661 lines
21 KiB
C
661 lines
21 KiB
C
#include "module.h"
|
||
#include "lauxlib.h"
|
||
#include "common.h"
|
||
#include "legc.h"
|
||
#include "lundump.h"
|
||
#include "platform.h"
|
||
#include "task/task.h"
|
||
#include "vfs.h"
|
||
#include "esp_system.h"
|
||
#include "esp_log.h"
|
||
#include "esp_sleep.h"
|
||
#include "driver/rtc_io.h"
|
||
#include "soc/efuse_reg.h"
|
||
#include "ldebug.h"
|
||
#include "esp_vfs.h"
|
||
#include "lnodeaux.h"
|
||
#include "lflash.h"
|
||
|
||
// Lua: node.chipid()
|
||
static int node_chipid( lua_State *L )
|
||
{
|
||
// This matches the way esptool.py generates a chipid for the ESP32 as of
|
||
// esptool commit e9e9179f6fc3f2ecfc568987d3224b5e53a05f06
|
||
// Oddly, this drops the lowest byte what's effectively the MAC address, so
|
||
// it would seem plausible to encounter up to 256 chips with the same chipid
|
||
uint64_t word16 = REG_READ(EFUSE_BLK0_RDATA1_REG);
|
||
uint64_t word17 = REG_READ(EFUSE_BLK0_RDATA2_REG);
|
||
const uint64_t MAX_UINT24 = 0xffffff;
|
||
uint64_t cid = ((word17 & MAX_UINT24) << 24) | ((word16 >> 8) & MAX_UINT24);
|
||
char chipid[17] = { 0 };
|
||
sprintf(chipid, "0x%llx", cid);
|
||
lua_pushstring(L, chipid);
|
||
return 1;
|
||
}
|
||
|
||
|
||
// Lua: node.heap()
|
||
static int node_heap( lua_State* L )
|
||
{
|
||
uint32_t sz = esp_get_free_heap_size();
|
||
lua_pushinteger(L, sz);
|
||
return 1;
|
||
}
|
||
|
||
static int node_restart (lua_State *L)
|
||
{
|
||
esp_restart ();
|
||
return 0;
|
||
}
|
||
|
||
static void node_sleep_set_uart (lua_State *L, int uart)
|
||
{
|
||
int err = esp_sleep_enable_uart_wakeup(uart);
|
||
if (err) {
|
||
luaL_error(L, "Error %d returned from esp_sleep_enable_uart_wakeup(%d)", err, uart);
|
||
}
|
||
}
|
||
|
||
static bool node_sleep_get_time_options (lua_State *L, int64_t *usecs)
|
||
{
|
||
lua_getfield(L, 1, "us");
|
||
lua_getfield(L, 1, "secs");
|
||
bool option_present = !lua_isnil(L, 2) || !lua_isnil(L, 3);
|
||
lua_pop(L, 2);
|
||
*usecs = 0;
|
||
if (option_present) {
|
||
*usecs += opt_checkint(L, "us", 0);
|
||
*usecs += (int64_t)opt_checkint(L, "secs", 0) * 1000000;
|
||
}
|
||
return option_present;
|
||
}
|
||
|
||
static void node_sleep_disable_wakeup_sources (lua_State *L)
|
||
{
|
||
// Start with known state, to ensure previous sleep calls don't leave any
|
||
// settings left over
|
||
int err = esp_sleep_disable_wakeup_source(ESP_SLEEP_WAKEUP_ALL);
|
||
if (err) {
|
||
luaL_error(L, "Error %d returned from esp_sleep_disable_wakeup_source", err);
|
||
}
|
||
}
|
||
|
||
static int node_sleep (lua_State *L)
|
||
{
|
||
lua_settop(L, 1);
|
||
luaL_checkanytable(L, 1);
|
||
node_sleep_disable_wakeup_sources(L);
|
||
|
||
// uart options: uart = num|{num, num, ...}
|
||
lua_getfield(L, -1, "uart");
|
||
int type = lua_type(L, -1);
|
||
if (type == LUA_TNUMBER) {
|
||
node_sleep_set_uart(L, lua_tointeger(L, -1));
|
||
} else if (type == LUA_TTABLE) {
|
||
for (int i = 1; ; i++) {
|
||
lua_rawgeti(L, -1, i);
|
||
if (lua_isnil(L, -1)) {
|
||
lua_pop(L, 1); // uart[i]
|
||
break;
|
||
}
|
||
int uart = lua_tointeger(L, -1);
|
||
lua_pop(L, 1); // uart[i]
|
||
node_sleep_set_uart(L, uart);
|
||
}
|
||
} else if (type != LUA_TNIL) {
|
||
return opt_error(L, "uart", "must be integer or table");
|
||
}
|
||
lua_pop(L, 1); // uart
|
||
|
||
// gpio option: boolean (individual pins are configured in advance with gpio.wakeup())
|
||
|
||
// Make sure to do GPIO before touch, because esp_sleep_enable_gpio_wakeup()
|
||
// seems to think touch is not compatible with GPIO wakeup and will error the
|
||
// call if you order them the other way round, despite the fact that
|
||
// esp_sleep_enable_touchpad_wakeup() does not have a similar check, and I've
|
||
// tested using both GPIO and touch wakeups at once and it works fine for me.
