bits as pattern to TX buffer
|
|
for (int i = 0; i < num; i++) {
|
|
tx_items[i] = onewire_encode_write_slot( data & 0x01 );
|
|
data >>= 1;
|
|
}
|
|
// end marker
|
|
tx_items[num].level0 = 1;
|
|
tx_items[num].duration0 = 0;
|
|
|
|
if (rmt_write_items( ow_rmt.tx, tx_items, num+1, true ) == ESP_OK)
|
|
return PLATFORM_OK;
|
|
else
|
|
return PLATFORM_ERR;
|
|
}
|
|
|
|
int platform_onewire_write_bytes( uint8_t gpio_num, const uint8_t *buf, uint16_t count, bool power )
|
|
{
|
|
for (uint16_t i = 0 ; i < count ; i++)
|
|
if (onewire_write_bits( gpio_num, buf[i], 8, i < count-1 ? owDefaultPower : power) != PLATFORM_OK)
|
|
return PLATFORM_ERR;
|
|
|
|
return PLATFORM_OK;
|
|
}
|
|
|
|
int platform_onewire_depower( uint8_t gpio_num )
|
|
{
|
|
// enable open-drain mode on pin
|
|
OW_DEPOWER(gpio_num);
|
|
|
|
return PLATFORM_OK;
|
|
}
|
|
|
|
static rmt_item32_t onewire_encode_read_slot( void )
|
|
{
|
|
rmt_item32_t item;
|
|
|
|
// construct pattern for a single read time slot
|
|
item.level0 = 0;
|
|
item.duration0 = OW_DURATION_1_LOW; // shortly force 0
|
|
item.level1 = 1;
|
|
item.duration1 = OW_DURATION_1_HIGH; // release high and finish slot
|
|
|
|
return item;
|
|
}
|
|
|
|
static int onewire_read_bits( uint8_t gpio_num, uint8_t *data, uint8_t num )
|
|
{
|
|
rmt_item32_t tx_items[num+1];
|
|
uint8_t read_data = 0;
|
|
int res = PLATFORM_OK;
|
|
|
|
if (num > 8)
|
|
return PLATFORM_ERR;
|
|
|
|
if (onewire_rmt_attach_pin( gpio_num ) != PLATFORM_OK)
|
|
return PLATFORM_ERR;
|
|
|
|
OW_DEPOWER( gpio_num );
|
|
|
|
// generate requested read slots
|
|
for (int i = 0; i < num; i++)
|
|
tx_items[i] = onewire_encode_read_slot();
|
|
// end marker
|
|
tx_items[num].level0 = 1;
|
|
tx_items[num].duration0 = 0;
|
|
|
|
onewire_flush_rmt_rx_buf();
|
|
rmt_rx_start( ow_rmt.rx, true );
|
|
if (rmt_write_items( ow_rmt.tx, tx_items, num+1, true ) == ESP_OK) {
|
|
|
|
size_t rx_size;
|
|
rmt_item32_t* rx_items = (rmt_item32_t *)xRingbufferReceive( ow_rmt.rb, &rx_size, portMAX_DELAY );
|
|
|
|
if (rx_items) {
|
|
|
|
#ifdef OW_DEBUG
|
|
for (int i = 0; i < rx_size / 4; i++) {
|
|
ESP_LOGI("ow", "level: %d, duration %d", rx_items[i].level0, rx_items[i].duration0);
|
|
ESP_LOGI("ow", "level: %d, duration %d", rx_items[i].level1, rx_items[i].duration1);
|
|
}
|
|
#endif
|
|
|
|
if (rx_size >= num * sizeof( rmt_item32_t )) {
|
|
for (int i = 0; i < num; i++) {
|
|
read_data >>= 1;
|
|
// parse signal and identify logical bit
|
|
if (rx_items[i].level1 == 1) {
|
|
if ((rx_items[i].level0 == 0) && (rx_items[i].duration0 < OW_DURATION_SAMPLE)) {
|
|
// rising edge occured before 15us -> bit 1
|
|
read_data |= 0x80;
|
|
}
|
|
}
|
|
}
|
|
read_data >>= 8 - num;
|
|
}
|
|
|
|
vRingbufferReturnItem( ow_rmt.rb, (void *)rx_items );
|
|
} else {
|
|
// time out occurred, this indicates an unconnected / misconfigured bus
|
|
res = PLATFORM_ERR;
|
|
}
|
|
|
|
} else {
|
|
// error in tx channel
|
|
res = PLATFORM_ERR;
|
|
}
|
|
|
|
rmt_rx_stop( ow_rmt.rx );
|
|
|
|
*data = read_data;
|
|
return res;
|
|
}
|
|
|
|
int platform_onewire_read_bytes( uint8_t gpio_num, uint8_t *buf, uint16_t count )
|
|
{
|
|
for (uint16_t i = 0 ; i < count ; i++) {
|
|
if (onewire_read_bits( gpio_num, buf, 8 ) != PLATFORM_OK)
|
|
return PLATFORM_ERR;
|
|
buf++;
|
|
}
|
|
|
|
return PLATFORM_OK;
|
|
}
|
|
|
|
|
|
//
|
|
// You need to use this function to start a search again from the beginning.
