pigpio/pigpio.c

8473 lines
199 KiB
C

/*
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>
*/
/* pigpio version 22 */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
#include <ctype.h>
#include <syslog.h>
#include <poll.h>
#include <unistd.h>
#include <termios.h>
#include <signal.h>
#include <errno.h>
#include <string.h>
#include <time.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <limits.h>
#include <pthread.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/file.h>
#include <sys/socket.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <sys/select.h>
#include "pigpio.h"
#include "command.h"
/* --------------------------------------------------------------- */
/*
0 GPFSEL0 GPIO Function Select 0
1 GPFSEL1 GPIO Function Select 1
2 GPFSEL2 GPIO Function Select 2
3 GPFSEL3 GPIO Function Select 3
4 GPFSEL4 GPIO Function Select 4
5 GPFSEL5 GPIO Function Select 5
6 - Reserved
7 GPSET0 GPIO Pin Output Set 0
8 GPSET1 GPIO Pin Output Set 1
9 - Reserved
10 GPCLR0 GPIO Pin Output Clear 0
11 GPCLR1 GPIO Pin Output Clear 1
12 - Reserved
13 GPLEV0 GPIO Pin Level 0
14 GPLEV1 GPIO Pin Level 1
15 - Reserved
16 GPEDS0 GPIO Pin Event Detect Status 0
17 GPEDS1 GPIO Pin Event Detect Status 1
18 - Reserved
19 GPREN0 GPIO Pin Rising Edge Detect Enable 0
20 GPREN1 GPIO Pin Rising Edge Detect Enable 1
21 - Reserved
22 GPFEN0 GPIO Pin Falling Edge Detect Enable 0
23 GPFEN1 GPIO Pin Falling Edge Detect Enable 1
24 - Reserved
25 GPHEN0 GPIO Pin High Detect Enable 0
26 GPHEN1 GPIO Pin High Detect Enable 1
27 - Reserved
28 GPLEN0 GPIO Pin Low Detect Enable 0
29 GPLEN1 GPIO Pin Low Detect Enable 1
30 - Reserved
31 GPAREN0 GPIO Pin Async. Rising Edge Detect 0
32 GPAREN1 GPIO Pin Async. Rising Edge Detect 1
33 - Reserved
34 GPAFEN0 GPIO Pin Async. Falling Edge Detect 0
35 GPAFEN1 GPIO Pin Async. Falling Edge Detect 1
36 - Reserved
37 GPPUD GPIO Pin Pull-up/down Enable
38 GPPUDCLK0 GPIO Pin Pull-up/down Enable Clock 0
39 GPPUDCLK1 GPIO Pin Pull-up/down Enable Clock 1
40 - Reserved
41 - Test
*/
/*
0 CS DMA Channel 0 Control and Status
1 CPI_ONBLK_AD DMA Channel 0 Control Block Address
2 TI DMA Channel 0 CB Word 0 (Transfer Information)
3 SOURCE_AD DMA Channel 0 CB Word 1 (Source Address)
4 DEST_AD DMA Channel 0 CB Word 2 (Destination Address)
5 TXFR_LEN DMA Channel 0 CB Word 3 (Transfer Length)
6 STRIDE DMA Channel 0 CB Word 4 (2D Stride)
7 NEXTCPI_ONBK DMA Channel 0 CB Word 5 (Next CB Address)
8 DEBUG DMA Channel 0 Debug
*/
/*
DEBUG register bits
bit 2 READ_ERROR
Slave Read Response Error RW 0x0
Set if the read operation returned an error value on
the read response bus. It can be cleared by writing
a 1.
bit 1 FIFO_ERROR
Fifo Error RW 0x0
Set if the optional read Fifo records an error
condition. It can be cleared by writing a 1.
bit 0 READ_LAST_NOT_SET_ERROR
Read Last Not Set Error RW 0x0
If the AXI read last signal was not set when
expected, then this error bit will be set. It can be
cleared by writing a 1.
*/
/*
0 CTL PWM Control
1 STA PWM Status
2 DMAC PWM DMA Configuration
4 RNG1 PWM Channel 1 Range
5 DAT1 PWM Channel 1 Data
6 FIF1 PWM FIFO Input
8 RNG2 PWM Channel 2 Range
9 DAT2 PWM Channel 2 Data
*/
/*
0 PCM_CS PCM Control and Status
1 PCM_FIFO PCM FIFO Data
2 PCM_MODE PCM Mode
3 PCM_RXC PCM Receive Configuration
4 PCM_TXC PCM Transmit Configuration
5 PCM_DREQ PCM DMA Request Level
6 PCM_INTEN PCM Interrupt Enables
7 PCM_INTSTC PCM Interrupt Status & Clear
8 PCM_GRAY PCM Gray Mode Control
*/
/*
0 CS System Timer Control/Status
1 CLO System Timer Counter Lower 32 bits
2 CHI System Timer Counter Higher 32 bits
3 C0 System Timer Compare 0
4 C1 System Timer Compare 1
5 C2 System Timer Compare 2
6 C3 System Timer Compare 3