|
||
// I think this is simply a bug in the Espressif SDK, because sleep_modes.rst
|
||
// only mentions compatibility issues with touch and EXT0 wakeup, which is
|
||
// not the same as GPIO wakeup.
|
||
if (opt_checkbool(L, "gpio", false)) {
|
||
int err = esp_sleep_enable_gpio_wakeup();
|
||
if (err) {
|
||
return luaL_error(L, "Error %d returned from esp_sleep_enable_gpio_wakeup()", err);
|
||
}
|
||
}
|
||
|
||
// time options: us, secs
|
||
int64_t usecs = 0;
|
||
if (node_sleep_get_time_options(L, &usecs)) {
|
||
esp_sleep_enable_timer_wakeup(usecs);
|
||
}
|
||
|
||
// touch option: boolean
|
||
if (opt_checkbool(L, "touch", false)) {
|
||
int err = esp_sleep_enable_touchpad_wakeup();
|
||
if (err) {
|
||
return luaL_error(L, "Error %d returned from esp_sleep_enable_touchpad_wakeup()", err);
|
||
}
|
||
}
|
||
|
||
// ulp option: boolean
|
||
if (opt_checkbool(L, "ulp", false)) {
|
||
int err = esp_sleep_enable_ulp_wakeup();
|
||
if (err) {
|
||
return luaL_error(L, "Error %d returned from esp_sleep_enable_ulp_wakeup()", err);
|
||
}
|
||
}
|
||
|
||
int err = esp_light_sleep_start();
|
||
if (err == ESP_ERR_INVALID_STATE) {
|
||
return luaL_error(L, "WiFi and BT must be stopped before sleeping");
|
||
} else if (err) {
|
||
return luaL_error(L, "Error %d returned from esp_light_sleep_start()", err);
|
||
}
|
||
|
||
esp_sleep_wakeup_cause_t cause = esp_sleep_get_wakeup_cause();
|
||
lua_pushinteger(L, (int)cause);
|
||
return 1;
|
||
}
|
||
|
||
|
||
// Lua: node.dsleep (microseconds|{opts})
|
||
static int node_dsleep (lua_State *L)
|
||
{
|
||
lua_settop(L, 1);
|
||
node_sleep_disable_wakeup_sources(L);
|
||
bool enable_timer_wakeup = false;
|
||
int64_t usecs = 0;
|
||
int type = lua_type(L, 1);
|
||
if (type == LUA_TNUMBER) {
|
||
enable_timer_wakeup = true;
|
||
usecs = lua_tointeger(L, 1);
|
||
} else if (type == LUA_TTABLE) {
|
||
enable_timer_wakeup = node_sleep_get_time_options(L, &usecs);
|
||
|
||
// GPIO wakeup options: gpio = num|{num, num, ...}
|
||
uint64_t pin_mask = 0;
|
||
lua_getfield(L, -1, "gpio");
|
||
type = lua_type(L, -1);
|
||
if (type == LUA_TNUMBER) {
|
||
pin_mask |= 1ULL << lua_tointeger(L, -1);
|
||
} else if (type == LUA_TTABLE) {
|
||
for (int i = 1; ; i++) {
|
||
lua_rawgeti(L, -1, i);
|
||
int pin = lua_tointeger(L, -1);
|
||
lua_pop(L, 1);
|
||
if (!pin) {
|
||
break;
|
||
}
|
||
pin_mask |= 1ULL << pin;
|
||
}
|
||
}
|
||
lua_pop(L, 1); // gpio
|
||
|
||
// Check pin validity here to get better error messages
|
||