|
|
// You do not need to do it for the first search, though you could.
|
|
//
|
|
void platform_onewire_reset_search( platform_onewire_bus_t *bus )
|
|
{
|
|
// reset the search state
|
|
bus->LastDiscrepancy = 0;
|
|
bus->LastDeviceFlag = FALSE;
|
|
bus->LastFamilyDiscrepancy = 0;
|
|
int i;
|
|
for(i = 7; ; i--) {
|
|
bus->ROM_NO[i] = 0;
|
|
if (i == 0) break;
|
|
}
|
|
}
|
|
|
|
// Setup the search to find the device type 'family_code' on the next call
|
|
// to search(*newAddr) if it is present.
|
|
//
|
|
void platform_onewire_target_search( uint8_t family_code, platform_onewire_bus_t *bus )
|
|
{
|
|
// set the search state to find SearchFamily type devices
|
|
bus->ROM_NO[0] = family_code;
|
|
uint8_t i;
|
|
for (i = 1; i < 8; i++)
|
|
bus->ROM_NO[i] = 0;
|
|
bus->LastDiscrepancy = 64;
|
|
bus->LastFamilyDiscrepancy = 0;
|
|
bus->LastDeviceFlag = FALSE;
|
|
}
|
|
|
|
//
|
|
// Perform a search. If this function returns a '1' then it has
|
|
// enumerated the next device and you may retrieve the ROM from the
|
|
// OneWire::address variable. If there are no devices, no further
|
|
// devices, or something horrible happens in the middle of the
|
|
// enumeration then a 0 is returned. If a new device is found then
|
|
// its address is copied to newAddr. Use OneWire::reset_search() to
|
|
// start over.
|
|
//
|
|
// --- Replaced by the one from the Dallas Semiconductor web site ---
|
|
//--------------------------------------------------------------------------
|
|
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
|
|
// search state.
|
|
// Return TRUE : device found, ROM number in ROM_NO buffer
|
|
// FALSE : device not found, end of search
|
|
//
|
|
uint8_t platform_onewire_search( uint8_t pin, uint8_t *newAddr, platform_onewire_bus_t *bus )
|
|
{
|
|
uint8_t id_bit_number;
|
|
uint8_t last_zero, rom_byte_number, search_result;
|
|
uint8_t id_bit, cmp_id_bit;
|
|
|
|
unsigned char rom_byte_mask, search_direction;
|
|
|
|
// initialize for search
|
|
id_bit_number = 1;
|
|
last_zero = 0;
|
|
rom_byte_number = 0;
|
|
rom_byte_mask = 1;
|
|
search_result = 0;
|
|
|
|
// if the last call was not the last one
|
|
if (!bus->LastDeviceFlag) {
|
|
// 1-Wire reset
|
|
uint8_t presence;
|
|
if (platform_onewire_reset(pin, &presence) != PLATFORM_OK || !presence) {
|
|
// reset the search
|
|
bus->LastDiscrepancy = 0;
|
|
bus->LastDeviceFlag = FALSE;
|
|
bus->LastFamilyDiscrepancy = 0;
|
|
return FALSE;
|
|
}
|
|
|
|
// issue the search command
|
|
onewire_write_bits(pin, 0xF0, 8, owDefaultPower);
|
|
|
|
// loop to do the search
|
|
do {
|
|
// read a bit and its complement
|
|
if (onewire_read_bits(pin, &id_bit, 1) != PLATFORM_OK)
|
|
break;
|
|
if (onewire_read_bits(pin, &cmp_id_bit, 1) != PLATFORM_OK)
|
|
break;
|
|
|
|
// check for no devices on 1-wire
|
|
if ((id_bit == 1) && (cmp_id_bit == 1))
|
|
break;
|
|
else {
|
|
// all devices coupled have 0 or 1
|
|
if (id_bit != cmp_id_bit)
|
|
search_direction = id_bit; // bit write value for search
|
|
else {
|
|
// if this discrepancy if before the Last Discrepancy
|
|
// on a previous next then pick the same as last time
|
|
if (id_bit_number < bus->LastDiscrepancy)
|
|
search_direction = ((bus->ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
|
|
else
|
|
// if equal to last pick 1, if not then pick 0
|
|
search_direction = (id_bit_number == bus->LastDiscrepancy);
|
|
|
|
// if 0 was picked then record its position in LastZero
|
|
