nodemcu-firmware/components/platform/platform.c

652 lines
18 KiB
C

#include "platform.h"
#include "driver/console.h"
#include "driver/sigmadelta.h"
#include "driver/adc.h"
#include "driver/uart.h"
#include <stdio.h>
#include <string.h>
#include <freertos/semphr.h>
#include "lua.h"
#include "esp_log.h"
int platform_init (void)
{
platform_ws2812_init();
return PLATFORM_OK;
}
// *****************************************************************************
// GPIO subsection
int platform_gpio_exists( unsigned gpio ) { return GPIO_IS_VALID_GPIO(gpio); }
int platform_gpio_output_exists( unsigned gpio ) { return GPIO_IS_VALID_OUTPUT_GPIO(gpio); }
// ****************************************************************************
// UART
#define PLATFORM_UART_EVENT_DATA (UART_EVENT_MAX + 1)
#define PLATFORM_UART_EVENT_OOM (UART_EVENT_MAX + 2)
#define PLATFORM_UART_EVENT_RX (UART_EVENT_MAX + 3)
#define PLATFORM_UART_EVENT_BREAK (UART_EVENT_MAX + 4)
static const char *UART_TAG = "uart";
uart_status_t uart_status[NUM_UART];
SemaphoreHandle_t sem = NULL;
extern bool uart_on_data_cb(unsigned id, const char *buf, size_t len);
extern bool uart_on_error_cb(unsigned id, const char *buf, size_t len);
task_handle_t uart_event_task_id = 0;
void uart_event_task( task_param_t param, task_prio_t prio ) {
uint16_t need_len;
int16_t end_char;
char ch;
unsigned id;
uart_status_t *us;
uart_event_post_t *post = (uart_event_post_t *)param;
id = post->id;
us = & uart_status[id];
xSemaphoreGive(sem);
if(post->type == PLATFORM_UART_EVENT_DATA) {
for(size_t p = 0; p < post->size; p++) {
ch = post->data[p];
us->line_buffer[us->line_position] = ch;
us->line_position++;
need_len = us->need_len;
end_char = us->end_char;
size_t max_wanted =
(end_char >= 0 && need_len == 0) ? LUA_MAXINPUT : need_len;
bool at_end = (us->line_position >= max_wanted);
bool end_char_found =
(end_char >= 0 && (uint8_t)ch == (uint8_t)end_char);
if (at_end || end_char_found) {
uart_on_data_cb(id, us->line_buffer, us->line_position);
us->line_position = 0;
}
}
free(post->data);
} else {
char *err;
switch(post->type) {
case PLATFORM_UART_EVENT_OOM:
err = "out_of_memory";
break;
case PLATFORM_UART_EVENT_BREAK:
err = "break";
break;
case PLATFORM_UART_EVENT_RX:
default:
err = "rx_error";
}
uart_on_error_cb(id, err, strlen(err));
}
free(post);
}
static void task_uart( void *pvParameters ){
unsigned id = (unsigned)pvParameters;
// 4 chosen as a number smaller than the number of nodemcu task slots
// available, to make it unlikely we encounter a task_post failing
if (sem == NULL)
sem = xSemaphoreCreateCounting(4, 4);
uart_event_post_t* post = NULL;
uart_event_t event;
for(;;) {
if(xQueueReceive(uart_status[id].queue, (void * )&event, (portTickType)portMAX_DELAY)) {
switch(event.type) {
case UART_DATA: {
post = (uart_event_post_t*)malloc(sizeof(uart_event_post_t));
if(post == NULL) {
ESP_LOGE(UART_TAG, "Can not alloc memory in task_uart()");
// reboot here?
continue;
}
// Attempt to coalesce received bytes to reduce risk of overrunning
// the task event queue.
size_t len;
if (uart_get_buffered_data_len(id, &len) != ESP_OK)
len = event.size;
if (len == 0)
continue; // we already gobbled all the bytes
post->data = malloc(len);
if(post->data == NULL) {
ESP_LOGE(UART_TAG, "Can not alloc memory in task_uart()");
post->id = id;
post->type = PLATFORM_UART_EVENT_OOM;
} else {
post->id = id;
post->type = PLATFORM_UART_EVENT_DATA;
post->size = uart_read_bytes(id, (uint8_t *)post->data, len, 0);
}
break;
}
case UART_BREAK:
post = (uart_event_post_t*)malloc(sizeof(uart_event_post_t));
if(post == NULL) {
ESP_LOGE(UART_TAG, "Can not alloc memory in task_uart()");
// reboot here?