for (int pin = 0; pin < GPIO_PIN_COUNT; pin++) {
|
||
if (pin_mask & (1ULL << pin)) {
|
||
if (!rtc_gpio_is_valid_gpio(pin)) {
|
||
return luaL_error(L, "Pin %d is not an RTC GPIO and cannot be used for wakeup", pin);
|
||
}
|
||
}
|
||
}
|
||
|
||
int level = opt_checkint_range(L, "level", 1, 0, 1);
|
||
bool pull = opt_checkbool(L, "pull", false);
|
||
bool touch = opt_checkbool(L, "touch", false);
|
||
|
||
if (opt_get(L, "isolate", LUA_TTABLE)) {
|
||
for (int i = 1; ; i++) {
|
||
lua_rawgeti(L, -1, i);
|
||
if (lua_isnil(L, -1)) {
|
||
lua_pop(L, 1);
|
||
break;
|
||
}
|
||
int pin = lua_tointeger(L, -1);
|
||
lua_pop(L, 1);
|
||
int err = rtc_gpio_isolate(pin);
|
||
if (err) {
|
||
return luaL_error(L, "Error %d returned from rtc_gpio_isolate(%d)", err, pin);
|
||
}
|
||
}
|
||
lua_pop(L, 1); // isolate table
|
||
}
|
||
|
||
if (pull) {
|
||
// Keeping the peripheral domain powered keeps the pullups/downs working
|
||
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
|
||
}
|
||
|
||
if (pin_mask) {
|
||
esp_sleep_ext1_wakeup_mode_t mode = (level == 1) ?
|
||
ESP_EXT1_WAKEUP_ANY_HIGH : ESP_EXT1_WAKEUP_ALL_LOW;
|
||
int err = esp_sleep_enable_ext1_wakeup(pin_mask, mode);
|
||
if (err) {
|
||
return luaL_error(L, "Error %d returned from esp_sleep_enable_ext1_wakeup", err);
|
||
}
|
||
}
|
||
|
||
if (touch) {
|
||
esp_sleep_enable_touchpad_wakeup();
|
||
}
|
||
|
||
} else {
|
||
luaL_argerror(L, 1, "Expected integer or table");
|
||
}
|
||
|
||
if (enable_timer_wakeup) {
|
||
esp_sleep_enable_timer_wakeup(usecs);
|
||
}
|
||
esp_deep_sleep_start();
|
||
// Note, above call does not actually return
|
||
return 0;
|
||
}
|
||
|
||
|
||
extern lua_Load gLoad;
|
||
extern bool user_process_input(bool force);
|
||
// Lua: input("string")
|
||
static int node_input( lua_State* L )
|
||
{
|
||
size_t l = 0;
|
||
const char *s = luaL_checklstring(L, 1, &l);
|
||
if (s != NULL && l > 0 && l < LUA_MAXINPUT - 1)
|
||
{
|
||
lua_Load *load = &gLoad;
|
||
if (load->line_position == 0) {
|
||
memcpy(load->line, s, l);
|
||
load->line[l + 1] = '\0';
|
||
load->line_position = strlen(load->line) + 1;
|
||
load->done = 1;
|
||
user_process_input(true);
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
// The implementation of node.output implies replacing stdout with a virtual write-only file of
|
||
// which we can capture fwrite calls.
|
||
// When there is any write to the replaced stdout, our function redir_write will be called.
|
||
// we can then invoke the lua callback.