*/
/* --------------------------------------------------------------- */
#define THOUSAND 1000
#define MILLION 1000000
#define BILLION 1000000000
#define BANK (gpio>>5)
#define BIT (1<<(gpio&0x1F))
#define CHECK_INITED \
do \
{ \
if (!libInitialised) \
{ \
fprintf(stderr, \
"%s %s: pigpio uninitialised, call gpioInitialise()\n",\
myTimeStamp(), __FUNCTION__); \
return PI_NOT_INITIALISED; \
} \
} \
while (0)
#define CHECK_INITED_RET_NULL_PTR \
do \
{ \
if (!libInitialised) \
{ \
fprintf(stderr, \
"%s %s: pigpio uninitialised, call gpioInitialise()\n",\
myTimeStamp(), __FUNCTION__); \
return (NULL); \
} \
} \
while (0)
#define CHECK_INITED_RET_NIL \
do \
{ \
if (!libInitialised) \
{ \
fprintf(stderr, \
"%s %s: pigpio uninitialised, call gpioInitialise()\n",\
myTimeStamp(), __FUNCTION__); \
} \
} \
while (0)
#define CHECK_NOT_INITED \
do \
{ \
if (libInitialised) \
{ \
fprintf(stderr, \
"%s %s: pigpio initialised, call gpioTerminate()\n", \
myTimeStamp(), __FUNCTION__); \
return PI_INITIALISED; \
} \
} \
while (0)
#define DBG(level, format, arg...) \
do \
{ \
if (gpioCfg.dbgLevel >= level) \
fprintf(stderr, "%s %s: " format "\n" , \
myTimeStamp(), __FUNCTION__ , ## arg); \
} \
while (0)
#define SOFT_ERROR(x, format, arg...) \
do \
{ \
fprintf(stderr, "%s %s: " format "\n", \
myTimeStamp(), __FUNCTION__ , ## arg); \
return x; \
} \
while (0)
#define TIMER_ADD(a, b, result) \
do \
{ \
(result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \
(result)->tv_nsec = (a)->tv_nsec + (b)->tv_nsec; \
if ((result)->tv_nsec >= BILLION) \
{ \
++(result)->tv_sec; \
(result)->tv_nsec -= BILLION; \
} \
} \
while (0)
#define TIMER_SUB(a, b, result) \
do \
{ \
(result)->tv_sec = (a)->tv_sec - (b)->tv_sec; \
(result)->tv_nsec = (a)->tv_nsec - (b)->tv_nsec; \
if ((result)->tv_nsec < 0) \
{ \
--(result)->tv_sec; \
(result)->tv_nsec += BILLION; \
} \
} \
while (0)
#define DMA_BUS_ADR 0x40000000
#define AUX_BASE 0x20215000
#define CLK_BASE 0x20101000
#define DMA_BASE 0x20007000
#define DMA15_BASE 0x20E05000
#define GPIO_BASE 0x20200000
#define PCM_BASE 0x20203000
#define PWM_BASE 0x2020C000
#define SPI_BASE 0x20204000
#define SYST_BASE 0x20003000
#define AUX_LEN 0xD8
#define CLK_LEN 0xA8
#define DMA_LEN 0x1000 /* allow access to all channels */
#define GPIO_LEN 0xB4
#define PCM_LEN 0x24
#define PWM_LEN 0x28
#define SPI_LEN 0x18
#define SYST_LEN 0x1C
#define DMA_ENABLE (0xFF0/4)
#define GPFSEL0 0
#define GPSET0 7
#define GPSET1 8
#define GPCLR0 10
#define GPCLR1 11
#define GPLEV0 13
#define GPLEV1 14
#define GPEDS0 16
#define GPEDS1 17
#define GPREN0 19
#define GPREN1 20
#define GPFEN0 22
#define GPFEN1 23
#define GPHEN0 25
#define GPHEN1 26
#define GPLEN0 28
#define GPLEN1 29
#define GPAREN0 31
#define GPAREN1 32
#define GPAFEN0 34
#define GPAFEN1 35
#define GPPUD 37
#define GPPUDCLK0 38
#define GPPUDCLK1 39
#define DMA_CS 0
#define DMA_CONBLK_AD 1
#define DMA_DEBUG 8
/* DMA CS Control and Status bits */
#define DMA_CHANNEL_RESET (1<<31)
#define DMA_WAIT_ON_WRITES (1<<28)
#define DMA_PANIC_PRIORITY(x) ((x)<<20)
#define DMA_PRIORITY(x) ((x)<<16)
#define DMA_INTERRUPT_STATUS (1<< 2)
#define DMA_END_FLAG (1<< 1)
#define DMA_ACTIVATE (1<< 0)
/* DMA control block "info" field bits */
#define DMA_NO_WIDE_BURSTS (1<<26)
#define DMA_PERIPHERAL_MAPPING(x) ((x)<<16)
#define DMA_BURST_LENGTH(x) ((x)<<12)
#define DMA_SRC_IGNORE (1<<11)
#define DMA_SRC_DREQ (1<<10)
#define DMA_SRC_INC (1<< 8)
#define DMA_DEST_IGNORE (1<< 7)
#define DMA_DEST_DREQ (1<< 6)
#define DMA_DEST_INC (1<< 4)
#define DMA_WAIT_RESP (1<< 3)
#define DMA_DEBUG_READ_ERR (1<<2)
#define DMA_DEBUG_FIFO_ERR (1<<1)
#define DMA_DEBUG_RD_LST_NOT_SET_ERR (1<<0)
