nodemcu-firmware/components/lua/lua-5.3/lundump.c

638 lines
24 KiB
C

/*---
** $Id: lundump.c,v 2.44.1.1 2017/04/19 17:20:42 roberto Exp $
** load precompiled Lua chunks
** See Copyright Notice in lua.h
*/
#define lundump_c
#define LUA_CORE
#include "lprefix.h"
#include <string.h>
#include "lua.h"
#include "ldebug.h"
#include "ldo.h"
#include "lfunc.h"
#include "llex.h"
#include "lmem.h"
#include "lnodemcu.h"
#include "lobject.h"
#include "lstring.h"
#include "lundump.h"
#include "lzio.h"
/*
** Unlike the standard Lua version of lundump.c, this NodeMCU version must be
** able to store the dumped Protos into one of two targets:
**
** (A) RAM-based heap. This in the same way as standard Lua, where the
** Proto data structures can be created by direct in memory addressing,
** with any references complying with Lua GC assumptions, so that all
** storage can be collected in the case of a thrown error.
**
** (B) Flash programmable ROM memory. This can only be written to serially,
** using a write API, it can be subsequently but accessed and directly
** addressable through a memory-mapped address window after cache flush.
**
** Mode (B) also know as LFS (Lua FLash Store) enables running Lua apps
** on small-memory IoT devices which support programmable flash storage such
** as the ESP8266 SoC. In the case of this chip, the usable RAM heap is
** roughly 45Kb, so the ability to store an extra 128Kb, say, of program into
** LFS can materially increase the size of application that can be executed
** and leave most of the heap for true R/W application data.
**
** The changes to this source file enable the addition of LFS mode. In mode B,
** the resources aren't allocated in RAM but are written to Flash using the
** write API which returns the corresponding Flash read address is returned;
** also data can't be immediately read back using these addresses because of
** cache staleness.
**
** Handling the Proto record has been reordered to avoid interleaved resource
** writes in mode (B), with the f->k being cached in RAM and the Proto
** hierarchies walked bottom-up in a way that still maintains GC compliance
** conformance for mode (A). This no-interleave constraint also complicates
** the writing of TString resources into flash, so the flashing process
** circumvents this issue for LFS loads by header by taking two passes to dump
** the hierarchy. The first dumps all strings that needed to load the Protos,
** with the subsequent Proto loads use an index to any TString references.
** This enables all strings to be loaded into an LFS-based ROstrt before
** starting to load the Protos.
**
** Note that this module and ldump.c are compiled into both the ESP firmware
** and a host-based luac cross compiler. LFS dump is currently only supported
** in the compiler, but both the LFS and standard loads are supported in both
** the target (lua.c) and the host (luac.cross -e)environments. Both
** environments are built with the same integer and float formats (e.g. 32 bit,
** 32-bit IEEE).
**
** Dumps can either be loaded into RAM or LFS depending on the load format. An
** extra complication is that luac.cross supports two LFS modes, with the
** first loading into an host process address space and using host 32 or 64
** bit address references. The second uses shadow ESP 32 bit addresses to
** create an absolute binary image for direct provisioning of ESP images.
*/
