nodemcu-firmware/components/luac_cross/lflashimg.c

448 lines
16 KiB
C

/***--
** lflashimg.c
** Dump a compiled Proto hiearchy to a RO (FLash) image file
** See Copyright Notice in lua.h
*/
#define LUAC_CROSS_FILE
#include "luac_cross.h"
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define lflashimg_c
#define LUA_CORE
#include "lobject.h"
#include "lstring.h"
#include "lflash.h"
#include "uzlib.h"
//#define LOCAL_DEBUG
#if INT_MAX != 2147483647
# error "luac.cross requires C toolchain with 4 byte word size"
#endif
#define WORDSIZE ((int) sizeof(int))
#define ALIGN(s) (((s)+(WORDSIZE-1)) & (-(signed) WORDSIZE))
#define WORDSHIFT 2
typedef unsigned int uint;
#define FLASH_WORDS(t) (sizeof(t)/sizeof(FlashAddr))
/*
*
* This dumper is a variant of the standard ldump, in that instead of producing a
* binary loader format that lundump can load, it produces an image file that can be
* directly mapped or copied into addressable memory. The typical application is on
* small memory IoT devices which support programmable flash storage such as the
* ESP8266. A 64 Kb LFS image has 16Kb words and will enable all program-related
* storage to be accessed directly from flash, leaving the RAM for true R/W
* application data.
*
* The start address of the Lua Flash Store (LFS) is build-dependent, and the cross
* compiler '-a' option allows the developer to fix the LFS at a defined flash memory
* address. Alternatively and by default the cross compilation adopts a position
* independent image format, which permits the on-device image loader to load the LFS
* image at an appropriate base within the flash address space. As all objects in the
* LFS can be treated as multiples of 4-byte words, also all address fields are both
* word aligned, and any address references within the LFS are also word-aligned.
*
* This version adds gzip compression of the generated LFS image for more efficient
* over-the-air (OTA) transfer, so the method of tagging address words has been
* replaced by a scheme which achieves better compression: an additional bitmap
* has been added to the image, with each bit corresponding to a word in the image
* and set if the corresponding work is an address. The addresses are stored as
* signed relative word offsets.
*
* The unloader is documented in lflash.c Note that his relocation process is
* skipped for absolute addressed images (which are identified by the
* FLASH_SIG_ABSOLUTE bit setting in the flash signature).
*
* The flash image has a standard header detailed in lflash.h
*
* Note that luac.cross may be compiled on any little-endian machine with 32 or 64 bit
* word length so Flash addresses can't be handled as standard C pointers as size_t
* and int may not have the same size. Hence addresses with the must be declared as
* the FlashAddr type rather than typed C pointers and must be accessed through macros.
*
* Also note that image built with a given LUA_PACK_TVALUES / LUA_NUNBER_INTEGRAL
* combination must be loaded into a corresponding firmware build. Hence these
* configuration options are also included in the FLash Signature.
*
* The Flash image is assembled up by first building the RO stringtable containing
* all strings used in the compiled proto hierarchy. This is followed by the Protos.
*
* The storage is allocated bottom up using a serial allocator and the algortihm for
* building the image essentially does a bottom-uo serial enumeration so that any
* referenced storage has already been allocated in the image, and therefore (with the
* exception of the Flash Header) all pointer references are backwards.
*
* As addresses are 4 byte on the target and either 4 or (typically) 8 bytes on the
* host so any structures containing address fields (TStrings, TValues, Protos, other
* address vectors) need repacking.
*/
typedef struct flashts { /* This is the fixed 32-bit equivalent of TString */
FlashAddr next;
lu_byte tt;
lu_byte marked;
int hash;
int len;
} FlashTS;
#ifndef LUA_MAX_FLASH_SIZE
#define LUA_MAX_FLASH_SIZE 0x10000 //in words
#endif
static uint curOffset = 0;
/*
* The flashAddrTag is a bit array, one bit per flashImage word denoting
* whether the corresponding word is a relative address. The defines
* are access methods for this bit array.