#define PWM_CTL 0
#define PWM_STA 1
#define PWM_DMAC 2
#define PWM_RNG1 4
#define PWM_DAT1 5
#define PWM_FIFO 6
#define PWM_RNG2 8
#define PWM_DAT2 9
#define PWM_CTL_CLRF1 (1<<6)
#define PWM_CTL_USEF1 (1<<5)
#define PWM_CTL_MODE1 (1<<1)
#define PWM_CTL_PWEN1 (1<<0)
#define PWM_DMAC_ENAB (1 <<31)
#define PWM_DMAC_PANIC(x) ((x)<< 8)
#define PWM_DMAC_DREQ(x) (x)
#define PCM_CS 0
#define PCM_FIFO 1
#define PCM_MODE 2
#define PCM_RXC 3
#define PCM_TXC 4
#define PCM_DREQ 5
#define PCM_INTEN 6
#define PCM_INTSTC 7
#define PCM_GRAY 8
#define PCM_CS_STBY (1 <<25)
#define PCM_CS_SYNC (1 <<24)
#define PCM_CS_RXSEX (1 <<23)
#define PCM_CS_RXERR (1 <<16)
#define PCM_CS_TXERR (1 <<15)
#define PCM_CS_DMAEN (1 <<9)
#define PCM_CS_RXTHR(x) ((x)<<7)
#define PCM_CS_TXTHR(x) ((x)<<5)
#define PCM_CS_RXCLR (1 <<4)
#define PCM_CS_TXCLR (1 <<3)
#define PCM_CS_TXON (1 <<2)
#define PCM_CS_RXON (1 <<1)
#define PCM_CS_EN (1 <<0)
#define PCM_MODE_CLK_DIS (1 <<28)
#define PCM_MODE_PDMN (1 <<27)
#define PCM_MODE_PDME (1 <<26)
#define PCM_MODE_FRXP (1 <<25)
#define PCM_MODE_FTXP (1 <<24)
#define PCM_MODE_CLKM (1 <<23)
#define PCM_MODE_CLKI (1 <<22)
#define PCM_MODE_FSM (1 <<21)
#define PCM_MODE_FSI (1 <<20)
#define PCM_MODE_FLEN(x) ((x)<<10)
#define PCM_MODE_FSLEN(x) ((x)<< 0)
#define PCM_RXC_CH1WEX (1 <<31)
#define PCM_RXC_CH1EN (1 <<30)
#define PCM_RXC_CH1POS(x) ((x)<<20)
#define PCM_RXC_CH1WID(x) ((x)<<16)
#define PCM_RXC_CH2WEX (1 <<15)
#define PCM_RXC_CH2EN (1 <<14)
#define PCM_RXC_CH2POS(x) ((x)<< 4)
#define PCM_RXC_CH2WID(x) ((x)<< 0)
#define PCM_TXC_CH1WEX (1 <<31)
#define PCM_TXC_CH1EN (1 <<30)
#define PCM_TXC_CH1POS(x) ((x)<<20)
#define PCM_TXC_CH1WID(x) ((x)<<16)
#define PCM_TXC_CH2WEX (1 <<15)
#define PCM_TXC_CH2EN (1 <<14)
#define PCM_TXC_CH2POS(x) ((x)<< 4)
#define PCM_TXC_CH2WID(x) ((x)<< 0)
#define PCM_DREQ_TX_PANIC(x) ((x)<<24)
#define PCM_DREQ_RX_PANIC(x) ((x)<<16)
#define PCM_DREQ_TX_REQ_L(x) ((x)<< 8)
#define PCM_DREQ_RX_REQ_L(x) ((x)<< 0)
#define PCM_INTEN_RXERR (1<<3)
#define PCM_INTEN_TXERR (1<<2)
#define PCM_INTEN_RXR (1<<1)
#define PCM_INTEN_TXW (1<<0)
#define PCM_INTSTC_RXERR (1<<3)
#define PCM_INTSTC_TXERR (1<<2)
#define PCM_INTSTC_RXR (1<<1)
#define PCM_INTSTC_TXW (1<<0)
#define PCM_GRAY_FLUSH (1<<2)
#define PCM_GRAY_CLR (1<<1)
#define PCM_GRAY_EN (1<<0)
#define CLK_PASSWD (0x5A<<24)
#define CLK_CTL_MASH(x)((x)<<9)
#define CLK_CTL_BUSY (1 <<7)
#define CLK_CTL_KILL (1 <<5)
#define CLK_CTL_ENAB (1 <<4)
#define CLK_CTL_SRC(x) ((x)<<0)
#define CLK_CTL_SRC_OSC 1 /* 19.2 MHz */
#define CLK_CTL_SRC_PLLD 6 /* 500.0 MHz */
#define CLK_DIV_DIVI(x) ((x)<<12)
#define CLK_DIV_DIVF(x) ((x)<< 0)
#define CLK_PCMCTL 38
#define CLK_PCMDIV 39
#define CLK_PWMCTL 40
#define CLK_PWMDIV 41
#define SYST_CS 0
#define SYST_CLO 1
#define SYST_CHI 2
/* SPI */
#define SPI_CS 0
#define SPI_FIFO 1
#define SPI_CLK 2
#define SPI_DLEN 3
#define SPI_LTOH 4
#define SPI_DC 5
#define SPI_CS_LEN_LONG (1<<25)
#define SPI_CS_DMA_LEN (1<<24)
#define SPI_CS_CSPOLS(x) ((x)<<21)
#define SPI_CS_RXF (1<<20)
#define SPI_CS_RXR (1<<19)
#define SPI_CS_TXD (1<<18)
#define SPI_CS_RXD (1<<17)
#define SPI_CS_DONE (1<<16)
#define SPI_CS_LEN (1<<13)
#define SPI_CS_REN (1<<12)
#define SPI_CS_ADCS (1<<11)
#define SPI_CS_INTR (1<<10)
#define SPI_CS_INTD (1<<9)
#define SPI_CS_DMAEN (1<<8)
#define SPI_CS_TA (1<<7)
#define SPI_CS_CSPOL(x) ((x)<<6)
#define SPI_CS_CLEAR(x) ((x)<<4)
#define SPI_CS_MODE(x) ((x)<<2)
#define SPI_CS_CS(x) ((x)<<0)
#define SPI_DC_RPANIC(x) ((x)<<24)
#define SPI_DC_RDREQ(x) ((x)<<16)
#define SPI_DC_TPANIC(x) ((x)<<8)
#define SPI_DC_TDREQ(x) ((x)<<0)
#define SPI_MODE0 0
#define SPI_MODE1 1
#define SPI_MODE2 2
#define SPI_MODE3 3
#define SPI_CS0 0