#define MODE_RAM 0 /* Loading into RAM */
#define MODE_LFS 1 /* Loading into a locally executable LFS */
#define MODE_LFSA 2 /* (Host only) Loading into a shadow ESP image */
typedef struct {
lua_State *L; /* cache L to drop parameter list */
ZIO *Z; /* ZIO context */
const char *name; /* Filename of the LFS image being loaded */
LFSHeader *fh; /* LFS flash header block */
void *startLFS; /* Start address of LFS region */
TString **TS; /* List of TStrings being used in the image */
lu_int32 TSlen; /* Length of the same */
lu_int32 TSndx; /* Index into the same */
lu_int32 TSnFixed; /* Number of "fixed" TS */
char *buff; /* Working buffer for assembling a TString */
lu_int32 buffLen; /* Maximum length of TS used in the image */
TString **list; /* TS list used to index the ROstrt */
lu_int32 listLen; /* Length of the same */
Proto **pv; /* List of Protos in LFS */
lu_int32 pvLen; /* Length of the same */
GCObject *protogc; /* LFS proto linked list */
lu_byte useStrRefs; /* Flag if set then TStings are a index into TS */
lu_byte mode; /* Either LFS or RAM */
} LoadState;
static l_noret error(LoadState *S, const char *why) {
luaO_pushfstring(S->L, "%s: %s precompiled chunk", S->name, why);
luaD_throw(S->L, LUA_ERRSYNTAX);
}
#define wordptr(p) cast(lu_int32 *, p)
#define byteptr(p) cast(lu_byte *, p)
#define wordoffset(p,q) (wordptr(p) - wordptr(q))
#define FHaddr(S,t,f) cast(t, wordptr(S->startLFS) + (f))
#define FHoffset(S,o) wordoffset((o), S->startLFS)
#define NewVector(S, n, t) cast(t *,NewVector_(S, n, sizeof(t)))
#define StoreGetPos(S) luaN_writeFlash((S)->Z->data, NULL, 0)
static void *NewVector_(LoadState *S, int n, size_t s) {
void *v;
if (S->mode == MODE_RAM) {
v = luaM_reallocv(S->L, NULL, 0, n, s);
memset (v, 0, n*s);
} else {
v = StoreGetPos(S);
}
return v;
}
static void *Store_(LoadState *S, void *a, int ndx, const void *e, size_t s
#ifdef LUA_USE_HOST
, const char *format
#endif
) {
if (S->mode == MODE_RAM) {
lu_byte *p = byteptr(a) + ndx*s;
if (p != byteptr(e))
memcpy(p, e, s);
return p;
}
#ifdef LUA_USE_HOST
else if (S->mode == MODE_LFSA && format) { /* do a repack move */
void *p = StoreGetPos(S);
const char *f = format;
int o;
for (o = 0; *f; o++, f++ ) {
luaN_writeFlash(S->Z->data, wordptr(e)+o, sizeof(lu_int32));
if (*f == 'A' || *f == 'W') /* Addr or word followed by alignment fill */
o++;
}
lua_assert(o*sizeof(lu_int32) == s);
return p;
}
#endif
/* mode == LFS or 32bit build */
return luaN_writeFlash(S->Z->data, e, s);
}
#ifdef LUA_USE_HOST
#include <stdio.h>
/* These compression maps must match the definitions in lobject.h etc. */
# define OFFSET_TSTRING (2*(sizeof(lu_int32)-sizeof(size_t)))
# define FMT_TSTRING "AwwA"
# define FMT_TVALUE "WA"
# define FMT_PROTO "AwwwwwwwwwwAAAAAAAA"
# define FMT_UPVALUE "AW"
# define FMT_LOCVAR "Aww"
# define FMT_ROTENTRY "AWA"
# define FMT_ROTABLE "AWAA"
# define StoreR(S,a, i, v, f) Store_(S, (a), i, &(v), sizeof(v), f)
# define Store(S, a, i, v) StoreR(S, (a), i, v, NULL)
# define StoreN(S, v, n) Store_(S, NULL, 0, (v), (n)*sizeof(*(v)), NULL)
static void *StoreAV (LoadState *S, void *a, int n) {