continue;
}
post->id = id;
post->type = PLATFORM_UART_EVENT_BREAK;
post->data = NULL;
break;
case UART_FIFO_OVF:
case UART_BUFFER_FULL:
case UART_PARITY_ERR:
case UART_FRAME_ERR:
post = (uart_event_post_t*)malloc(sizeof(uart_event_post_t));
if(post == NULL) {
ESP_LOGE(UART_TAG, "Can not alloc memory in task_uart()");
// reboot here?
continue;
}
post->id = id;
post->type = PLATFORM_UART_EVENT_RX;
post->data = NULL;
break;
case UART_PATTERN_DET:
default:
;
}
if (post != NULL) {
xSemaphoreTake(sem, portMAX_DELAY);
if (!task_post_medium(uart_event_task_id, (task_param_t)post))
{
ESP_LOGE(UART_TAG, "Task event overrun in task_uart()");
xSemaphoreGive(sem);
free(post->data);
free(post);
}
post = NULL;
}
}
}
}
// pins must not be null for non-console uart
uint32_t platform_uart_setup( unsigned id, uint32_t baud, int databits, int parity, int stopbits, uart_pins_t* pins )
{
if (id == CONSOLE_UART)
{
ConsoleSetup_t cfg;
cfg.bit_rate = baud;
switch (databits)
{
case 5: cfg.data_bits = CONSOLE_NUM_BITS_5; break;
case 6: cfg.data_bits = CONSOLE_NUM_BITS_6; break;
case 7: cfg.data_bits = CONSOLE_NUM_BITS_7; break;
case 8: // fall-through
default: cfg.data_bits = CONSOLE_NUM_BITS_8; break;
}
switch (parity)
{
case PLATFORM_UART_PARITY_EVEN: cfg.parity = CONSOLE_PARITY_EVEN; break;
case PLATFORM_UART_PARITY_ODD: cfg.parity = CONSOLE_PARITY_ODD; break;
default: // fall-through
case PLATFORM_UART_PARITY_NONE: cfg.parity = CONSOLE_PARITY_NONE; break;
}
switch (stopbits)
{
default: // fall-through
case PLATFORM_UART_STOPBITS_1:
cfg.stop_bits = CONSOLE_STOP_BITS_1; break;
case PLATFORM_UART_STOPBITS_1_5:
cfg.stop_bits = CONSOLE_STOP_BITS_1_5; break;
case PLATFORM_UART_STOPBITS_2:
cfg.stop_bits = CONSOLE_STOP_BITS_2; break;
}
cfg.auto_baud = false;
console_setup (&cfg);
return baud;
}
else
{
int flow_control = UART_HW_FLOWCTRL_DISABLE;
if(pins->flow_control & PLATFORM_UART_FLOW_CTS) flow_control |= UART_HW_FLOWCTRL_CTS;
if(pins->flow_control & PLATFORM_UART_FLOW_RTS) flow_control |= UART_HW_FLOWCTRL_RTS;
uart_config_t cfg = {
.baud_rate = baud,
.flow_ctrl = flow_control,
.rx_flow_ctrl_thresh = UART_FIFO_LEN - 16,
};
switch (databits)
{
case 5: cfg.data_bits = UART_DATA_5_BITS; break;
case 6: cfg.data_bits = UART_DATA_6_BITS; break;
case 7: cfg.data_bits = UART_DATA_7_BITS; break;
case 8: // fall-through
default: cfg.data_bits = UART_DATA_8_BITS; break;
}
switch (parity)
{
case PLATFORM_UART_PARITY_EVEN: cfg.parity = UART_PARITY_EVEN; break;
case PLATFORM_UART_PARITY_ODD: cfg.parity = UART_PARITY_ODD; break;
default: // fall-through
case PLATFORM_UART_PARITY_NONE: cfg.parity = UART_PARITY_DISABLE; break;
}
switch (stopbits)
{
default: // fall-through
case PLATFORM_UART_STOPBITS_1:
cfg.stop_bits = UART_STOP_BITS_1; break;
case PLATFORM_UART_STOPBITS_1_5:
cfg.stop_bits = UART_STOP_BITS_1_5; break;
case PLATFORM_UART_STOPBITS_2:
cfg.stop_bits = UART_STOP_BITS_2; break;
}
uart_param_config(id, &cfg);
uart_set_pin(id, pins->tx_pin, pins->rx_pin, pins->rts_pin, pins->cts_pin);
uart_set_line_inverse(id, (pins->tx_inverse? UART_INVERSE_TXD : UART_INVERSE_DISABLE)
| (pins->rx_inverse? UART_INVERSE_RXD : UART_INVERSE_DISABLE)
| (pins->rts_inverse? UART_INVERSE_RTS : UART_INVERSE_DISABLE)
| (pins->cts_inverse? UART_INVERSE_CTS : UART_INVERSE_DISABLE)