#define SPI_CS1 1
#define SPI_CS2 2
/* standard SPI gpios (ALT0) */
#define PI_SPI_CE0 8
#define PI_SPI_CE1 7
#define PI_SPI_SCLK 11
#define PI_SPI_MISO 9
#define PI_SPI_MOSI 10
/* auxiliary SPI gpios (ALT4) */
#define PI_ASPI_CE0 18
#define PI_ASPI_CE1 17
#define PI_ASPI_CE2 16
#define PI_ASPI_MISO 19
#define PI_ASPI_MOSI 20
#define PI_ASPI_SCLK 21
/* AUX */
#define AUX_IRQ 0
#define AUX_ENABLES 1
#define AUX_MU_IO_REG 16
#define AUX_MU_IER_REG 17
#define AUX_MU_IIR_REG 18
#define AUX_MU_LCR_REG 19
#define AUX_MU_MCR_REG 20
#define AUX_MU_LSR_REG 21
#define AUX_MU_MSR_REG 22
#define AUX_MU_SCRATCH 23
#define AUX_MU_CNTL_REG 24
#define AUX_MU_STAT_REG 25
#define AUX_MU_BAUD_REG 26
#define AUX_SPI0_CNTL0_REG 32
#define AUX_SPI0_CNTL1_REG 33
#define AUX_SPI0_STAT_REG 34
#define AUX_SPI0_PEEK_REG 35
#define AUX_SPI0_IO_REG 40
#define AUX_SPI0_TX_HOLD 44
#define AUX_SPI1_CNTL0_REG 48
#define AUX_SPI1_CNTL1_REG 49
#define AUX_SPI1_STAT_REG 50
#define AUX_SPI1_PEEK_REG 51
#define AUX_SPI1_IO_REG 56
#define AUX_SPI1_TX_HOLD 60
#define AUXENB_SPI2 (1<<2)
#define AUXENB_SPI1 (1<<1)
#define AUXENB_UART (1<<0)
#define AUXSPI_CNTL0_SPEED(x) ((x)<<20)
#define AUXSPI_CNTL0_CS(x) ((x)<<17)
#define AUXSPI_CNTL0_POSTINP (1<<16)
#define AUXSPI_CNTL0_VAR_CS (1<<15)
#define AUXSPI_CNTL0_VAR_WIDTH (1<<14)
#define AUXSPI_CNTL0_DOUT_HOLD(x) ((x)<<12)
#define AUXSPI_CNTL0_ENABLE (1<<11)
#define AUXSPI_CNTL0_IN_RISING(x) ((x)<<10)
#define AUXSPI_CNTL0_CLR_FIFOS (1<<9)
#define AUXSPI_CNTL0_OUT_RISING(x) ((x)<<8)
#define AUXSPI_CNTL0_INVERT_CLK(x) ((x)<<7)
#define AUXSPI_CNTL0_MSB_FIRST(x) ((x)<<6)
#define AUXSPI_CNTL0_SHIFT_LEN(x) ((x)<<0)
#define AUXSPI_CNTL1_CS_HIGH(x) ((x)<<8)
#define AUXSPI_CNTL1_TX_IRQ (1<<7)
#define AUXSPI_CNTL1_DONE_IRQ (1<<6)
#define AUXSPI_CNTL1_MSB_FIRST(x)((x)<<1)
#define AUXSPI_CNTL1_KEEP_INPUT (1<<0)
#define AUXSPI_STAT_TX_FIFO(x) ((x)<<28)
#define AUXSPI_STAT_RX_FIFO(x) ((x)<<20)
#define AUXSPI_STAT_TX_FULL (1<<10)
#define AUXSPI_STAT_TX_EMPTY (1<<9)
#define AUXSPI_STAT_RX_EMPTY (1<<7)
#define AUXSPI_STAT_BUSY (1<<6)
#define AUXSPI_STAT_BITS(x) ((x)<<0)
/* --------------------------------------------------------------- */
#define NORMAL_DMA (DMA_NO_WIDE_BURSTS | DMA_WAIT_RESP)
#define TIMED_DMA(x) (DMA_DEST_DREQ | DMA_PERIPHERAL_MAPPING(x))
#define DBG_MIN_LEVEL 0
#define DBG_ALWAYS 0
#define DBG_STARTUP 1
#define DBG_DMACBS 2
#define DBG_SCRIPT 3
#define DBG_USER 4
#define DBG_INTERNAL 5
#define DBG_SLOW_TICK 6
#define DBG_FAST_TICK 7
#define DBG_MAX_LEVEL 8
#define GPIO_UNDEFINED 0
#define GPIO_WRITE 1
#define GPIO_PWM 2
#define GPIO_SERVO 3
#define STACK_SIZE (256*1024)
#define PAGE_SIZE 4096
#define PWM_FREQS 18
#define CYCLES_PER_BLOCK 80
#define PULSE_PER_CYCLE 25
#define PAGES_PER_BLOCK 53
#define CBS_PER_IPAGE 117
#define LVS_PER_IPAGE 38
#define OFF_PER_IPAGE 38
#define TCK_PER_IPAGE 2
#define ON_PER_IPAGE 2
#define PAD_PER_IPAGE 7
#define CBS_PER_OPAGE 118
#define OOL_PER_OPAGE 79
#define CBS_PER_CYCLE ((PULSE_PER_CYCLE*3)+2)
#define NUM_CBS (CBS_PER_CYCLE * bufferCycles)
#define SUPERCYCLE 800
#define SUPERLEVEL 20000
#define BLOCK_SIZE (PAGES_PER_BLOCK*PAGE_SIZE)
#define DMAI_PAGES (PAGES_PER_BLOCK * bufferBlocks)
#define DMAO_PAGES (PAGES_PER_BLOCK * PI_WAVE_BLOCKS)
#define NUM_WAVE_OOL (DMAO_PAGES * OOL_PER_OPAGE)
#define NUM_WAVE_CBS (DMAO_PAGES * CBS_PER_OPAGE)
#define TICKSLOTS 50
#define PI_I2C_CLOSED 0
#define PI_I2C_OPENED 1
#define PI_SPI_CLOSED 0
#define PI_SPI_OPENED 1
#define PI_SER_CLOSED 0
#define PI_SER_OPENED 1
#define PI_NOTIFY_CLOSED 0
#define PI_NOTIFY_CLOSING 1
#define PI_NOTIFY_OPENED 2
#define PI_NOTIFY_RUNNING 3
#define PI_NOTIFY_PAUSED 4
#define PI_WFRX_NONE 0
