449 lines
13 KiB
C
449 lines
13 KiB
C
/*
|
|
** $Id: ldump.c,v 2.37.1.1 2017/04/19 17:20:42 roberto Exp $
|
|
** save precompiled Lua chunks
|
|
** See Copyright Notice in lua.h
|
|
*/
|
|
|
|
#define ldump_c
|
|
#define LUA_CORE
|
|
|
|
#include "lprefix.h"
|
|
|
|
|
|
#include <stddef.h>
|
|
|
|
#include "lua.h"
|
|
#include "lapi.h"
|
|
#include "lauxlib.h"
|
|
#include "llex.h"
|
|
#include "lgc.h"
|
|
#include "lmem.h"
|
|
#include "lobject.h"
|
|
#include "lstate.h"
|
|
#include "lstring.h"
|
|
#include "ltable.h"
|
|
#include "lundump.h"
|
|
|
|
|
|
typedef struct {
|
|
lua_State *L;
|
|
lua_Writer writer;
|
|
void *data;
|
|
int strip;
|
|
int status;
|
|
#ifdef LUA_USE_HOST
|
|
int useStrRefs;
|
|
Table *stringIndex;
|
|
int sTScnt;
|
|
int lTScnt;
|
|
int nFixed;
|
|
#endif
|
|
} DumpState;
|
|
|
|
/*
|
|
** To ensure that dump files are loadable onto the ESP architectures:
|
|
** 1. Integers are in the range -2^31 .. 2^31-1 (sint32_t)
|
|
** 2. Floats are the IEEE 4 or 8 byte format, with a 4 byte default.
|
|
**
|
|
** The file formats are also different to standard because of two add
|
|
** additional goals:
|
|
** 3. The file must be serially loadable into a programmable flash
|
|
** memory through a file-write like API call.
|
|
** 4. Compactness of dump files is a key design goal.
|
|
*/
|
|
|
|
#define DumpVector(v,n,D) DumpBlock(v,(n)*sizeof((v)[0]),D)
|
|
|
|
#define DumpLiteral(s,D) DumpBlock(s, sizeof(s) - sizeof(char), D)
|
|
|
|
|
|
static void DumpBlock (const void *b, size_t size, DumpState *D) {
|
|
if (D->status == 0 && size > 0) {
|
|
lua_unlock(D->L);
|
|
D->status = (*D->writer)(D->L, b, size, D->data);
|
|
lua_lock(D->L);
|
|
}
|
|
}
|
|
|
|
|
|
#define DumpVar(x,D) DumpVector(&x,1,D)
|
|
|
|
|
|
static void DumpByte (lu_byte x, DumpState *D) {
|
|
DumpVar(x, D);
|
|
}
|
|
|
|
/*
|
|
** Dump (unsigned) int 0..MAXINT using multibyte encoding (MBE). DumpInt
|
|
** is used for context dependent counts and sizes; no type information
|
|
** is embedded.
|
|
*/
|
|
static void DumpInt (lua_Integer x, DumpState *D) {
|
|
lu_byte buf[sizeof(lua_Integer) + 2];
|
|
lu_byte *b = buf + sizeof(buf) - 1;
|
|
lua_assert(x>=0);
|
|
*b-- = x & 0x7f; x >>= 7;
|
|
while(x) { *b-- = 0x80 + (x & 0x7f); x >>= 7; }
|
|
b++;
|
|
lua_assert (b >= buf);
|
|
DumpVector(b, (buf - b) + sizeof(buf), D);
|
|
}
|
|
|
|
|
|
static void DumpNumber (lua_Number x, DumpState *D) {
|
|
DumpByte(LUAU_TNUMFLT, D);
|
|
DumpVar(x, D);