*/
static uint flashImage[LUA_MAX_FLASH_SIZE + LUA_MAX_FLASH_SIZE/32];
static uint *flashAddrTag = flashImage + LUA_MAX_FLASH_SIZE;
#define _TW(v) (v)>>5
#define _TB(v) (1<<((v)&0x1F))
#define setFlashAddrTag(v) flashAddrTag[_TW(v)] |= _TB(v)
#define getFlashAddrTag(v) ((flashAddrTag[_TW(v)]&_TB(v)) != 0)
#ifdef _MSC_VER
extern void __declspec( noreturn ) fatal( const char* message );
#else
extern void __attribute__((noreturn)) fatal(const char* message);
#endif
#ifdef LOCAL_DEBUG
#define DBG_PRINT(...) printf(__VA_ARGS__)
#else
#define DBG_PRINT(...) ((void)0)
#endif
/*
* Serial allocator. Throw a luac-style out of memory error is allocaiton fails.
*/
static void *flashAlloc(lua_State* L, size_t n) {
void *p = (void *)(flashImage + curOffset);
curOffset += ALIGN(n)>>WORDSHIFT;
if (curOffset > LUA_MAX_FLASH_SIZE) {
fatal("Out of Flash memory");
}
return p;
}
/*
* Convert an absolute address pointing inside the flash image to offset form.
* This macro form also takes the lvalue destination so that this can be tagged
* as a relocatable address.
*/
#define toFlashAddr(l, pd, s) _toFlashAddr(l, &(pd), s)
static void _toFlashAddr(lua_State* L, FlashAddr *a, void *p) {
uint doffset = cast(char *, a) - cast(char *,flashImage);
lua_assert(!(doffset & (WORDSIZE-1))); // check word aligned
doffset >>= WORDSHIFT; // and convert to a word offset
lua_assert(doffset <= curOffset);
if (p) {
uint poffset = cast(char *, p) - cast(char *,flashImage);
lua_assert(!(poffset & (WORDSIZE-1)));
poffset >>= WORDSHIFT;
lua_assert(poffset <= curOffset);
flashImage[doffset] = poffset; // Set the pointer to the offset
setFlashAddrTag(doffset); // And tag as an address
} /* else leave clear */ // Special case for NULL pointer
}
/*
* Convert an image address in offset form back to (host) absolute form
*/
static void *fromFashAddr(FlashAddr a) {
return a ? cast(void *, flashImage + a) : NULL;
}
/*
* Add a TS found in the Proto Load to the table at the ToS
*/
static void addTS(lua_State *L, TString *ts) {
lua_assert(ts->tsv.tt==LUA_TSTRING);
lua_pushnil(L);
setsvalue(L, L->top-1, ts);
lua_pushinteger(L, 1);
lua_rawset(L, -3);
DBG_PRINT("Adding string: %s\n",getstr(ts));
}
/*
* Enumerate all of the Protos in the Proto hiearchy and scan contents to collect
* all referenced strings in a Lua Array at ToS.
*/
static void scanProtoStrings(lua_State *L, const Proto* f) {
/* Table at L->Top[-1] is used to collect the strings */
int i;
if (f->source)
addTS(L, f->source);
#ifdef LUA_OPTIMIZE_DEBUG
if (f->packedlineinfo)
addTS(L, luaS_new(L, cast(const char *, f->packedlineinfo)));
#endif
for (i = 0; i < f->sizek; i++) {
if (ttisstring(f->k + i))
addTS(L, rawtsvalue(f->k + i));
}
for (i = 0; i < f->sizeupvalues; i++) addTS(L, f->upvalues[i]);
for (i = 0; i < f->sizelocvars; i++) addTS(L, f->locvars[i].varname);
for (i = 0; i < f->sizep; i++) scanProtoStrings(L, f->p[i]);
}
/*
* Use the collected strings table to build the new ROstrt in the Flash Image
*
* The input is an array of {"SomeString" = 1, ...} on the ToS.