|
||
|
||
static FILE *oldstdout; // keep the old stdout, e.g., the uart0
|
||
lua_ref_t output_redir = LUA_NOREF; // this will hold the Lua callback
|
||
int serial_debug = 0; // whether or not to write also to uart
|
||
const char *VFS_REDIR = "/redir"; // virtual filesystem mount point
|
||
|
||
// redir_write will be called everytime any code writes to stdout when
|
||
// redirection is active
|
||
ssize_t redir_write(int fd, const void *data, size_t size) {
|
||
if (serial_debug) // if serial_debug is nonzero, write to uart
|
||
fwrite(data, sizeof(char), size, oldstdout);
|
||
|
||
if (output_redir != LUA_NOREF) { // prepare lua call
|
||
lua_State *L = lua_getstate();
|
||
lua_rawgeti(L, LUA_REGISTRYINDEX, output_redir); // push function reference
|
||
lua_pushlstring(L, (char *)data, size); // push data
|
||
lua_pcall(L, 1, 0, 0); // invoke callback
|
||
}
|
||
return size;
|
||
}
|
||
|
||
// redir_open is called when fopen() is called on /redir/xxx
|
||
int redir_open(const char *path, int flags, int mode) {
|
||
return 79; // since we only have one "file", just return some fd number to make the VFS system happy
|
||
}
|
||
|
||
// Lua: node.output(func, serial_debug)
|
||
static int node_output(lua_State *L) {
|
||
if (lua_type(L, 1) == LUA_TFUNCTION || lua_type(L, 1) == LUA_TLIGHTFUNCTION) {
|
||
if (output_redir == LUA_NOREF) {
|
||
// create an instance of a virtual filesystem so we can use fopen
|
||
esp_vfs_t redir_fs = {
|
||
.flags = ESP_VFS_FLAG_DEFAULT,
|
||
.write = &redir_write,
|
||
.open = &redir_open,
|
||
.fstat = NULL,
|
||
.close = NULL,
|
||
.read = NULL,
|
||
};
|
||
// register this filesystem under the `/redir` namespace
|
||
ESP_ERROR_CHECK(esp_vfs_register(VFS_REDIR, &redir_fs, NULL));
|
||
oldstdout = stdout; // save the previous stdout
|
||
stdout = fopen(VFS_REDIR, "w"); // open the new one for writing
|
||
} else {
|
||
luaX_unset_ref(L, &output_redir); // dereference previous callback
|
||
}
|
||
luaX_set_ref(L, 1, &output_redir); // set the callback
|
||
} else {
|
||
if (output_redir != LUA_NOREF) {
|
||
fclose(stdout); // close the redirected stdout
|
||
stdout = oldstdout; // restore original stdout
|
||
ESP_ERROR_CHECK(esp_vfs_unregister(VFS_REDIR)); // unregister redir filesystem
|
||
luaX_unset_ref(L, &output_redir); // forget callback
|
||
}
|
||
serial_debug = 1;
|
||
return 0;
|
||
}
|
||
|
||
// second parameter indicates whether output will also be sent to old stdout
|
||
if (lua_isnumber(L, 2)) {
|
||
serial_debug = lua_tointeger(L, 2);
|
||
if (serial_debug != 0)
|
||
serial_debug = 1;
|
||
} else {
|
||
serial_debug = 1; // default to 1
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
// The implementation of node.osoutput redirect all OS logging to Lua space
|
||
lua_ref_t os_output_redir = LUA_NOREF; // this will hold the Lua callback
|
||
static vprintf_like_t oldvprintf; // keep the old vprintf
|
||
|
||
// redir_vprintf will be called everytime the OS attempts to print a trace statement
|
||
int redir_vprintf(const char *fmt, va_list ap)
|
||
{
|
||
static char data[128];
|
||
int size = vsnprintf(data, 128, fmt, ap);
|
||
|
||
if (os_output_redir != LUA_NOREF) { // prepare lua call
|
||
lua_State *L = lua_getstate();
|
||
lua_rawgeti(L, LUA_REGISTRYINDEX, os_output_redir); // push function reference
|
||
lua_pushlstring(L, (char *)data, size); // push data
|
||
lua_pcall(L, 1, 0, 0); // invoke callback
|
||
}
|
||
return size;
|
||
}
|
||
|
||
|
||
// Lua: node.output(func, serial_debug)
|
||
static int node_osoutput(lua_State *L) {
|
||
if (lua_type(L, 1) == LUA_TFUNCTION || lua_type(L, 1) == LUA_TLIGHTFUNCTION) {
|
||
if (os_output_redir == LUA_NOREF) {
|
||
// register our log redirect first time this is invoked
|
||
oldvprintf = esp_log_set_vprintf(redir_vprintf);
|
||
} else {
|
||
luaX_unset_ref(L, &os_output_redir); // dereference previous callback
|
||
}
|
||
luaX_set_ref(L, 1, &os_output_redir); // set the callback
|
||
} else {
|
||
if (os_output_redir != LUA_NOREF) {
|
||
esp_log_set_vprintf(oldvprintf);
|
||
luaX_unset_ref(L, &os_output_redir); // forget callback
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* node.stripdebug([level[, function]]).
|
||
* level: 1 don't discard debug
|
||
* 2 discard Local and Upvalue debug info
|
||
* 3 discard Local, Upvalue and lineno debug info.