#define PI_WFRX_SERIAL 1
#define PI_WF_MICROS 1
#define DATUMS 2000
#define DEFAULT_PWM_IDX 5
#define MAX_EMITS (PIPE_BUF / sizeof(gpioReport_t))
#define SRX_BUF_SIZE 8192
#define PI_I2C_SLAVE 0x0703
#define PI_I2C_SMBUS 0x0720
#define PI_I2C_SMBUS_READ 1
#define PI_I2C_SMBUS_WRITE 0
#define PI_I2C_SMBUS_QUICK 0
#define PI_I2C_SMBUS_BYTE 1
#define PI_I2C_SMBUS_BYTE_DATA 2
#define PI_I2C_SMBUS_WORD_DATA 3
#define PI_I2C_SMBUS_PROC_CALL 4
#define PI_I2C_SMBUS_BLOCK_DATA 5
#define PI_I2C_SMBUS_I2C_BLOCK_BROKEN 6
#define PI_I2C_SMBUS_BLOCK_PROC_CALL 7
#define PI_I2C_SMBUS_I2C_BLOCK_DATA 8
#define PI_I2C_SMBUS_BLOCK_MAX 32
#define PI_I2C_SMBUS_I2C_BLOCK_MAX 32
/* --------------------------------------------------------------- */
typedef void (*callbk_t) ();
typedef struct
{
rawCbs_t cb [128];
} dmaPage_t;
typedef struct
{
rawCbs_t cb [CBS_PER_IPAGE];
uint32_t level [LVS_PER_IPAGE];
uint32_t gpioOff [OFF_PER_IPAGE];
uint32_t tick [TCK_PER_IPAGE];
uint32_t gpioOn [ON_PER_IPAGE];
uint32_t periphData;
uint32_t pad [PAD_PER_IPAGE];
} dmaIPage_t;
typedef struct
{
rawCbs_t cb [CBS_PER_OPAGE];
uint32_t OOL [OOL_PER_OPAGE];
uint32_t periphData;
} dmaOPage_t;
typedef struct
{
uint8_t is;
uint8_t pad;
uint16_t width;
uint16_t range; /* duty cycles specified by 0 .. range */
uint16_t freqIdx;
} gpioInfo_t;
typedef struct
{
callbk_t func;
unsigned ex;
void * userdata;
int timeout;
uint32_t tick;
} gpioAlert_t;
typedef struct
{
callbk_t func;
unsigned ex;
void * userdata;
} gpioSignal_t;
typedef struct
{
callbk_t func;
unsigned ex;
void * userdata;
uint32_t bits;
} gpioGetSamples_t;
typedef struct
{
callbk_t func;
unsigned ex;
void * userdata;
unsigned id;
unsigned running;
unsigned millis;
struct timespec nextTick;
pthread_t pthId;
} gpioTimer_t;
#define PI_SCRIPT_FREE 0
#define PI_SCRIPT_RESERVED 1
#define PI_SCRIPT_IN_USE 2
#define PI_SCRIPT_DYING 3
#define PI_SCRIPT_HALT 0
#define PI_SCRIPT_RUN 1
#define PI_SCRIPT_DELETE 2
#define PI_SCRIPT_STACK_SIZE 256
typedef struct
{
unsigned id;
unsigned state;
unsigned request;
unsigned run_state;
uint32_t waitBits;
uint32_t changedBits;
pthread_t *pthIdp;
pthread_mutex_t pthMutex;
pthread_cond_t pthCond;
cmdScript_t script;
} gpioScript_t;
typedef struct
{
uint16_t valid;
uint16_t bits;
uint16_t divi;
uint16_t divf;
uint16_t mash;
uint16_t servoIdx;
uint16_t pwmIdx;
} clkCfg_t;
typedef struct
{
uint16_t seqno;
uint16_t state;
uint32_t bits;
int fd;
int pipe;
} gpioNotify_t;
typedef struct
{
uint16_t state;
int16_t fd;
uint32_t flags;
} i2cInfo_t;
typedef struct
{
uint16_t state;
int16_t fd;
uint32_t flags;
} serInfo_t;
typedef struct
{
uint16_t state;
unsigned speed;
uint32_t flags;
} spiInfo_t;
#define PI_SPI_FLAGS_CHANNEL(x) ((x&7)<<29)
#define PI_SPI_FLAGS_GET_CHANNEL(x) (((x)>>29)&7)
#define PI_SPI_FLAGS_GET_BITLEN(x) (((x)>>16)&63)
#define PI_SPI_FLAGS_GET_RX_LSB(x) (((x)>>15)&1)
#define PI_SPI_FLAGS_GET_TX_LSB(x) (((x)>>14)&1)
#define PI_SPI_FLAGS_GET_3WREN(x) (((x)>>10)&15)
#define PI_SPI_FLAGS_GET_3WIRE(x) (((x)>>9)&1)
#define PI_SPI_FLAGS_GET_AUX_SPI(x) (((x)>>8)&1)
#define PI_SPI_FLAGS_GET_RESVD(x) (((x)>>5)&7)
#define PI_SPI_FLAGS_GET_CSPOLS(x) (((x)>>2)&7)
#define PI_SPI_FLAGS_GET_MODE(x) ((x)&3)
typedef struct
{
uint32_t startTick;
uint32_t alertTicks;
uint32_t diffTick[TICKSLOTS];
uint32_t cbTicks;
uint32_t cbCalls;
uint32_t maxEmit;
uint32_t emitFrags;
uint32_t maxSamples;
uint32_t numSamples;
} gpioStats_t;
typedef struct
{
unsigned bufferMilliseconds;
unsigned clockMicros;
unsigned clockPeriph;
unsigned clockSource;
unsigned DMAprimaryChannel;
unsigned DMAsecondaryChannel;
unsigned socketPort;
unsigned ifFlags;
int dbgLevel;
unsigned showStats;