void **av = cast(void**, a);
if (S->mode == MODE_LFSA) {
void *p = StoreGetPos(S);
int i; for (i = 0; i < n; i ++)
luaN_writeFlash(S->Z->data, wordptr(av++), sizeof(lu_int32));
return p;
} else {
return Store_(S, NULL, 0, av, n*sizeof(*av), NULL);
}
}
#else // LUA_USE_ESP
# define OFFSET_TSTRING (0)
# define Store(S, a, i, v) Store_(S, (a), i, &(v), sizeof(v))
# define StoreN(S, v, n) Store_(S, NULL, 0, (v), (n)*sizeof(*(v)))
# define StoreR(S, a, i, v, f) Store(S, a, i, v)
# define StoreAV(S, p, n) StoreN(S, p, n)
# define OPT_FMT
#endif
#define StoreFlush(S) luaN_flushFlash((S)->Z->data);
#define LoadVector(S,b,n) LoadBlock(S,b,(n)*sizeof((b)[0]))
static void LoadBlock (LoadState *S, void *b, size_t size) {
lu_int32 left = luaZ_read(S->Z, b, size);
if ( left != 0)
error(S, "truncated");
}
#define LoadVar(S,x) LoadVector(S,&x,1)
static lu_byte LoadByte (LoadState *S) {
lu_byte x;
LoadVar(S, x);
return x;
}
static lua_Integer LoadInt (LoadState *S) {
lu_byte b;
lua_Integer x = 0;
do { b = LoadByte(S); x = (x<<7) + (b & 0x7f); } while (b & 0x80);
return x;
}
static lua_Number LoadNumber (LoadState *S) {
lua_Number x;
LoadVar(S, x);
return x;
}
static lua_Integer LoadInteger (LoadState *S, lu_byte tt_data) {
lu_byte b;
lua_Integer x = tt_data & LUAU_DMASK;
if (tt_data & 0x80) {
do { b = LoadByte(S); x = (x<<7) + (b & 0x7f); } while (b & 0x80);
}
return (tt_data & LUAU_TMASK) == LUAU_TNUMNINT ? -x-1 : x;
}
static TString *LoadString_ (LoadState *S, int prelen) {
TString *ts;
char buff[LUAI_MAXSHORTLEN];
int n = LoadInteger(S, (prelen < 0 ? LoadByte(S) : prelen)) - 1;
if (n < 0)
return NULL;
if (S->useStrRefs)
ts = S->TS[n];
else if (n <= LUAI_MAXSHORTLEN) { /* short string? */
LoadVector(S, buff, n);
ts = luaS_newlstr(S->L, buff, n);
} else { /* long string */
ts = luaS_createlngstrobj(S->L, n);
LoadVector(S, getstr(ts), n); /* load directly in final place */
}
return ts;
}
#define LoadString(S) LoadString_(S,-1)
#define LoadString2(S,pl) LoadString_(S,(pl))
static void LoadCode (LoadState *S, Proto *f) {
Instruction *p;
f->sizecode = LoadInt(S);
f->code = luaM_newvector(S->L, f->sizecode, Instruction);
LoadVector(S, f->code, f->sizecode);
if (S->mode != MODE_RAM) {
p = StoreN(S, f->code, f->sizecode);
luaM_freearray(S->L, f->code, f->sizecode);
f->code = p;
}
}
static void *LoadFunction(LoadState *S, Proto *f, TString *psource);
static void LoadConstants (LoadState *S, Proto *f) {
int i;
f->sizek = LoadInt(S);
f->k = NewVector(S, f->sizek, TValue);
for (i = 0; i < f->sizek; i++) {
TValue o;
/*
* tt is formatted 0bFTTTDDDD where TTT is the type; the F and the DDDD
* fields are used by the integer decoder as this often saves a byte in
* the endcoding.
*/
lu_byte tt = LoadByte(S);
switch (tt & LUAU_TMASK) {
case LUAU_TNIL:
setnilvalue(&o);
break;
case LUAU_TBOOLEAN:
setbvalue(&o, !(tt == LUAU_TBOOLEAN));
break;
case LUAU_TNUMFLT:
setfltvalue(&o, LoadNumber(S));
break;
case LUAU_TNUMPINT:
case LUAU_TNUMNINT:
setivalue(&o, LoadInteger(S, tt));
break;
case LUAU_TSSTRING:
o.value_.gc = cast(GCObject *, LoadString2(S, tt));
o.tt_ = ctb(LUA_TSHRSTR);
break;
case LUAU_TLSTRING:
o.value_.gc = cast(GCObject *, LoadString2(S, tt));
o.tt_ = ctb(LUA_TLNGSTR);
break;
default:
lua_assert(0);
}
StoreR(S, f->k, i, o, FMT_TVALUE);