|
||
* function: Function to be stripped as per setfenv except 0 not permitted.
|
||
* If no arguments then the current default setting is returned.
|
||
* If function is omitted, this is the default setting for future compiles
|
||
* The function returns an estimated integer count of the bytes stripped.
|
||
*/
|
||
static int node_stripdebug (lua_State *L) {
|
||
int level;
|
||
|
||
if (L->top == L->base) {
|
||
lua_pushlightuserdata(L, &luaG_stripdebug );
|
||
lua_gettable(L, LUA_REGISTRYINDEX);
|
||
if (lua_isnil(L, -1)) {
|
||
lua_pop(L, 1);
|
||
lua_pushinteger(L, CONFIG_LUA_OPTIMIZE_DEBUG);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
level = luaL_checkint(L, 1);
|
||
if ((level <= 0) || (level > 3)) luaL_argerror(L, 1, "must in range 1-3");
|
||
|
||
if (L->top == L->base + 1) {
|
||
/* Store the default level in the registry if no function parameter */
|
||
lua_pushlightuserdata(L, &luaG_stripdebug);
|
||
lua_pushinteger(L, level);
|
||
lua_settable(L, LUA_REGISTRYINDEX);
|
||
lua_settop(L,0);
|
||
return 0;
|
||
}
|
||
|
||
if (level == 1) {
|
||
lua_settop(L,0);
|
||
lua_pushinteger(L, 0);
|
||
return 1;
|
||
}
|
||
|
||
if (!lua_isfunction(L, 2)) {
|
||
int scope = luaL_checkint(L, 2);
|
||
if (scope > 0) {
|
||
/* if the function parameter is a +ve integer then climb to find function */
|
||
lua_Debug ar;
|
||
lua_pop(L, 1); /* pop level as getinfo will replace it by the function */
|
||
if (lua_getstack(L, scope, &ar)) {
|
||
lua_getinfo(L, "f", &ar);
|
||
}
|
||
}
|
||
}
|
||
|
||
if(!lua_isfunction(L, 2) || lua_iscfunction(L, -1)) luaL_argerror(L, 2, "must be a Lua Function");
|
||
// lua_lock(L);
|
||
Proto *f = clvalue(L->base + 1)->l.p;
|
||
// lua_unlock(L);
|
||
lua_settop(L,0);
|
||
lua_pushinteger(L, luaG_stripdebug(L, f, level, 1));
|
||
return 1;
|
||
}
|
||
|
||
|
||
// Lua: node.egc.setmode( mode, [param])
|
||
// where the mode is one of the node.egc constants NOT_ACTIVE , ON_ALLOC_FAILURE,
|
||
// ON_MEM_LIMIT, ALWAYS. In the case of ON_MEM_LIMIT an integer parameter is reqired
|
||
// See legc.h and lecg.c.
|
||
static int node_egc_setmode(lua_State* L) {
|
||
unsigned mode = luaL_checkinteger(L, 1);
|
||
unsigned limit = luaL_optinteger (L, 2, 0);
|
||
|
||
luaL_argcheck(L, mode <= (EGC_ON_ALLOC_FAILURE | EGC_ON_MEM_LIMIT | EGC_ALWAYS), 1, "invalid mode");
|
||
luaL_argcheck(L, !(mode & EGC_ON_MEM_LIMIT) || limit>0, 1, "limit must be non-zero");
|
||
|
||
legc_set_mode( L, mode, limit );
|
||
return 0;
|
||
}
|
||
|
||
|
||
static int writer(lua_State* L, const void* p, size_t size, void* u)
|
||
{
|
||
UNUSED(L);
|
||
int file_fd = *( (int *)u );
|
||
if (!file_fd)
|
||
return 1;
|
||
NODE_DBG("get fd:%d,size:%d\n", file_fd, size);
|
||
|
||
if (size != 0 && (size != vfs_write(file_fd, (const char *)p, size)) )
|
||
return 1;
|
||
NODE_DBG("write fd:%d,size:%d\n", file_fd, size);
|
||
return 0;
|
||
}
|
||
|
||
|
||
#define toproto(L,i) (clvalue(L->top+(i))->l.p)
|
||
// Lua: compile(filename) -- compile lua file into lua bytecode, and save to .lc
|
||
static int node_compile( lua_State* L )
|
||
{
|
||
Proto* f;
|
||
int file_fd = 0;
|
||
size_t len;
|
||
const char *fname = luaL_checklstring( L, 1, &len );
|
||
const char *basename = vfs_basename( fname );
|
||
luaL_argcheck(L, strlen(basename) <= CONFIG_FS_OBJ_NAME_LEN && strlen(fname) == len, 1, "filename invalid");
|
||
|
||
char *output = luaM_malloc( L, len+1 );
|
||
strcpy(output, fname);
|
||
// check here that filename end with ".lua".