if (search_direction == 0) {
|
|
last_zero = id_bit_number;
|
|
|
|
// check for Last discrepancy in family
|
|
if (last_zero < 9)
|
|
bus->LastFamilyDiscrepancy = last_zero;
|
|
}
|
|
}
|
|
|
|
// set or clear the bit in the ROM byte rom_byte_number
|
|
// with mask rom_byte_mask
|
|
if (search_direction == 1)
|
|
bus->ROM_NO[rom_byte_number] |= rom_byte_mask;
|
|
else
|
|
bus->ROM_NO[rom_byte_number] &= ~rom_byte_mask;
|
|
|
|
// serial number search direction write bit
|
|
onewire_write_bits(pin, search_direction, 1, owDefaultPower);
|
|
|
|
// increment the byte counter id_bit_number
|
|
// and shift the mask rom_byte_mask
|
|
id_bit_number++;
|
|
rom_byte_mask <<= 1;
|
|
|
|
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
|
|
if (rom_byte_mask == 0) {
|
|
rom_byte_number++;
|
|
rom_byte_mask = 1;
|
|
}
|
|
}
|
|
}
|
|
while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
|
|
|
|
// if the search was successful then
|
|
if (!(id_bit_number < 65)) {
|
|
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
|
|
bus->LastDiscrepancy = last_zero;
|
|
|
|
// check for last device
|
|
if (bus->LastDiscrepancy == 0)
|
|
bus->LastDeviceFlag = TRUE;
|
|
|
|
search_result = TRUE;
|
|
}
|
|
}
|
|
|
|
// if no device found then reset counters so next 'search' will be like a first
|
|
if (!search_result || !bus->ROM_NO[0]) {
|
|
bus->LastDiscrepancy = 0;
|
|
bus->LastDeviceFlag = FALSE;
|
|
bus->LastFamilyDiscrepancy = 0;
|
|
search_result = FALSE;
|
|
}
|
|
else {
|
|
for (rom_byte_number = 0; rom_byte_number < 8; rom_byte_number++) {
|
|
newAddr[rom_byte_number] = bus->ROM_NO[rom_byte_number];
|
|
}
|
|
}
|
|
return search_result;
|
|
}
|
|
|
|
|
|
#define ONEWIRE_CRC 1
|
|
#if ONEWIRE_CRC
|
|
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
|
|
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
|
|
//
|
|
|
|
#define ONEWIRE_CRC8_TABLE 0
|
|
#if ONEWIRE_CRC8_TABLE
|
|
// This table comes from Dallas sample code where it is freely reusable,
|
|
// though Copyright (C) 2000 Dallas Semiconductor Corporation
|
|
static const uint8_t dscrc_table[] = {
|
|
0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
|
|
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
|
|
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
|
|
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
|
|
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
|
|
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
|
|
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
|
|
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
|
|
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
|
|
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
|
|
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
|
|
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
|
|
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
|
|
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
|
|
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
|
|
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};
|
|
|
|
#ifndef pgm_read_byte
|
|
#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
|
|
#endif
|
|
|
|
//
|
|
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
|
|
// and the registers. (note: this might better be done without to
|
|
// table, it would probably be smaller and certainly fast enough
|
|
// compared to all those delayMicrosecond() calls. But I got
|
|
// confused, so I use this table from the examples.)