);
if(uart_event_task_id == 0) uart_event_task_id = task_get_id( uart_event_task );
return baud;
}
}
void platform_uart_setmode(unsigned id, unsigned mode)
{
uart_mode_t uartMode;
switch(mode)
{
case PLATFORM_UART_MODE_IRDA:
uartMode = UART_MODE_IRDA; break;
case PLATFORM_UART_MODE_RS485_COLLISION_DETECT:
uartMode = UART_MODE_RS485_COLLISION_DETECT; break;
case PLATFORM_UART_MODE_RS485_APP_CONTROL:
uartMode = UART_MODE_RS485_APP_CTRL; break;
case PLATFORM_UART_MODE_HALF_DUPLEX:
uartMode = UART_MODE_RS485_HALF_DUPLEX; break;
case PLATFORM_UART_MODE_UART:
default:
uartMode = UART_MODE_UART; break;
}
uart_set_mode(id, uartMode);
}
void platform_uart_send_multi( unsigned id, const char *data, size_t len )
{
size_t i;
if (id == CONSOLE_UART) {
for( i = 0; i < len; i ++ ) {
putchar (data[ i ]);
}
} else {
uart_write_bytes(id, data, len);
}
}
void platform_uart_send( unsigned id, uint8_t data )
{
if (id == CONSOLE_UART)
putchar (data);
else
uart_write_bytes(id, (const char *)&data, 1);
}
void platform_uart_flush( unsigned id )
{
if (id == CONSOLE_UART)
fflush (stdout);
}
int platform_uart_start( unsigned id )
{
if (id == CONSOLE_UART)
return 0;
else {
uart_status_t *us = & uart_status[id];
esp_err_t ret = uart_driver_install(id, UART_BUFFER_SIZE, UART_BUFFER_SIZE, 3, & us->queue, 0);
if(ret != ESP_OK) {
return -1;
}
us->line_buffer = malloc(LUA_MAXINPUT);
us->line_position = 0;
if(us->line_buffer == NULL) {
uart_driver_delete(id);
return -1;
}
char pcName[6];
snprintf( pcName, 6, "uart%d", id );
pcName[5] = '\0';
if(xTaskCreate(task_uart, pcName, 2048, (void*)id, ESP_TASK_MAIN_PRIO + 1, & us->taskHandle) != pdPASS) {
uart_driver_delete(id);
free(us->line_buffer);
us->line_buffer = NULL;
return -1;
}
return 0;
}
}
void platform_uart_stop( unsigned id )
{
if (id == CONSOLE_UART)
;
else {
uart_status_t *us = & uart_status[id];
uart_driver_delete(id);
if(us->line_buffer) free(us->line_buffer);
us->line_buffer = NULL;
if(us->taskHandle) vTaskDelete(us->taskHandle);
us->taskHandle = NULL;
}
}
int platform_uart_get_config(unsigned id, uint32_t *baudp, uint32_t *databitsp, uint32_t *parityp, uint32_t *stopbitsp) {
int err;
err = uart_get_baudrate(id, baudp);
if (err != ESP_OK) return -1;
*baudp &= 0xFFFFFFFE; // round down
uint32_t databits;
err = uart_get_word_length(id, &databits);
if (err != ESP_OK) return -1;
switch (databits) {
case UART_DATA_5_BITS:
*databitsp = 5;
break;
case UART_DATA_6_BITS:
*databitsp = 6;
break;
case UART_DATA_7_BITS:
*databitsp = 7;
break;
case UART_DATA_8_BITS:
*databitsp = 8;
break;
default:
return -1;
}
err = uart_get_parity(id, parityp);
if (err != ESP_OK) return -1;
err = uart_get_stop_bits(id, stopbitsp);
if (err != ESP_OK) return -1;
return 0;
}
// *****************************************************************************
// Sigma-Delta platform interface
static gpio_num_t platform_sigma_delta_channel2gpio[SIGMADELTA_CHANNEL_MAX];
int platform_sigma_delta_exists( unsigned channel ) {
return (channel < SIGMADELTA_CHANNEL_MAX);
}
uint8_t platform_sigma_delta_setup( uint8_t channel, uint8_t gpio_num )
{
#if 0
// signal generator can't be stopped this way
// stop signal generator
if (ESP_OK != sigmadelta_set_prescale( channel, 0 ))
return 0;
#endif
// note channel to gpio assignment
