nodemcu-firmware/components/modules/i2c_hw_master.c

374 lines
10 KiB
C

#include "module.h"
#include "lauxlib.h"
#include "lmem.h"
#include "driver/i2c.h"
#include "i2c_common.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_task.h"
#include "task/task.h"
#include <string.h>
// result data descriptor
// it's used as variable length data block, filled by the i2c driver during read
typedef struct {
size_t len;
uint8_t data[1];
} i2c_result_type;
// job descriptor
// contains all information for the transfer task and subsequent result task
// to process the transfer
typedef struct {
unsigned port;
i2c_cmd_handle_t cmd;
unsigned to_ms;
i2c_result_type *result;
esp_err_t err;
int cb_ref;
} i2c_job_desc_type;
// user data descriptor for a port
// provides buffer for the job setup and holds port-specific task & queue handles
typedef struct {
i2c_job_desc_type job;
TaskHandle_t xTransferTaskHandle;
QueueHandle_t xTransferJobQueue;
} i2c_hw_master_ud_type;
// the global variables for storing userdata for each I2C port
static i2c_hw_master_ud_type i2c_hw_master_ud[I2C_NUM_MAX];
// Transfer task handle and job queue
static task_handle_t i2c_transfer_task_id;
// Transfer Task, FreeRTOS layer
// This is a fully-fledged FreeRTOS task which runs concurrently and pulls
// jobs off the queue. Jobs are forwarded to i2c_master_cmd_begin() which blocks
// this task throughout the I2C transfer.
// Posts a task to the nodemcu task system to resume.
//
static void vTransferTask( void *pvParameters )
{
QueueHandle_t xQueue = (QueueHandle_t)pvParameters;
i2c_job_desc_type *job;
for (;;) {
job = (i2c_job_desc_type *)malloc( sizeof( i2c_job_desc_type ) );
if (!job) {
// shut down this task in case of memory shortage
vTaskSuspend( NULL );
}
// get a job descriptor
xQueueReceive( xQueue, job, portMAX_DELAY );
job->err = i2c_master_cmd_begin( job->port, job->cmd,
job->to_ms > 0 ? job->to_ms / portTICK_RATE_MS : portMAX_DELAY );
task_post_medium( i2c_transfer_task_id, (task_param_t)job );
}
}
// Free memory of a job descriptor
//
static void free_job_memory( lua_State *L, i2c_job_desc_type *job )
{
if (job->result)
luaM_free( L, job->result );
luaL_unref( L, LUA_REGISTRYINDEX, job->cb_ref);
if (job->cmd)
i2c_cmd_link_delete( job->cmd );
}
// Transfer Task, NodeMCU layer
// Is posted by the FreeRTOS Transfer Task and triggers the Lua callback with optional
// read result data.
//
static void i2c_transfer_task( task_param_t param, task_prio_t prio )
{
i2c_job_desc_type *job = (i2c_job_desc_type *)param;
lua_State *L = lua_getstate();
if (job->cb_ref != LUA_NOREF) {
lua_rawgeti( L, LUA_REGISTRYINDEX, job->cb_ref );
lua_pushinteger( L, job->err );
if (job->result) {
// all fine, deliver read data
lua_pushlstring( L, (char *)job->result->data, job->result->len );
} else {
lua_pushnil( L );
}
lua_call(L, 2, 0);
}
// free all memory
free_job_memory( L, job );
free( job );
}
// Set up FreeRTOS task and queue
// Prepares the gory tasking stuff.