|
||
if (len < 4 || (strcmp( output + len - 4, ".lua") != 0) ) {
|
||
luaM_free( L, output );
|
||
return luaL_error(L, "not a .lua file");
|
||
}
|
||
|
||
output[strlen(output) - 2] = 'c';
|
||
output[strlen(output) - 1] = '\0';
|
||
NODE_DBG(output);
|
||
NODE_DBG("\n");
|
||
if (luaL_loadfsfile(L, fname) != 0) {
|
||
luaM_free( L, output );
|
||
return luaL_error(L, lua_tostring(L, -1));
|
||
}
|
||
|
||
f = toproto(L, -1);
|
||
|
||
int stripping = 1; /* strip debug information? */
|
||
|
||
file_fd = vfs_open(output, "w+");
|
||
if (!file_fd)
|
||
{
|
||
luaM_free( L, output );
|
||
return luaL_error(L, "cannot open/write to file");
|
||
}
|
||
|
||
lua_lock(L);
|
||
int result = luaU_dump(L, f, writer, &file_fd, stripping);
|
||
lua_unlock(L);
|
||
|
||
if (vfs_flush(file_fd) != VFS_RES_OK) {
|
||
// overwrite Lua error, like writer() does in case of a file io error
|
||
result = 1;
|
||
}
|
||
vfs_close(file_fd);
|
||
file_fd = 0;
|
||
luaM_free( L, output );
|
||
|
||
if (result == LUA_ERR_CC_INTOVERFLOW) {
|
||
return luaL_error(L, "value too big or small for target integer type");
|
||
}
|
||
if (result == LUA_ERR_CC_NOTINTEGER) {
|
||
return luaL_error(L, "target lua_Number is integral but fractional value found");
|
||
}
|
||
if (result == 1) { // result status generated by writer() or fs_flush() fail
|
||
return luaL_error(L, "writing to file failed");
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
// Task callback handler for node.task.post()
|
||
static task_handle_t do_node_task_handle;
|
||
static void do_node_task (task_param_t task_fn_ref, task_prio_t prio)
|
||
{
|
||
lua_State* L = lua_getstate();
|
||
lua_rawgeti(L, LUA_REGISTRYINDEX, (int)task_fn_ref);
|
||
luaL_unref(L, LUA_REGISTRYINDEX, (int)task_fn_ref);
|
||
lua_pushinteger(L, prio);
|
||
lua_call(L, 1, 0);
|
||
}
|
||
|
||
// Lua: node.task.post([priority],task_cb) -- schedule a task for execution next
|
||
static int node_task_post( lua_State* L )
|
||
{
|
||
int n = 1, Ltype = lua_type(L, 1);
|
||
unsigned priority = TASK_PRIORITY_MEDIUM;
|
||
if (Ltype == LUA_TNUMBER) {
|
||
priority = (unsigned) luaL_checkint(L, 1);
|
||
luaL_argcheck(L, priority <= TASK_PRIORITY_HIGH, 1, "invalid priority");
|
||
Ltype = lua_type(L, ++n);
|
||
}
|
||
luaL_argcheck(L, Ltype == LUA_TFUNCTION || Ltype == LUA_TLIGHTFUNCTION, n, "invalid function");
|
||
lua_pushvalue(L, n);
|
||
|
||
int task_fn_ref = luaL_ref(L, LUA_REGISTRYINDEX);
|
||
|
||
if (!do_node_task_handle) // bind the task handle to do_node_task on 1st call
|
||
do_node_task_handle = task_get_id(do_node_task);
|
||
|
||
if(!task_post(priority, do_node_task_handle, (task_param_t)task_fn_ref)) {
|
||
luaL_unref(L, LUA_REGISTRYINDEX, task_fn_ref);
|
||
luaL_error(L, "Task queue overflow. Task not posted");
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
static int node_osprint (lua_State *L)
|
||
{
|
||
if (lua_toboolean (L, 1))
|
||
esp_log_level_set ("*", CONFIG_LOG_DEFAULT_LEVEL);
|
||
else
|
||
esp_log_level_set ("*", ESP_LOG_NONE);
|
||
return 0;
|
||
}
|
||
|
||
|
||
static int node_uptime(lua_State *L)
|
||
{
|
||
uint64_t now = esp_timer_get_time();
|
||
#ifdef LUA_NUMBER_INTEGRAL
|
||
lua_pushinteger(L, (lua_Integer)(now & 0x7FFFFFFF));
|
||
lua_pushinteger(L, (lua_Integer)((now >> 31) & 0x7FFFFFFF));
|
||
#else
|
||
// The largest double that doesn't lose whole-number precision is 2^53, so the
|
||
// mask we apply is (2^53)-1 which is 0x1FFFFFFFFFFFFF. In practice this is
|
||
// long enough the timer should never wrap, but it interesting nonetheless.