platform_sigma_delta_channel2gpio[channel] = gpio_num;
return ESP_OK == sigmadelta_set_pin( channel, gpio_num ) ? 1 : 0;
}
uint8_t platform_sigma_delta_close( uint8_t channel )
{
#if 0
// Note: signal generator can't be stopped this way
// stop signal generator
if (ESP_OK != sigmadelta_set_prescale( channel, 0 ))
return 0;
#endif
gpio_set_level( platform_sigma_delta_channel2gpio[channel], 1 );
gpio_config_t cfg;
// force pin back to GPIO
cfg.intr_type = GPIO_INTR_DISABLE;
cfg.mode = GPIO_MODE_OUTPUT; // essential to switch IO matrix to GPIO
cfg.pull_down_en = GPIO_PULLDOWN_DISABLE;
cfg.pull_up_en = GPIO_PULLUP_ENABLE;
cfg.pin_bit_mask = 1 << platform_sigma_delta_channel2gpio[channel];
if (ESP_OK != gpio_config( &cfg ))
return 0;
// and set it finally to input with pull-up enabled
cfg.mode = GPIO_MODE_INPUT;
return ESP_OK == gpio_config( &cfg ) ? 1 : 0;
}
#if 0
// PWM emulation not possible, code kept for future reference
uint8_t platform_sigma_delta_set_pwmduty( uint8_t channel, uint8_t duty )
{
uint8_t target = 0, prescale = 0;
target = duty > 128 ? 256 - duty : duty;
prescale = target == 0 ? 0 : target-1;
//freq = 80000 (khz) /256 /duty_target * (prescale+1)
if (ESP_OK != sigmadelta_set_prescale( channel, prescale ))
return 0;
if (ESP_OK != sigmadelta_set_duty( channel, duty-128 ))
return 0;
return 1;
}
#endif
uint8_t platform_sigma_delta_set_prescale( uint8_t channel, uint8_t prescale )
{
return ESP_OK == sigmadelta_set_prescale( channel, prescale ) ? 1 : 0;
}
uint8_t IRAM_ATTR platform_sigma_delta_set_duty( uint8_t channel, int8_t duty )
{
return ESP_OK == sigmadelta_set_duty( channel, duty ) ? 1 : 0;
}
// *****************************************************************************
// ADC
int platform_adc_exists( uint8_t adc ) { return adc < 2 && adc > 0; }
int platform_adc_channel_exists( uint8_t adc, uint8_t channel ) {
return (adc == 1 && channel < 8);
}
uint8_t platform_adc_set_width( uint8_t adc, int bits ) {
bits = bits - 9;
if (bits < ADC_WIDTH_9Bit || bits > ADC_WIDTH_12Bit)
return 0;
if (ESP_OK != adc1_config_width( bits ))
return 0;
return 1;
}
uint8_t platform_adc_setup( uint8_t adc, uint8_t channel, uint8_t atten ) {
if (adc == 1 && ESP_OK != adc1_config_channel_atten( channel, atten ))
return 0;
return 1;
}
int platform_adc_read( uint8_t adc, uint8_t channel ) {
int value = -1;
if (adc == 1) value = adc1_get_raw( channel );
return value;
}
int platform_adc_read_hall_sensor( ) {
int value = hall_sensor_read( );
return value;
}
// *****************************************************************************
// I2C platform interface
#if 0
// platform functions for the IDF I2C driver
// they're currently deactivated because of https://github.com/espressif/esp-idf/issues/241
// long-term goal is to use these instead of the SW driver in the #else branch
#include "driver/i2c.h"
int platform_i2c_setup( unsigned id, uint8_t sda, uint8_t scl, uint32_t speed ) {
i2c_config_t conf;
conf.mode = I2C_MODE_MASTER;
conf.sda_io_num = sda;
conf.sda_pullup_en = GPIO_PULLUP_ENABLE;
conf.scl_io_num = scl;
conf.scl_pullup_en = GPIO_PULLUP_ENABLE;
conf.master.clk_speed = speed;
if (ESP_OK != i2c_param_config( id, &conf ))
return 0;
if (ESP_OK != i2c_driver_install( id, conf.mode, 0, 0, 0 ))
return 0;
return 1;
}