}
}
/*
** The handling of Protos has support both modes, and in the case of flash
** mode, this requires some care as any writes to a Proto f must be deferred
** until after all of the writes to its sub Protos have been completed; so
** the Proto record and its p vector must be retained in RAM until stored to
** flash.
**
** Recovery of dead resources on error handled by the Lua GC as standard in
** the case of RAM loading. In the case of loading an LFS image into flash,
** the error recovery could be done through the S->protogc list, but given
** that the immediate action is to restart the CPU, there is little point
** in adding the extra functionality to recover these dangling resources.
*/
static void LoadProtos (LoadState *S, Proto *f) {
int i, n = LoadInt(S);
Proto **p = luaM_newvector(S->L, n, Proto *);
f->p = p;
f->sizep = n;
memset (p, 0, n * sizeof(*p));
for (i = 0; i < n; i++)
p[i] = LoadFunction(S, luaF_newproto(S->L), f->source);
if (S->mode != MODE_RAM) {
f->p = StoreAV(S, cast(void **, p), n);
luaM_freearray(S->L, p, n);
}
}
static void LoadUpvalues (LoadState *S, Proto *f) {
int i, nostripnames = LoadByte(S);
f->sizeupvalues = LoadInt(S);
if (f->sizeupvalues) {
f->upvalues = NewVector(S, f->sizeupvalues, Upvaldesc);
for (i = 0; i < f->sizeupvalues ; i++) {
TString *name = nostripnames ? LoadString(S) : NULL;
Upvaldesc uv = {name, LoadByte(S), LoadByte(S)};
StoreR(S, f->upvalues, i, uv, FMT_UPVALUE);
}
}
}
static void LoadDebug (LoadState *S, Proto *f) {
int i;
f->sizelineinfo = LoadInt(S);
if (f->sizelineinfo) {
lu_byte *li = luaM_newvector(S->L, f->sizelineinfo, lu_byte);
LoadVector(S, li, f->sizelineinfo);
if (S->mode == MODE_RAM) {
f->lineinfo = li;
} else {
f->lineinfo = StoreN(S, li, f->sizelineinfo);
luaM_freearray(S->L, li, f->sizelineinfo);
}
}
f->sizelocvars = LoadInt(S);
f->locvars = NewVector(S, f->sizelocvars, LocVar);
for (i = 0; i < f->sizelocvars; i++) {
LocVar lv = {LoadString(S), LoadInt(S), LoadInt(S)};
StoreR(S, f->locvars, i, lv, FMT_LOCVAR);
}
}
static void *LoadFunction (LoadState *S, Proto *f, TString *psource) {
/*
* Main protos have f->source naming the file used to create the hierarchy;
* subordinate protos set f->source != NULL to inherit this name from the
* parent. In LFS mode, the Protos are moved from the GC to a local list
* in S, but no error GC is attempted as discussed in LoadProtos.
*/
Proto *p;
global_State *g = G(S->L);
if (S->mode != MODE_RAM) {
lua_assert(g->allgc == obj2gco(f));
g->allgc = f->next; /* remove object from 'allgc' list */
f->next = S->protogc; /* push f into the head of the protogc list */
S->protogc = obj2gco(f);
}
f->source = LoadString(S);