} gpioCfg_t;
typedef struct
{
uint32_t micros;
uint32_t highMicros;
uint32_t maxMicros;
uint32_t pulses;
uint32_t highPulses;
uint32_t maxPulses;
uint32_t cbs;
uint32_t highCbs;
uint32_t maxCbs;
} wfStats_t;
typedef struct
{
int gpio;
char * buf;
uint32_t bufSize;
int readPos;
int writePos;
uint32_t baud;
uint32_t fullBit;
uint32_t halfBit;
int timeout;
uint32_t startBitTick;
uint32_t nextBitDiff;
int bit;
int byte;
int level;
int mode;
} wfRx_t;
union my_smbus_data
{
uint8_t byte;
uint16_t word;
uint8_t block[PI_I2C_SMBUS_BLOCK_MAX + 2];
};
struct my_smbus_ioctl_data
{
uint8_t read_write;
uint8_t command;
uint32_t size;
union my_smbus_data *data;
};
/* --------------------------------------------------------------- */
/* initialise once then preserve */
static volatile gpioCfg_t gpioCfg =
{
PI_DEFAULT_BUFFER_MILLIS,
PI_DEFAULT_CLK_MICROS,
PI_DEFAULT_CLK_PERIPHERAL,
PI_DEFAULT_CLK_SOURCE,
PI_DEFAULT_DMA_PRIMARY_CHANNEL,
PI_DEFAULT_DMA_SECONDARY_CHANNEL,
PI_DEFAULT_SOCKET_PORT,
PI_DEFAULT_IF_FLAGS,
0,
0,
};
static volatile gpioStats_t gpioStats;
static int gpioMaskSet = 0;
/* initialise every gpioInitialise */
static struct timespec libStarted;
/* initialse if not libInitialised */
static uint64_t gpioMask;
static rawWave_t wf[3][PI_WAVE_MAX_PULSES];
static int wfc[3]={0, 0, 0};
static int wfcur=0;
static wfStats_t wfStats=
{
0, 0, PI_WAVE_MAX_MICROS,
0, 0, PI_WAVE_MAX_PULSES,
0, 0, (DMAO_PAGES * CBS_PER_OPAGE)
};
static rawWaveInfo_t waveInfo[PI_MAX_WAVES];
static volatile wfRx_t wfRx[PI_MAX_USER_GPIO+1];
static int waveOutBotCB = 0;
static int waveOutTopCB = NUM_WAVE_CBS;
static int waveOutBotOOL = 0;
static int waveOutTopOOL = NUM_WAVE_OOL;
static int waveOutCount = 0;
static volatile uint32_t alertBits = 0;
static volatile uint32_t monitorBits = 0;
static volatile uint32_t notifyBits = 0;
static volatile uint32_t scriptBits = 0;
static volatile int DMAstarted = 0;
static int libInitialised = 0;
static int pthAlertRunning = 0;
static int pthFifoRunning = 0;
static int pthSocketRunning = 0;
static gpioAlert_t gpioAlert [PI_MAX_USER_GPIO+1];
static gpioGetSamples_t gpioGetSamples;
static gpioInfo_t gpioInfo [PI_MAX_USER_GPIO+1];
static gpioNotify_t gpioNotify [PI_NOTIFY_SLOTS];
static i2cInfo_t i2cInfo [PI_I2C_SLOTS];
static serInfo_t serInfo [PI_SER_SLOTS];
static spiInfo_t spiInfo [PI_SPI_SLOTS];
static gpioScript_t gpioScript [PI_MAX_SCRIPTS];
static gpioSignal_t gpioSignal [PI_MAX_SIGNUM+1];
static gpioTimer_t gpioTimer [PI_MAX_TIMER+1];
static int pwmFreq[PWM_FREQS];
/* no initialisation required */
static unsigned bufferBlocks; /* number of blocks in buffer */
static unsigned bufferCycles; /* number of cycles */
static pthread_attr_t pthAttr;
static pthread_t pthAlert;
static pthread_t pthFifo;
static pthread_t pthSocket;
static gpioSample_t gpioSample[DATUMS];
static gpioReport_t gpioReport[DATUMS];
/* resources which must be released on gpioTerminate */
static FILE * inpFifo = NULL;
static FILE * outFifo = NULL;
static int fdLock = -1;
static int fdMem = -1;
static int fdSock = -1;
static dmaPage_t * * dmaBloc = MAP_FAILED;
static dmaPage_t * * dmaVirt = MAP_FAILED;
static dmaPage_t * * dmaPhys = MAP_FAILED;
static dmaIPage_t * * dmaIVirt = MAP_FAILED;
static dmaIPage_t * * dmaIPhys = MAP_FAILED;
static dmaOPage_t * * dmaOVirt = MAP_FAILED;
static dmaOPage_t * * dmaOPhys = MAP_FAILED;
static volatile uint32_t * auxReg = MAP_FAILED;
static volatile uint32_t * clkReg = MAP_FAILED;
static volatile uint32_t * dmaReg = MAP_FAILED;
static volatile uint32_t * gpioReg = MAP_FAILED;
static volatile uint32_t * pcmReg = MAP_FAILED;
static volatile uint32_t * pwmReg = MAP_FAILED;
static volatile uint32_t * spiReg = MAP_FAILED;