|
||
lua_pushnumber(L, (lua_Number)(now & 0x1FFFFFFFFFFFFFull));
|
||
lua_pushinteger(L, (lua_Integer)(now >> 53));
|
||
#endif
|
||
return 2;
|
||
}
|
||
|
||
|
||
LROT_BEGIN(node_egc)
|
||
LROT_FUNCENTRY( setmode, node_egc_setmode )
|
||
LROT_NUMENTRY ( NOT_ACTIVE, EGC_NOT_ACTIVE )
|
||
LROT_NUMENTRY ( ON_ALLOC_FAILURE, EGC_ON_ALLOC_FAILURE )
|
||
LROT_NUMENTRY ( ON_MEM_LIMIT, EGC_ON_MEM_LIMIT )
|
||
LROT_NUMENTRY ( ALWAYS, EGC_ALWAYS )
|
||
LROT_END(node_egc, NULL, 0)
|
||
|
||
|
||
LROT_BEGIN(node_task)
|
||
LROT_FUNCENTRY( post, node_task_post )
|
||
LROT_NUMENTRY ( LOW_PRIORITY, TASK_PRIORITY_LOW )
|
||
LROT_NUMENTRY ( MEDIUM_PRIORITY, TASK_PRIORITY_MEDIUM )
|
||
LROT_NUMENTRY ( HIGH_PRIORITY, TASK_PRIORITY_HIGH )
|
||
LROT_END(node_task, NULL, 0)
|
||
|
||
|
||
// Wakup reasons
|
||
LROT_BEGIN(node_wakeup)
|
||
LROT_NUMENTRY ( GPIO, ESP_SLEEP_WAKEUP_GPIO )
|
||
LROT_NUMENTRY ( TIMER, ESP_SLEEP_WAKEUP_TIMER )
|
||
LROT_NUMENTRY ( TOUCHPAD, ESP_SLEEP_WAKEUP_TOUCHPAD )
|
||
LROT_NUMENTRY ( UART, ESP_SLEEP_WAKEUP_UART )
|
||
LROT_NUMENTRY ( ULP, ESP_SLEEP_WAKEUP_ULP )
|
||
LROT_END(node_wakeup, NULL, 0)
|
||
|
||
LROT_BEGIN(node)
|
||
LROT_FUNCENTRY( chipid, node_chipid )
|
||
LROT_FUNCENTRY( compile, node_compile )
|
||
LROT_FUNCENTRY( dsleep, node_dsleep )
|
||
LROT_TABENTRY ( egc, node_egc )
|
||
LROT_FUNCENTRY( flashreload,luaN_reload_reboot )
|
||
LROT_FUNCENTRY( flashindex, luaN_index )
|
||
LROT_FUNCENTRY( heap, node_heap )
|
||
LROT_FUNCENTRY( input, node_input )
|
||
LROT_FUNCENTRY( output, node_output )
|
||
LROT_FUNCENTRY( osoutput, node_osoutput )
|
||
LROT_FUNCENTRY( osprint, node_osprint )
|
||
LROT_FUNCENTRY( restart, node_restart )
|
||
LROT_FUNCENTRY( sleep, node_sleep )
|
||
LROT_FUNCENTRY( stripdebug, node_stripdebug )
|
||
LROT_TABENTRY ( task, node_task )
|
||
LROT_FUNCENTRY( uptime, node_uptime )
|
||
LROT_TABENTRY ( wakeup, node_wakeup )
|
||
LROT_END(node, NULL, 0)
|
||
|
||
|
||
NODEMCU_MODULE(NODE, "node", node, NULL);
|