if (f->source == NULL) /* no source in dump? */
f->source = psource; /* reuse parent's source */
f->linedefined = LoadInt(S);
f->lastlinedefined = LoadInt(S);
f->numparams = LoadByte(S);
f->is_vararg = LoadByte(S);
f->maxstacksize = LoadByte(S);
LoadProtos(S, f);
LoadCode(S, f);
LoadConstants(S, f);
LoadUpvalues(S, f);
LoadDebug(S, f);
if (S->mode != MODE_RAM) {
GCObject *save = f->next;
if (f->source != NULL) {
setLFSbit(f);
/* cache the RAM next and set up the next for the LFS proto chain */
f->next = FHaddr(S, GCObject *, S->fh->protoHead);
p = StoreR(S, NULL, 0, *f, FMT_PROTO);
S->fh->protoHead = FHoffset(S, p);
} else {
p = StoreR(S, NULL, 0, *f, FMT_PROTO);
}
S->protogc = save; /* pop f from the head of the protogc list */
luaM_free(S->L, f); /* and collect the dead resource */
f = p;
}
return f;
}
static void checkliteral (LoadState *S, const char *s, const char *msg) {
char buff[sizeof(LUA_SIGNATURE) + sizeof(LUAC_DATA)]; /* larger than both */
size_t len = strlen(s);
LoadVector(S, buff, len);
if (memcmp(s, buff, len) != 0)
error(S, msg);
}
static void fchecksize (LoadState *S, size_t size, const char *tname) {
if (LoadByte(S) != size)
error(S, luaO_pushfstring(S->L, "%s size mismatch in", tname));
}
#define checksize(S,t) fchecksize(S,sizeof(t),#t)
static void checkHeader (LoadState *S, int format) {
checkliteral(S, LUA_SIGNATURE + 1, "not a"); /* 1st char already checked */
if (LoadByte(S) != LUAC_VERSION)
error(S, "version mismatch in");
if (LoadByte(S) != format)
error(S, "format mismatch in");
checkliteral(S, LUAC_DATA, "corrupted");
checksize(S, int);
/*
* The standard Lua VM does a check on the sizeof size_t and endian check on
* integer; both are dropped as the former prevents dump files being shared
* across 32 and 64 bit machines, and we use multi-byte coding of ints.
*/
checksize(S, Instruction);
checksize(S, lua_Integer);
checksize(S, lua_Number);
LoadByte(S); /* skip number tt field */
if (LoadNumber(S) != LUAC_NUM)
error(S, "float format mismatch in");
}
/*
** Load precompiled chunk to support standard LUA_API load functions. The
** extra LFS functionality is effectively NO-OPed out on this MODE_RAM path.
*/
LClosure *luaU_undump(lua_State *L, ZIO *Z, const char *name) {
LoadState S = {0};
LClosure *cl;
if (*name == '@' || *name == '=')
S.name = name + 1;
else if (*name == LUA_SIGNATURE[0])
S.name = "binary string";
else
S.name = name;
S.L = L;
S.Z = Z;
S.mode = MODE_RAM;
S.fh = NULL;
S.useStrRefs = 0;
checkHeader(&S, LUAC_FORMAT);
cl = luaF_newLclosure(L, LoadByte(&S));
setclLvalue(L, L->top, cl);
luaD_inctop(L);
cl->p = luaF_newproto(L);
LoadFunction(&S, cl->p, NULL);
lua_assert(cl->nupvalues == cl->p->sizeupvalues);
return cl;