|
|
}
|
|
|
|
|
|
/*
|
|
** DumpIntTT is MBE and embeds a type encoding for string length and integers.
|
|
** It also handles negative integers by forcing the type to LUAU_TNUMNINT.
|
|
** 0TTTNNNN or 1TTTNNNN (1NNNNNNN)* 0NNNNNNN
|
|
*/
|
|
static void DumpIntTT (lu_byte tt, lua_Integer y, DumpState *D) {
|
|
int x = y < 0 ? -(y + 1) : y;
|
|
lu_byte buf[sizeof(lua_Integer) + 3];
|
|
lu_byte *b = buf + sizeof(buf) - 1;
|
|
*b-- = x & 0x7f; x >>= 7;
|
|
while(x) { *b-- = 0x80 + (x & 0x7f); x >>= 7; }
|
|
b++;
|
|
if (*b & cast(lu_byte, LUAU_TMASK) )/* Need an extra byte for the type bits? */
|
|
*--b = 0x80;
|
|
*b |= (y >= 0) ? tt: LUAU_TNUMNINT;
|
|
lua_assert (b >= buf);
|
|
DumpVector(b, (buf - b) + sizeof(buf), D);
|
|
}
|
|
#define DumpInteger(i, D) DumpIntTT(LUAU_TNUMPINT, i, D);
|
|
|
|
|
|
/*
|
|
** Strings are stored in LFS uniquely, any string references use this index.
|
|
** The table at D->stringIndex is used to lookup this unique index.
|
|
*/
|
|
static void DumpString (const TString *s, DumpState *D) {
|
|
if (s == NULL) {
|
|
DumpByte(LUAU_TSSTRING + 0, D);
|
|
} else {
|
|
lu_byte tt = (gettt(s) == LUA_TSHRSTR) ? LUAU_TSSTRING : LUAU_TLSTRING;
|
|
size_t l = tsslen(s);
|
|
const char *str = getstr(s);
|
|
#ifdef LUA_USE_HOST
|
|
if (D->useStrRefs) {
|
|
const TValue *o = luaH_getstr(D->stringIndex, cast(TString *,s));
|
|
DumpIntTT(tt, ivalue(o), D);
|
|
return;
|
|
}
|
|
#endif
|
|
DumpIntTT(tt, l + 1, D); /* include trailing '\0' */
|
|
DumpVector(str, l, D); /* no need to save '\0' */
|
|
}
|
|
}
|
|
|
|
|
|
static void DumpCode (const Proto *f, DumpState *D) {
|
|
DumpInt(f->sizecode, D);
|
|
DumpVector(f->code, f->sizecode, D);
|
|
}
|
|
|
|
|
|
static void DumpFunction(const Proto *f, TString *psource, DumpState *D);
|
|
|
|
static void DumpConstants (const Proto *f, DumpState *D) {
|
|
int i;
|
|
int n = f->sizek;
|
|
DumpInt(n, D);
|
|
for (i = 0; i < n; i++) {
|
|
const TValue *o = &f->k[i];
|
|
switch (ttype(o)) {
|
|
case LUA_TNIL:
|
|
DumpByte(LUAU_TNIL, D);
|
|
break;
|
|
case LUA_TBOOLEAN:
|
|
DumpByte(LUAU_TBOOLEAN + bvalue(o), D);
|
|
break;
|
|
case LUA_TNUMFLT :
|
|
DumpNumber(fltvalue(o), D);
|
|
break;
|
|
case LUA_TNUMINT:
|
|
DumpInteger(ivalue(o), D);
|
|
break;
|
|
case LUA_TSHRSTR:
|
|
case LUA_TLNGSTR:
|
|
DumpString(tsvalue(o), D);
|
|
break;
|
|
default:
|
|
lua_assert(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void DumpProtos (const Proto *f, DumpState *D) {
|
|
int i;
|
|
int n = f->sizep;
|
|
DumpInt(n, D);
|
|
for (i = 0; i < n; i++)
|
|
DumpFunction(f->p[i], f->source, D);
|
|
}
|
|
|
|
|
|
static void DumpUpvalues (const Proto *f, DumpState *D) {
|
|
int i, n = f->sizeupvalues, nostrip = (D->strip == 0);
|
|
DumpByte(nostrip, D);
|
|
DumpInt(n, D);
|
|
for (i = 0; i < n; i++) {