//
static int setup_rtos_task_and_queue( i2c_hw_master_ud_type *ud )
{
// create queue
// depth 1 allows to skip "wait for empty queue" in synchronous mode
// consider this when increasing depth
ud->xTransferJobQueue = xQueueCreate( 1, sizeof( i2c_job_desc_type ) );
if (!ud->xTransferJobQueue)
return 0;
char pcName[configMAX_TASK_NAME_LEN+1];
snprintf( pcName, configMAX_TASK_NAME_LEN+1, "I2C_Task_%d", ud->job.port );
pcName[configMAX_TASK_NAME_LEN] = '\0';
// create task with higher priority
BaseType_t xReturned = xTaskCreate( vTransferTask,
pcName,
1024,
(void *)ud->xTransferJobQueue,
ESP_TASK_MAIN_PRIO + 1,
&(ud->xTransferTaskHandle) );
if (xReturned != pdPASS) {
vQueueDelete( ud->xTransferJobQueue );
ud->xTransferJobQueue = NULL;
return 0;
}
return 1;
}
#define get_udata(L, id) \
unsigned port = id - I2C_ID_HW0; \
luaL_argcheck( L, port < I2C_NUM_MAX, 1, "invalid hardware id" ); \
i2c_hw_master_ud_type *ud = &(i2c_hw_master_ud[port]); \
i2c_job_desc_type *job = &(ud->job);
static int i2c_lua_checkerr( lua_State *L, esp_err_t err ) {
const char *msg;
switch (err) {
case ESP_OK: return 0;
case ESP_FAIL: msg = "command failed or NACK from slave"; break;
case ESP_ERR_INVALID_ARG: msg = "parameter error"; break;
case ESP_ERR_INVALID_STATE: msg = "driver state error"; break;
case ESP_ERR_TIMEOUT: msg = "timeout"; break;
default: msg = "unknown error"; break;
}
return luaL_error( L, msg );
}
// Set up userdata for a transfer
//
static void i2c_setup_ud_transfer( lua_State *L, i2c_hw_master_ud_type *ud )
{
free_job_memory( L, &(ud->job) );
ud->job.result = NULL;
ud->job.cb_ref = LUA_NOREF;
// set up an empty command link
ud->job.cmd = i2c_cmd_link_create();
}
// Set up the HW as master interface
// Cares for I2C driver creation and initialization.
// Prepares an empty job descriptor and triggers setup of FreeRTOS stuff.
//
void li2c_hw_master_setup( lua_State *L, unsigned id, unsigned sda, unsigned scl, uint32_t speed )
{
get_udata(L, id);
i2c_config_t cfg;
memset( &cfg, 0, sizeof( cfg ) );
cfg.mode = I2C_MODE_MASTER;
luaL_argcheck( L, GPIO_IS_VALID_OUTPUT_GPIO(sda), 1, "invalid sda pin" );
cfg.sda_io_num = sda;
cfg.sda_pullup_en = GPIO_PULLUP_ENABLE;
luaL_argcheck( L, GPIO_IS_VALID_OUTPUT_GPIO(scl), 1, "invalid scl pin" );
cfg.scl_io_num = scl;
cfg.scl_pullup_en = GPIO_PULLUP_ENABLE;
luaL_argcheck( L, speed > 0 && speed <= 1000000, 1, "invalid speed" );
cfg.master.clk_speed = speed;
// init driver level
i2c_lua_checkerr( L, i2c_param_config( port, &cfg ) );
i2c_lua_checkerr( L, i2c_driver_install( port, cfg.mode, 0, 0, 0 ));
job->port = port;
job->cmd = NULL;
job->result = NULL;
job->cb_ref = LUA_NOREF;
i2c_setup_ud_transfer( L, ud );
// kick-start transfer task
if (!setup_rtos_task_and_queue( ud )) {
free_job_memory( L, &(ud->job) );
i2c_driver_delete( port );
luaL_error( L, "rtos task creation failed" );
}
}
void li2c_hw_master_start( lua_State *L, unsigned id )
{
get_udata(L, id);
if (!job->cmd)
luaL_error( L, "no commands scheduled" );
i2c_lua_checkerr( L, i2c_master_start( job->cmd ) );
}
void li2c_hw_master_stop( lua_State *L, unsigned id )
{
get_udata(L, id);
if (!job->cmd)
luaL_error( L, "no commands scheduled" );
i2c_lua_checkerr( L, i2c_master_stop( job->cmd ) );
}