}
/*============================================================================**
** NodeMCU extensions for LFS support and Loading. Note that this funtionality
** is called from a hook in the lua startup within a lua_lock() (as with
** LuaU_undump), so luaU_undumpLFS() cannot use the external Lua API. It does
** uses the Lua stack, but staying within LUA_MINSTACK limits.
**
** The in-RAM Protos used to assemble proto content prior to writing to LFS
** need special treatment since these hold LFS references rather than RAM ones
** and will cause the Lua GC to error if swept. Rather than adding complexity
** to lgc.c for this one-off process, these Protos are removed from the allgc
** list and fixed in a local one, and collected inline.
**============================================================================*/
/*
** Write a TString to the LFS. This parallels the lstring.c algo but writes
** directly to the LFS buffer and also append the LFS address in S->TS. Seeding
** is based on the seed defined in the LFS image, rather than g->seed.
*/
static void addTS(LoadState *S, int l, int extra) {
LFSHeader *fh = S->fh;
TString *ts = cast(TString *, S->buff);
char *s = getstr(ts);
lua_assert (sizelstring(l) <= S->buffLen);
s[l] = '\0';
/* The collectable and LFS bits must be set; all others inc the whitebits clear */
ts->marked = bitmask(LFSBIT) | BIT_ISCOLLECTABLE;
ts->extra = extra;
if (l <= LUAI_MAXSHORTLEN) { /* short string */
TString **p;
ts->tt = LUA_TSHRSTR;
ts->shrlen = cast_byte(l);
ts->hash = luaS_hash(s, l, fh->seed);
p = S->list + lmod(ts->hash, S->listLen);
ts->u.hnext = *p;
ts->next = FHaddr(S, GCObject *, fh->shortTShead);
S->TS[S->TSndx] = *p = StoreR(S, NULL, 0, *ts, FMT_TSTRING);
fh->shortTShead = FHoffset(S, *p);
} else { /* long string */
TString *p;
ts->tt = LUA_TLNGSTR;
ts->shrlen = 0;
ts->u.lnglen = l;
ts->hash = fh->seed;
luaS_hashlongstr(ts); /* sets hash and extra fields */
ts->next = FHaddr(S, GCObject *, fh->longTShead);
S->TS[S->TSndx] = p = StoreR(S, NULL, 0, *ts, FMT_TSTRING);
fh->longTShead = FHoffset(S, p);
}
// printf("%04u(%u): %s\n", S->TSndx, l, S->buff + sizeof(union UTString));
StoreN(S,S->buff + sizeof(union UTString), l+1);
S->TSndx++;
}
/*
** The runtime (in ltm.c and llex.c) declares ~100 fixed strings and so these
** are moved into LFS to free up an extra ~2Kb RAM. Extra get token access
** functions have been added to these modules. These tokens aren't unique as
** ("nil" and "function" are both tokens and typenames), hardwiring this
** duplication debounce as a wrapper around addTS() is the simplest way of
** voiding the need for extra lookup resources.
*/
static void addTSnodup(LoadState *S, const char *s, int extra) {
int i, l = strlen(s);
static struct {const char *k; int found; } t[] = {{"nil", 0},{"function", 0}};
for (i = 0; i < sizeof(t)/sizeof(*t); i++) {
if (!strcmp(t[i].k, s)) {
if (t[i].found) return; /* ignore the duplicate copy */
t[i].found = 1; /* flag that this constant is already loaded */
break;
}
}
memcpy(getstr(cast(TString *, S->buff)), s, l);
addTS(S, l, extra);
}
/*
** Load TStrings in dump format. ALl TStrings used in an LFS image excepting
** any fixed strings are dumped as a unique collated set. Any strings in the
** following Proto streams use an index reference into this list rather than an
** inline copy. This function loads and stores them into LFS, constructing the
** ROstrt for the shorter interned strings.
*/
static void LoadAllStrings (LoadState *S) {
lua_State *L = S->L;
global_State *g = G(L);
int nb = sizelstring(LoadInt(S));
int ns = LoadInt(S);
int nl = LoadInt(S);
int nstrings = LoadInt(S);
int n = ns + nl;
int nlist = 1<<luaO_ceillog2(ns);