|
|
if (nostrip)
|
|
DumpString(f->upvalues[i].name, D);
|
|
DumpByte(f->upvalues[i].instack, D);
|
|
DumpByte(f->upvalues[i].idx, D);
|
|
}
|
|
}
|
|
|
|
|
|
static void DumpDebug (const Proto *f, DumpState *D) {
|
|
int i, keepli = (D->strip <= 1), keeplv = (D->strip == 0);
|
|
int n = keepli ? f->sizelineinfo : 0;
|
|
DumpInt(n, D);
|
|
DumpVector(f->lineinfo, n, D);
|
|
n = keeplv ? f->sizelocvars : 0;
|
|
DumpInt(n, D);
|
|
for (i = 0; i < n; i++) {
|
|
DumpString(f->locvars[i].varname, D);
|
|
DumpInt(f->locvars[i].startpc, D);
|
|
DumpInt(f->locvars[i].endpc, D);
|
|
}
|
|
}
|
|
|
|
|
|
static void DumpFunction (const Proto *f, TString *psource, DumpState *D) {
|
|
if (f->source == psource)
|
|
DumpString(NULL, D); /* same source as its parent */
|
|
else
|
|
DumpString(f->source, D);
|
|
DumpInt(f->linedefined, D);
|
|
DumpInt(f->lastlinedefined, D);
|
|
DumpByte(getnumparams(f), D);
|
|
DumpByte(getis_vararg(f), D);
|
|
DumpByte(getmaxstacksize(f), D);
|
|
DumpProtos(f, D);
|
|
DumpCode(f, D);
|
|
DumpConstants(f, D);
|
|
DumpUpvalues(f, D);
|
|
DumpDebug(f, D);
|
|
}
|
|
|
|
|
|
static void DumpHeader (DumpState *D, int format) {
|
|
DumpLiteral(LUA_SIGNATURE, D);
|
|
DumpByte(LUAC_VERSION, D);
|
|
DumpByte(format, D);
|
|
DumpLiteral(LUAC_DATA, D);
|
|
DumpByte(sizeof(int), D);
|
|
DumpByte(sizeof(Instruction), D);
|
|
DumpByte(sizeof(lua_Integer), D);
|
|
DumpByte(sizeof(lua_Number), D);
|
|
/* Note that we multi-byte encoded integers so need to check size_t or endian */
|
|
DumpNumber(LUAC_NUM, D);
|
|
}
|
|
|
|
|
|
/*
|
|
** Dump Lua function as precompiled chunk
|
|
*/
|
|
int luaU_dump (lua_State *L, const Proto *f, lua_Writer w, void *data,
|
|
int strip) {
|
|
DumpState D = {0};
|
|
D.L = L;
|
|
D.writer = w;
|
|
D.data = data;
|
|
D.strip = strip;
|
|
DumpHeader(&D, LUAC_FORMAT);
|
|
DumpByte(f->sizeupvalues, &D);
|
|
DumpFunction(f, NULL, &D);
|
|
return D.status;
|
|
}
|
|
|
|
static int stripdebug (lua_State *L, Proto *f, int level) {
|
|
int i, len = 0;
|
|
switch (level) {
|
|
case 2:
|
|
if (f->lineinfo) {
|
|
f->lineinfo = luaM_freearray(L, f->lineinfo, f->sizelineinfo);
|
|
len += f->sizelineinfo;
|
|
}
|
|
case 1:
|
|
for (i=0; i<f->sizeupvalues; i++)
|
|
f->upvalues[i].name = NULL;
|
|
f->locvars = luaM_freearray(L, f->locvars, f->sizelocvars);
|
|
len += f->sizelocvars * sizeof(LocVar);
|
|
f->sizelocvars = 0;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/* This is a recursive function so it's stack size has been kept to a minimum! */
|
|
int luaU_stripdebug (lua_State *L, Proto *f, int level, int recv){
|
|
int len = 0, i;
|
|
if (recv != 0 && f->sizep != 0) {
|
|
for(i=0;i<f->sizep;i++) len += luaU_stripdebug(L, f->p[i], level, recv);
|
|
}
|
|
len += stripdebug (L, f, level);
|
|
return len;