int li2c_hw_master_address( lua_State *L, unsigned id, uint16_t address, uint8_t direction, bool ack_check_en )
{
get_udata(L, id);
if (!job->cmd)
luaL_error( L, "no commands scheduled" );
i2c_lua_checkerr( L, i2c_master_write_byte( job->cmd, address << 1 | direction, ack_check_en ) );
return 1;
}
void li2c_hw_master_write( lua_State *L, unsigned id, uint8_t data, bool ack_check_en )
{
get_udata(L, id);
if (!job->cmd)
luaL_error( L, "no commands scheduled" );
i2c_lua_checkerr( L, i2c_master_write_byte( job->cmd, data, ack_check_en ) );
}
void li2c_hw_master_read( lua_State *L, unsigned id, uint32_t len )
{
get_udata(L, id);
if (!job->cmd)
luaL_error( L, "no commands scheduled" );
if (job->result)
luaL_error( L, "only one read per transfer supported" );
// allocate read buffer as user data
i2c_result_type *res = (i2c_result_type *)luaM_malloc( L, sizeof( i2c_result_type ) + len-1 );
if (!res)
luaL_error( L, "out of memory" );
res->len = len;
job->result = res;
if (len > 1)
i2c_lua_checkerr( L, i2c_master_read( job->cmd, res->data, len-1, 0 ) );
i2c_lua_checkerr( L, i2c_master_read( job->cmd, res->data + len-1, 1, 1 ) );
}
// Initiate the I2C transfer
// Depending on the presence of a callback parameter, it will stay in synchronous mode
// or posts the job to the FreeRTOS queue for asynchronous processing.
//
int li2c_hw_master_transfer( lua_State *L )
{
int stack = 0;
unsigned id = luaL_checkinteger( L, ++stack );
get_udata(L, id);
if (!job->cmd)
luaL_error( L, "no commands scheduled" );
stack++;
if (lua_isfunction( L, stack ) || lua_islightfunction( L, stack )) {
lua_pushvalue( L, stack ); // copy argument (func) to the top of stack
luaL_unref( L, LUA_REGISTRYINDEX, job->cb_ref );
job->cb_ref = luaL_ref(L, LUA_REGISTRYINDEX);
} else
stack--;
int to_ms = luaL_optint( L, ++stack, 0 );
if (to_ms < 0)
to_ms = 0;
job->to_ms = to_ms;
if (job->cb_ref != LUA_NOREF) {
// asynchronous mode
xQueueSend( ud->xTransferJobQueue, job, portMAX_DELAY );
// the transfer task should be unblocked now
// (i.e. in eReady state since it can receive from the queue)
portYIELD();
// invalidate last job, it's queued now
job->cmd = NULL; // don't delete link! it's used by the transfer task
job->result = NULL; // don't free result memory! it's used by the transfer task
job->cb_ref = LUA_NOREF; // don't unref! it's used by the transfer task
// prepare the next transfer
i2c_setup_ud_transfer( L, ud );
return 0;
} else {
// synchronous mode
// no need to wait for queue to become empty when queue depth is 1
// note that i2c_master_cmd_begin() implements mutual exclusive access
// if it is currently in progress from the transfer task, it will block here until
esp_err_t err = i2c_master_cmd_begin( job->port, job->cmd,
job->to_ms > 0 ? job->to_ms / portTICK_RATE_MS : portMAX_DELAY );
if (err == ESP_OK) {
if (job->result) {
// all fine, deliver read data
lua_pushlstring( L, (char *)job->result->data, job->result->len );
} else {
lua_pushnil( L );
}
// prepare the next transfer
i2c_setup_ud_transfer( L, ud );
return 1;
}
i2c_setup_ud_transfer( L, ud );
return i2c_lua_checkerr( L, err );
}
}
void li2c_hw_master_init( lua_State *L )
{
// prepare task id
i2c_transfer_task_id = task_get_id( i2c_transfer_task );
}