static volatile uint32_t * systReg = MAP_FAILED;
static volatile uint32_t * dmaIn = MAP_FAILED;
static volatile uint32_t * dmaOut = MAP_FAILED;
/* constant data */
static const clkCfg_t clkCfg[]=
{
/* valid bits divi divf mash servo pwm */
{ 0, 0, 0, 0, 0, 0, 0}, /* 0 */
{ 1, 9, 2, 546, 1, 17, DEFAULT_PWM_IDX}, /* 1 */
{ 1, 19, 2, 86, 1, 16, DEFAULT_PWM_IDX}, /* 2 */
{ 0, 19, 3, 129, 1, 0, 0}, /* 3 */
{ 1, 11, 6, 4021, 1, 15, DEFAULT_PWM_IDX}, /* 4 */
{ 1, 8, 12, 0, 0, 14, DEFAULT_PWM_IDX}, /* 5 */
{ 0, 23, 5, 35, 1, 0, 0}, /* 6 */
{ 0, 27, 4004, 0, 1, 0, 0}, /* 7 */
{ 1, 51, 3, 48, 1, 13, DEFAULT_PWM_IDX}, /* 8 */
{ 0, 43, 4, 76, 1, 0, 0}, /* 9 */
{ 1, 8, 24, 0, 0, 12, DEFAULT_PWM_IDX}, /* 10 */
};
static const uint16_t pwmCycles[PWM_FREQS]=
{ 1, 2, 4, 5, 8, 10, 16, 20, 25,
32, 40, 50, 80, 100, 160, 200, 400, 800};
static const uint16_t pwmRealRange[PWM_FREQS]=
{ 25, 50, 100, 125, 200, 250, 400, 500, 625,
800, 1000, 1250, 2000, 2500, 4000, 5000, 10000, 20000};
/* ======================================================================= */
/* Internal prototypes.
*/
static void intNotifyBits(void);
static void intScriptBits(void);
static int gpioNotifyOpenInBand(int fd);
/* ======================================================================= */
static char * myTimeStamp()
{
static struct timeval last;
static char buf[32];
struct timeval now;
struct tm tmp;
gettimeofday(&now, NULL);
if (now.tv_sec != last.tv_sec)
{
localtime_r(&now.tv_sec, &tmp);
strftime(buf, sizeof(buf), "%F %T", &tmp);
last.tv_sec = now.tv_sec;
}
return buf;
}
/* ----------------------------------------------------------------------- */
static int my_smbus_access(
int fd, char rw, uint8_t cmd, int size, union my_smbus_data *data)
{
struct my_smbus_ioctl_data args;
args.read_write = rw;
args.command = cmd;
args.size = size;
args.data = data;
return ioctl(fd, PI_I2C_SMBUS, &args);
}
/* ----------------------------------------------------------------------- */
static char *myBuf2Str(unsigned count, char *buf)
{
static char str[64];
int i, c;
if (count)
{
if (count > 10) c = 10; else c = count;
for (i=0; i<c; i++) sprintf(str+(3*i), "%02X ", buf[i]);
str[(3*c)-1] = 0;
}
else str[0] = 0;
return str;
}
/* ----------------------------------------------------------------------- */
static void myGpioSleep(int seconds, int micros)
{
struct timespec ts, rem;
ts.tv_sec = seconds;
ts.tv_nsec = micros * 1000;
while (clock_nanosleep(CLOCK_REALTIME, 0, &ts, &rem))
{
/* copy remaining time to ts */
ts = rem;
}
}
/* ----------------------------------------------------------------------- */
static uint32_t myGpioDelay(uint32_t micros)
{
uint32_t start;
start = systReg[SYST_CLO];
if (micros <= PI_MAX_BUSY_DELAY) while ((systReg[SYST_CLO] - start) <= micros);
else myGpioSleep(micros/MILLION, micros%MILLION);
return (systReg[SYST_CLO] - start);
}
/* ----------------------------------------------------------------------- */
static void myCreatePipe(char * name, int perm)
{
unlink(name);
mkfifo(name, perm);
if (chmod(name, perm) < 0)
{
DBG(DBG_ALWAYS, "Can't set permissions (%d) for %s, %m", perm, name);
return;
}
}
/* ----------------------------------------------------------------------- */
static void myOffPageSlot(int pos, int * page, int * slot)
{
*page = pos/OFF_PER_IPAGE;
*slot = pos%OFF_PER_IPAGE;
}
/* ----------------------------------------------------------------------- */
static void myLvsPageSlot(int pos, int * page, int * slot)
{
*page = pos/LVS_PER_IPAGE;
*slot = pos%LVS_PER_IPAGE;
}
/* ----------------------------------------------------------------------- */
static void myTckPageSlot(int pos, int * page, int * slot)
{