int platform_i2c_send_start( unsigned id ) {
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start( cmd );
esp_err_t ret = i2c_master_cmd_begin( id, cmd, 1000 / portTICK_RATE_MS );
i2c_cmd_link_delete( cmd );
return ret == ESP_OK ? 1 : 0;
}
int platform_i2c_send_stop( unsigned id ) {
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_stop( cmd );
esp_err_t ret = i2c_master_cmd_begin( id, cmd, 1000 / portTICK_RATE_MS );
i2c_cmd_link_delete( cmd );
return ret == ESP_OK ? 1 : 0;
}
int platform_i2c_send_address( unsigned id, uint16_t address, int direction, int ack_check_en ) {
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
direction = ( direction == PLATFORM_I2C_DIRECTION_TRANSMITTER ) ? 0 : 1;
i2c_master_write_byte( cmd, (uint8_t) ((address << 1) | direction ), ack_check_en );
esp_err_t ret = i2c_master_cmd_begin( id, cmd, 1000 / portTICK_RATE_MS );
i2c_cmd_link_delete( cmd );
// we return ack (1=acked).
if (ret == ESP_FAIL)
return 0;
else if (ret == ESP_OK)
return 1;
else
return -1;
}
int platform_i2c_send_byte( unsigned id, uint8_t data, int ack_check_en ) {
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_write_byte( cmd, data, ack_check_en );
esp_err_t ret = i2c_master_cmd_begin( id, cmd, 1000 / portTICK_RATE_MS );
i2c_cmd_link_delete( cmd );
// we return ack (1=acked).
if (ret == ESP_FAIL)
return 0;
else if (ret == ESP_OK)
return 1;
else
return -1;
}
int platform_i2c_recv_byte( unsigned id, int ack_val ){
uint8_t data;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_read_byte( cmd, &data, ack_val > 0 ? 0 : 1 );
esp_err_t ret = i2c_master_cmd_begin( id, cmd, 1000 / portTICK_RATE_MS );
i2c_cmd_link_delete( cmd );
return ret == ESP_OK ? data : -1;
}
#else
// platform functions for SW-based I2C driver
// they work around the issue with the IDF driver
// remove when functions for the IDF driver can be used instead
#include "driver/i2c_sw_master.h"
int platform_i2c_setup( unsigned id, uint8_t sda, uint8_t scl, uint32_t speed ){
if (!platform_gpio_output_exists(sda) || !platform_gpio_output_exists(scl))
return 0;
if (speed != PLATFORM_I2C_SPEED_SLOW)
return 0;
i2c_sw_master_gpio_init(sda, scl);
return 1;
}
int platform_i2c_send_start( unsigned id ){
i2c_sw_master_start();
return 1;
}
int platform_i2c_send_stop( unsigned id ){
i2c_sw_master_stop();
return 1;
}
int platform_i2c_send_address( unsigned id, uint16_t address, int direction, int ack_check_en ){
// Convert enum codes to R/w bit value.
// If TX == 0 and RX == 1, this test will be removed by the compiler
if ( ! ( PLATFORM_I2C_DIRECTION_TRANSMITTER == 0 &&
PLATFORM_I2C_DIRECTION_RECEIVER == 1 ) ) {
direction = ( direction == PLATFORM_I2C_DIRECTION_TRANSMITTER ) ? 0 : 1;
}
i2c_sw_master_writeByte( (uint8_t) ((address << 1) | direction ));
// Low-level returns nack (0=acked); we return ack (1=acked).
return ! i2c_sw_master_getAck();
}
int platform_i2c_send_byte( unsigned id, uint8_t data, int ack_check_en ){
i2c_sw_master_writeByte(data);
// Low-level returns nack (0=acked); we return ack (1=acked).
return ! i2c_sw_master_getAck();
}
int platform_i2c_recv_byte( unsigned id, int ack ){
uint8_t r = i2c_sw_master_readByte();
i2c_sw_master_setAck( !ack );
return r;
}
#endif
int platform_i2c_exists( unsigned id ) { return id < I2C_NUM_MAX; }