* The output is an array of {"SomeString" = FlashOffset("SomeString"), ...} on ToS
*/
static void createROstrt(lua_State *L, FlashHeader *fh) {
/* Table at L->Top[-1] on input is hash used to collect the strings */
/* Count the number of strings. Can't use objlen as this is a hash */
fh->nROuse = 0;
lua_pushnil(L); /* first key */
while (lua_next(L, -2) != 0) {
fh->nROuse++;
DBG_PRINT("Found: %s\n",getstr(rawtsvalue(L->top-2)));
lua_pop(L, 1); // dump the value
}
fh->nROsize = 2<<luaO_log2(fh->nROuse);
FlashAddr *hashTab = flashAlloc(L, fh->nROsize * WORDSIZE);
toFlashAddr(L, fh->pROhash, hashTab);
/* Now iterate over the strings to be added to the RO string table and build it */
lua_newtable(L); // add output table
lua_pushnil(L); // First key
while (lua_next(L, -3) != 0) { // replaces key, pushes value
TString *ts = rawtsvalue(L->top - 2); // key.ts
const char *p = getstr(ts); // C string of key
uint hash = ts->tsv.hash; // hash of key
size_t len = ts->tsv.len; // and length
DBG_PRINT("2nd pass: %s\n",p);
FlashAddr *e = hashTab + lmod(hash, fh->nROsize);
FlashTS *last = cast(FlashTS *, fromFashAddr(*e));
FlashTS *fts = cast(FlashTS *, flashAlloc(L, sizeof(FlashTS)));
toFlashAddr(L, *e, fts); // add reference to TS to lookup vector
toFlashAddr(L, fts->next, last); // and chain to previous entry if any
fts->tt = LUA_TSTRING; // Set as String
fts->marked = bitmask(LFSBIT); // LFS string with no Whitebits set
fts->hash = hash; // add hash
fts->len = len; // and length
memcpy(flashAlloc(L, len+1), p, len+1); // copy string
// include the trailing null char
lua_pop(L, 1); // Junk the value
lua_pushvalue(L, -1); // Dup the key as rawset dumps its copy
lua_pushinteger(L, cast(FlashAddr*,fts)-flashImage); // Value is new TS offset.
lua_rawset(L, -4); // Add to new table
}
/* At this point the old hash is done to derefence for GC */
lua_remove(L, -2);
}
/*
* Convert a TString reference in the host G(L)->strt entry into the corresponding
* TString address in the flashImage using the lookup table at ToS
*/
static void *resolveTString(lua_State* L, TString *s) {
if (!s)
return NULL;
lua_pushnil(L);
setsvalue(L, L->top-1, s);
lua_rawget(L, -2);
lua_assert(!lua_isnil(L, -1));
void *ts = fromFashAddr(lua_tointeger(L, -1));
lua_pop(L, 1);
return ts;
}
/*
* In order to simplify repacking of structures from the host format to that target
* format, this simple copy routine is data-driven by a simple format specifier.
* n Number of consecutive records to be processed
* fmt A string of A, I, S, V specifiers spanning the record.
* src Source of record
* returns Address of destination record
*/
#if defined(LUA_PACK_TVALUES)
#define TARGET_TV_SIZE (sizeof(lua_Number)+sizeof(lu_int32))
#else
#define TARGET_TV_SIZE (2*sizeof(lua_Number))
#endif
static void *flashCopy(lua_State* L, int n, const char *fmt, void *src) {
/* ToS is the string address mapping table */
if (n == 0)
return NULL;
int i, recsize;
void *newts;
/* A bit of a botch because fmt is either "V" or a string of WORDSIZE specifiers */
/* The size 8 / 12 / 16 bytes for integer builds, packed TV and default TVs resp */
if (fmt[0]=='V') {
lua_assert(fmt[1] == 0); /* V formats must be singetons */
recsize = TARGET_TV_SIZE;
} else {
recsize = WORDSIZE * strlen(fmt);
}
uint *d = cast(uint *, flashAlloc(L, n * recsize));
uint *dest = d;
uint *s = cast(uint *, src);
for (i = 0; i < n; i++) {
const char *p = fmt;
while (*p) {
/* All input address types (A,S,V) are aligned to size_t boundaries */
if (*p != 'I' && ((size_t)s)&(sizeof(size_t)-1))
s++;
switch (*p++) {
case 'A':
toFlashAddr(L, *d, *cast(void**, s));
s += FLASH_WORDS(size_t);
d++;
break;
case 'I':
*d++ = *s++;
break;
case 'H':
*d++ = (*s++) & 0;
break;
case 'S':
newts = resolveTString(L, *cast(TString **, s));
toFlashAddr(L, *d, newts);
s += FLASH_WORDS(size_t);
d++;
break;
case 'V':
/* This code has to work for both Integer and Float build variants */
memset(d, 0, TARGET_TV_SIZE);
TValue *sv = cast(TValue *, s);
/* The value is 0, 4 or 8 bytes depending on type */
if (ttisstring(sv)) {
toFlashAddr(L, *d, resolveTString(L, rawtsvalue(sv)));
} else if (ttisnumber(sv)) {
*cast(lua_Number*,d) = *cast(lua_Number*,s);
} else if (!ttisnil(sv)){
/* all other types are 4 byte */
lua_assert(!iscollectable(sv));
*cast(uint *,d) = *cast(uint *,s);
}
*cast(int *,cast(lua_Number*,d)+1) = ttype(sv);
s += FLASH_WORDS(TValue);
d += TARGET_TV_SIZE/WORDSIZE;
break;
default:
lua_assert (0);
}
}
}
return dest;
}
/* The debug optimised version has a different Proto layout */
#ifdef LUA_OPTIMIZE_DEBUG
#define PROTO_COPY_MASK "AHAAAAAASIIIIIIIAI"
#else
#define PROTO_COPY_MASK "AHAAAAAASIIIIIIIIAI"
#endif
/*
* Do the actual prototype copy.