|
|
}
|
|
|
|
|
|
|
|
/*============================================================================**
|
|
**
|
|
** NodeMCU extensions for LFS support and dumping. Note that to keep lua_lock
|
|
** pairing for testing, this dump/unload functionality works within a locked
|
|
** window and therefore has to use the core luaH, ..., APIs rather than the
|
|
** public Lua and lauxlib APIs.
|
|
**
|
|
**============================================================================*/
|
|
#ifdef LUA_USE_HOST
|
|
|
|
/*
|
|
** Add a TS found in the Proto Load to the table at the ToS. Note that this is
|
|
** a unified table of {string = index} for both short and long TStrings.
|
|
*/
|
|
static void addTS (TString *ts, DumpState *D) {
|
|
lua_State *L = D->L;
|
|
if (!ts)
|
|
return;
|
|
if (ttisnil(luaH_getstr(D->stringIndex, ts))) {
|
|
TValue k, v, *slot;
|
|
gettt(ts)<=LUA_TSHRSTR ? D->sTScnt++ : D->lTScnt++;
|
|
setsvalue(L, &k, ts);
|
|
setivalue(&v, D->sTScnt + D->lTScnt);
|
|
slot = luaH_set(L, D->stringIndex, &k);
|
|
setobj2t(L, slot, &v);
|
|
luaC_barrierback(L, D->stringIndex, &v);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Add the fixed TS that are created by the luaX and LuaT initialisation
|
|
** and fixed so not collectable. This are always loaded into LFS to save
|
|
** RAM and can be implicitly referenced in any Proto.
|
|
*/
|
|
static void addFixedStrings (DumpState *D) {
|
|
int i;
|
|
const char *p;
|
|
for (i = 0; (p = luaX_getstr(i, 0))!=NULL; i++)
|
|
addTS(luaS_new(D->L, p), D);
|
|
addTS(G(D->L)->memerrmsg, D);
|
|
addTS(luaS_new(D->L, LUA_ENV), D);
|
|
for (i = 0; (p = luaT_getstr(i))!=NULL; i++)
|
|
addTS(luaS_new(D->L, p), D);
|
|
lua_assert(D->lTScnt == 0); /* all of these fixed strings should be short */
|
|
D->nFixed = D->sTScnt; /* book mark for later skipping */
|
|
}
|
|
|
|
|
|
/*
|
|
** Dump all LFS strings. If there are 71 fixed and 17 LFS strings, say, in
|
|
** the stringIndex, then these fixed and LFS strings are numbered 1..71 and
|
|
** 72..88 respectively; this numbering is swapped to 18..88 and 1..17. The
|
|
** fixed strings are fixed and can be omitted from the LFS image.
|
|
*/
|
|
static void DumpLFSstrings(DumpState *D) {
|
|
lua_State *L = D->L;
|
|
int n = D->sTScnt + D->lTScnt;
|
|
int i, maxlen = 0, nStrings = n - D->nFixed;
|
|
Table *revT = luaH_new(L);
|
|
|
|
sethvalue(L, L->top++, revT); /* Put on stack to prevent GC */
|
|
luaH_resize(L, revT, n, 0);
|
|
luaC_checkGC(L);
|
|
/* luaH_next scan of stringIndex table using two top of stack entries */
|
|
setnilvalue(L->top++);
|
|
api_incr_top(L);
|
|
while (luaH_next(L, D->stringIndex, L->top-2)) {
|
|
/*
|
|
* Update the value to swap fix and LFS order, then insert (v, k) into
|
|
* the reverse index table. Note that luaC_barrier checks not required
|
|
* for overwrites and non-collectable values.