|
|
//
|
|
uint8_t platform_onewire_crc8( const uint8_t *addr, uint8_t len )
|
|
{
|
|
uint8_t crc = 0;
|
|
|
|
while (len--) {
|
|
crc = pgm_read_byte(dscrc_table + (crc ^ *addr++));
|
|
}
|
|
return crc;
|
|
}
|
|
#else
|
|
//
|
|
// Compute a Dallas Semiconductor 8 bit CRC directly.
|
|
// this is much slower, but much smaller, than the lookup table.
|
|
//
|
|
uint8_t platform_onewire_crc8( const uint8_t *addr, uint8_t len )
|
|
{
|
|
uint8_t crc = 0;
|
|
|
|
while (len--) {
|
|
uint8_t inbyte = *addr++;
|
|
uint8_t i;
|
|
for (i = 8; i; i--) {
|
|
uint8_t mix = (crc ^ inbyte) & 0x01;
|
|
crc >>= 1;
|
|
if (mix) crc ^= 0x8C;
|
|
inbyte >>= 1;
|
|
}
|
|
}
|
|
return crc;
|
|
}
|
|
#endif
|
|
|
|
#define ONEWIRE_CRC16 1
|
|
#if ONEWIRE_CRC16
|
|
// Compute the 1-Wire CRC16 and compare it against the received CRC.
|
|
// Example usage (reading a DS2408):
|
|
// // Put everything in a buffer so we can compute the CRC easily.
|
|
// uint8_t buf[13];
|
|
// buf[0] = 0xF0; // Read PIO Registers
|
|
// buf[1] = 0x88; // LSB address
|
|
// buf[2] = 0x00; // MSB address
|
|
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
|
|
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
|
|
// if (!CheckCRC16(buf, 11, &buf[11])) {
|
|
// // Handle error.
|
|
// }
|
|
//
|
|
// @param input - Array of bytes to checksum.
|
|
// @param len - How many bytes to use.
|
|
// @param inverted_crc - The two CRC16 bytes in the received data.
|
|
// This should just point into the received data,
|
|
// *not* at a 16-bit integer.
|
|
// @param crc - The crc starting value (optional)
|
|
// @return True, iff the CRC matches.
|
|
bool platform_onewire_check_crc16( const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc )
|
|
{
|
|
crc = ~platform_onewire_crc16(input, len, crc);
|
|
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
|
|
}
|
|
|
|
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
|
|
// the integrity of data received from many 1-Wire devices. Note that the
|
|
// CRC computed here is *not* what you'll get from the 1-Wire network,
|
|
// for two reasons:
|
|
// 1) The CRC is transmitted bitwise inverted.
|
|
// 2) Depending on the endian-ness of your processor, the binary
|
|
// representation of the two-byte return value may have a different
|
|
// byte order than the two bytes you get from 1-Wire.
|
|
// @param input - Array of bytes to checksum.
|
|
// @param len - How many bytes to use.
|
|
// @param crc - The crc starting value (optional)
|
|
// @return The CRC16, as defined by Dallas Semiconductor.
|
|
uint16_t platform_onewire_crc16( const uint8_t* input, uint16_t len, uint16_t crc )
|
|
{
|
|
static const uint8_t oddparity[16] =
|
|
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
|
|
|
|
uint16_t i;
|
|
for (i = 0 ; i < len ; i++) {
|
|
// Even though we're just copying a byte from the input,
|
|
// we'll be doing 16-bit computation with it.
|
|
uint16_t cdata = input[i];
|
|
cdata = (cdata ^ crc) & 0xff;
|
|
crc >>= 8;
|
|
|
|
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
|
|
crc ^= 0xC001;
|
|
|
|
cdata <<= 6;
|
|
crc ^= cdata;
|
|
cdata <<= 1;
|
|
crc ^= cdata;
|
|
}
|
|
return crc;
|
|
}
|
|
#endif
|
|
|
|
#endif
|