*/
static void *functionToFlash(lua_State* L, const Proto* orig) {
Proto f;
int i;
memcpy (&f, orig, sizeof(Proto));
f.gclist = NULL;
f.next = NULL;
l_setbit(f.marked, LFSBIT); /* OK to set the LFSBIT on a stack-cloned copy */
if (f.sizep) { /* clone included Protos */
Proto **p = luaM_newvector(L, f.sizep, Proto *);
for (i=0; i<f.sizep; i++)
p[i] = cast(Proto *, functionToFlash(L, f.p[i]));
f.p = cast(Proto **, flashCopy(L, f.sizep, "A", p));
luaM_freearray(L, p, f.sizep, Proto *);
}
f.k = cast(TValue *, flashCopy(L, f.sizek, "V", f.k));
f.code = cast(Instruction *, flashCopy(L, f.sizecode, "I", f.code));
#ifdef LUA_OPTIMIZE_DEBUG
if (f.packedlineinfo) {
TString *ts=luaS_new(L, cast(const char *,f.packedlineinfo));
f.packedlineinfo = cast(unsigned char *, resolveTString(L, ts)) + sizeof (FlashTS);
}
#else
f.lineinfo = cast(int *, flashCopy(L, f.sizelineinfo, "I", f.lineinfo));
#endif
f.locvars = cast(struct LocVar *, flashCopy(L, f.sizelocvars, "SII", f.locvars));
f.upvalues = cast(TString **, flashCopy(L, f.sizeupvalues, "S", f.upvalues));
return cast(void *, flashCopy(L, 1, PROTO_COPY_MASK, &f));
}
uint dumpToFlashImage (lua_State* L, const Proto *main, lua_Writer w,
void* data, int strip,
lu_int32 address, lu_int32 maxSize) {
// parameter strip is ignored for now
FlashHeader *fh = cast(FlashHeader *, flashAlloc(L, sizeof(FlashHeader)));
int i, status;
lua_newtable(L);
scanProtoStrings(L, main);
createROstrt(L, fh);
toFlashAddr(L, fh->mainProto, functionToFlash(L, main));
fh->flash_sig = FLASH_SIG + (address ? FLASH_SIG_ABSOLUTE : 0);
fh->flash_size = curOffset*WORDSIZE;
if (fh->flash_size>maxSize) {
fatal ("The image is too large for specfied LFS size");
}
if (address) { /* in absolute mode convert addresses to mapped address */
for (i = 0 ; i < curOffset; i++)
if (getFlashAddrTag(i))
flashImage[i] = 4*flashImage[i] + address;
lua_unlock(L);
status = w(L, flashImage, fh->flash_size, data);
} else { /* compressed PI mode */
/*
* In image mode, shift the relocation bitmap down directly above
* the used flashimage. This consolidated array is then gzipped.
*/
uint oLen;
uint8_t *oBuf;
int bmLen = sizeof(uint)*((curOffset+31)/32); /* 32 flags to a word */
memmove(flashImage+curOffset, flashAddrTag, bmLen);
status = uzlib_compress (&oBuf, &oLen,
(const uint8_t *)flashImage, bmLen+fh->flash_size);
if (status != UZLIB_OK) {
fatal("Out of memory during image compression");
}
lua_unlock(L);
#if 0
status = w(L, flashImage, bmLen+fh->flash_size, data);
#else
status = w(L, oBuf, oLen, data);
free(oBuf);
#endif
}
lua_lock(L);
return status;
}