int i, extra;
const char *p;
/* allocate dynamic resources and save in S for error path collection */
S->TS = luaM_newvector(L, n+1, TString *);
S->TSlen = n+1;
S->buff = luaM_newvector(L, nb, char);
S->buffLen = nb;
S->list = luaM_newvector(L, nlist, TString *);
S->listLen = nlist;
memset (S->list, 0, nlist*sizeof(TString *));
/* add the strings in the image file to LFS */
for (i = 1; i <= nstrings; i++) {
int tt = LoadByte(S);
lua_assert((tt&LUAU_TMASK)==LUAU_TSSTRING || (tt&LUAU_TMASK)==LUAU_TLSTRING);
int l = LoadInteger(S, tt) - 1; /* No NULL entry in list of TSs */
LoadVector(S, getstr(cast(TString *, S->buff)), l);
addTS(S, l, 0);
}
/* add the fixed strings to LFS */
for (i = 0; (p = luaX_getstr(i, &extra))!=NULL; i++) {
addTSnodup(S, p, extra);
}
addTSnodup(S, getstr(g->memerrmsg), 0);
addTSnodup(S, LUA_ENV, 0);
for (i = 0; (p = luaT_getstr(i))!=NULL; i++) {
addTSnodup(S, p, 0);
}
/* check that the actual size is the same as the predicted */
lua_assert(n == S->TSndx-1);
S->fh->oROhash = FHoffset(S, StoreAV(S, S->list, nlist));
S->fh->nROuse = ns;
S->fh->nROsize = nlist;
StoreFlush(S);
S->buff = luaM_freearray(L, S->buff, nb);
S->buffLen = 0;
S->list = luaM_freearray(L, S->list, nlist);
S->listLen = 0;
}
static void LoadAllProtos (LoadState *S) {
lua_State *L = S->L;
ROTable_entry eol = {NULL, LRO_NILVAL};
int i, n = LoadInt(S);
S->pv = luaM_newvector(L, n, Proto *);
S->pvLen = n;
/* Load Protos and store addresses in the Proto vector */
for (i = 0; i < n; i++) {
S->pv[i] = LoadFunction(S, luaF_newproto(L), NULL);
}
/* generate the ROTable entries from first N constants; the last is a timestamp */
lua_assert(n+1 == LoadInt(S));
ROTable_entry *entry_list = cast(ROTable_entry *, StoreGetPos(S));
for (i = 0; i < n; i++) {
lu_byte tt_data = LoadByte(S);
TString *Tname = LoadString2(S, tt_data);
const char *name = getstr(Tname) + OFFSET_TSTRING;
lua_assert((tt_data & LUAU_TMASK) == LUAU_TSSTRING);
ROTable_entry me = {name, LRO_LUDATA(S->pv[i])};
StoreR(S, NULL, 0, me, FMT_ROTENTRY);
}
StoreR(S, NULL, 0, eol, FMT_ROTENTRY);
/* terminate the ROTable entry list and store the ROTable header */
ROTable ev = { (GCObject *)1, LUA_TTBLROF, LROT_MARKED,
(lu_byte) ~0, n, NULL, entry_list};
S->fh->protoROTable = FHoffset(S, StoreR(S, NULL, 0, ev, FMT_ROTABLE));
/* last const is timestamp */
S->fh->timestamp = LoadInteger(S, LoadByte(S));
}
static void undumpLFS(lua_State *L, void *ud) {
LoadState *S = cast(LoadState *, ud);
void *F = S->Z->data;
S->startLFS = StoreGetPos(S);
luaN_setFlash(F, sizeof(LFSHeader));
S->fh->flash_sig = FLASH_SIG;
if (LoadByte(S) != LUA_SIGNATURE[0])
error(S, "invalid header in");
checkHeader(S, LUAC_LFS_IMAGE_FORMAT);
S->fh->seed = LoadInteger(S, LoadByte(S));
checkliteral(S, LUA_STRING_SIG,"no string vector");
LoadAllStrings (S);
checkliteral(S, LUA_PROTO_SIG,"no Proto vector");
LoadAllProtos(S);
S->fh->flash_size = byteptr(StoreGetPos(S)) - byteptr(S->startLFS);
luaN_setFlash(F, 0);
StoreN(S, S->fh, 1);
luaN_setFlash(F, 0);
S->TS = luaM_freearray(L, S->TS, S->TSlen);
}
/*
** Load precompiled LFS image. This is called from a hook in the firmware
** startup if LFS reload is required.
*/
LUAI_FUNC int luaU_undumpLFS(lua_State *L, ZIO *Z, int isabs) {
LFSHeader fh = {0};
LoadState S = {0};
int status;
S.L = L;
S.Z = Z;
S.mode = isabs && sizeof(size_t) != sizeof(lu_int32) ? MODE_LFSA : MODE_LFS;
S.useStrRefs = 1;
S.fh = &fh;
L->nny++; /* do not yield during undump LFS */
status = luaD_pcall(L, undumpLFS, &S, savestack(L, L->top), L->errfunc);
luaM_freearray(L, S.TS, S.TSlen);
luaM_freearray(L, S.buff, S.buffLen);
luaM_freearray(L, S.list, S.listLen);
luaM_freearray(L, S.pv, S.pvLen);
L->nny--;
return status;
}