|
|
*/
|
|
int len = tsslen(tsvalue(L->top-2));
|
|
lua_Integer *i = &L->top[-1].value_.i;
|
|
*i += *i > D->nFixed ? -D->nFixed : nStrings; /* recalc index and */
|
|
luaH_set(L, D->stringIndex, L->top-2)->value_.i = *i; /* update table value */
|
|
luaH_setint(L, revT, ivalue(L->top-1), L->top-2); /* Add str to reverse T */
|
|
if (len > maxlen) maxlen = len; /* roll up maximum string size */
|
|
}
|
|
L->top -= 2; /* discard key and value stack slots */
|
|
DumpInt(maxlen, D);
|
|
DumpInt(D->sTScnt, D);
|
|
DumpInt(D->lTScnt, D);
|
|
DumpInt(nStrings, D);
|
|
|
|
for (i = 1; i <= nStrings; i++) { /* dump out non-fixed strings in order */
|
|
const TValue *o = luaH_getint(revT, i);
|
|
DumpString(tsvalue(o), D);
|
|
}
|
|
L->top--; /* pop revT stack entry */
|
|
luaC_checkGC(L);
|
|
}
|
|
|
|
|
|
/*
|
|
** Recursive scan all of the Protos in the Proto hierarchy
|
|
** to collect all referenced strings in 2 Lua Arrays at ToS.
|
|
*/
|
|
#define OVER(n) for (i = 0; i < (n); i++)
|
|
static void scanProtoStrings(const Proto *f, DumpState *D) {
|
|
int i;
|
|
addTS(f->source, D);
|
|
OVER(f->sizek) if (ttisstring(f->k + i))
|
|
addTS(tsvalue(f->k + i), D);
|
|
OVER(f->sizeupvalues) addTS(f->upvalues[i].name, D);
|
|
OVER(f->sizelocvars) addTS(f->locvars[i].varname, D);
|
|
OVER(f->sizep) scanProtoStrings(f->p[i], D);
|
|
}
|
|
|
|
|
|
/*
|
|
** An LFS image comprises a prologue segment of all of the strings used in
|
|
** the image, followed by a set of Proto dumps. Each of these is essentially
|
|
** the same as standard lua_dump format, except that string constants don't
|
|
** contain the string inline, but are instead an index into the prologue.
|
|
** Separating out the strings in this way simplifies loading the image
|
|
** content into an LFS region.
|
|
**
|
|
** A dummy container Proto, main, is used to hold all of the Protos to go
|
|
** into the image. The Proto main itself is not callable; it is used as the
|
|
** image Proto index and only contains a Proto vector and a constant vector
|
|
** where each constant in the string names the corresponding Proto.
|
|
*/
|
|
int luaU_DumpAllProtos(lua_State *L, const Proto *m, lua_Writer w,
|
|
void *data, int strip) {
|
|
DumpState D = {0};
|
|
D.L = L;
|
|
D.writer = w;
|
|
D.data = data;
|
|
D.strip = strip;
|
|
|
|
lua_assert(L->stack_last - L->top > 5); /* This dump uses 5 stack slots */
|
|
DumpHeader(&D, LUAC_LFS_IMAGE_FORMAT);
|
|
DumpInteger(G(L)->seed, &D);
|
|
D.stringIndex = luaH_new(L);
|
|
sethvalue(L, L->top++, D.stringIndex); /* Put on stack to prevent GC */
|
|
/* Add fixed strings + strings used in the Protos, then swap fixed/added blocks */
|
|
addFixedStrings(&D);
|
|
scanProtoStrings(m, &D);
|
|
/* Dump out all non-fixed strings */
|
|
DumpLiteral(LUA_STRING_SIG, &D);
|
|
DumpLFSstrings(&D);
|
|
/* Switch to string reference mode and add the Protos themselves */
|
|
D.useStrRefs = 1;
|
|
DumpLiteral(LUA_PROTO_SIG, &D);
|
|
DumpProtos(m, &D);
|
|
DumpConstants(m, &D); /* Dump Function name vector */
|
|
L->top--;
|
|
return D.status;
|
|
}
|
|
#endif
|