*page = pos/TCK_PER_IPAGE;
*slot = pos%TCK_PER_IPAGE;
}
/* ----------------------------------------------------------------------- */
static uint32_t myGetLevel(int pos)
{
uint32_t level;
int page, slot;
myLvsPageSlot(pos, &page, &slot);
level = dmaIVirt[page]->level[slot];
return level;
}
/* ----------------------------------------------------------------------- */
static uint32_t myGetTick(int pos)
{
uint32_t tick;
int page, slot;
myTckPageSlot(pos, &page, &slot);
tick = dmaIVirt[page]->tick[slot];
return tick;
}
static int myPermit(unsigned gpio)
{
if (gpioMask & ((uint64_t)(1)<<gpio)) return 1; else return 0;
}
/* ----------------------------------------------------------------------- */
static int myDoCommand(uint32_t *p, unsigned bufSize, char *buf)
{
int res, i, j, tmp;
uint32_t mask;
gpioPulse_t *pulse;
int masked;
res = 0;
switch (p[0])
{
case PI_CMD_BC1:
mask = gpioMask;
res = gpioWrite_Bits_0_31_Clear(p[1]&mask);
if ((mask | p[1]) != mask)
{
DBG(DBG_USER,
"gpioWrite_Bits_0_31_Clear: bad bits %08X (permissions %08X)",
p[1], mask);
res = PI_SOME_PERMITTED;
}
break;
case PI_CMD_BC2:
mask = gpioMask>>32;
res = gpioWrite_Bits_32_53_Clear(p[1]&mask);
if ((mask | p[1]) != mask)
{
DBG(DBG_USER,
"gpioWrite_Bits_32_53_Clear: bad bits %08X (permissions %08X)",
p[1], mask);
res = PI_SOME_PERMITTED;
}
break;
case PI_CMD_BR1: res = gpioRead_Bits_0_31(); break;
case PI_CMD_BR2: res = gpioRead_Bits_32_53(); break;
case PI_CMD_BS1:
mask = gpioMask;
res = gpioWrite_Bits_0_31_Set(p[1]&mask);
if ((mask | p[1]) != mask)
{
DBG(DBG_USER,
"gpioWrite_Bits_0_31_Set: bad bits %08X (permissions %08X)",
p[1], mask);
res = PI_SOME_PERMITTED;
}
break;
case PI_CMD_BS2:
mask = gpioMask>>32;
res = gpioWrite_Bits_32_53_Set(p[1]&mask);
if ((mask | p[1]) != mask)
{
DBG(DBG_USER,
"gpioWrite_Bits_32_53_Set: bad bits %08X (permissions %08X)",
p[1], mask);
res = PI_SOME_PERMITTED;
}
break;
case PI_CMD_HELP: break;
case PI_CMD_HWVER: res = gpioHardwareRevision(); break;
case PI_CMD_I2CC: res = i2cClose(p[1]); break;
case PI_CMD_I2CO:
memcpy(&p[4], buf, 4);
res = i2cOpen(p[1], p[2], p[4]);
break;
case PI_CMD_I2CPC:
memcpy(&p[4], buf, 4);
res = i2cProcessCall(p[1], p[2], p[4]);
break;
case PI_CMD_I2CPK:
res = i2cBlockProcessCall(p[1], p[2], buf, p[3]);
break;
case PI_CMD_I2CRB: res = i2cReadByteData(p[1], p[2]); break;
case PI_CMD_I2CRD:
if (p[2] > bufSize) p[2] = bufSize;
res = i2cReadDevice(p[1], buf, p[2]);
break;
case PI_CMD_I2CRI:
memcpy(&p[4], buf, 4);
res = i2cReadI2CBlockData(p[1], p[2], buf, p[4]);
break;
case PI_CMD_I2CRK:
res = i2cReadBlockData(p[1], p[2], buf);
break;
case PI_CMD_I2CRS: res = i2cReadByte(p[1]); break;
case PI_CMD_I2CRW: res = i2cReadWordData(p[1], p[2]); break;
case PI_CMD_I2CWB:
memcpy(&p[4], buf, 4);
res = i2cWriteByteData(p[1], p[2], p[4]);
break;
case PI_CMD_I2CWD:
res = i2cWriteDevice(p[1], buf, p[3]);
break;
case PI_CMD_I2CWI:
res = i2cWriteI2CBlockData(p[1], p[2], buf, p[3]);
break;
case PI_CMD_I2CWK:
res = i2cWriteBlockData(p[1], p[2], buf, p[3]);
break;
case PI_CMD_I2CWQ: res = i2cWriteQuick(p[1], p[2]); break;
case PI_CMD_I2CWS: res = i2cWriteByte(p[1], p[2]); break;
case PI_CMD_I2CWW:
memcpy(&p[4], buf, 4);
res = i2cWriteWordData(p[1], p[2], p[4]);
break;
case PI_CMD_MICS:
if (p[1] <= PI_MAX_MICS_DELAY) myGpioDelay(p[1]);
else res = PI_BAD_MICS_DELAY;
break;
case PI_CMD_MILS:
if (p[1] <= PI_MAX_MILS_DELAY) myGpioDelay(p[1] * 1000);
else res = PI_BAD_MILS_DELAY;
break;
case PI_CMD_MODEG: res = gpioGetMode(p[1]); break;
case PI_CMD_MODES:
if (myPermit(p[1])) res = gpioSetMode(p[1], p[2]);
else
{
DBG(DBG_USER, "gpioSetMode: gpio %d, no permission to update", p[1]);
res = PI_NOT_PERMITTED;
}
break;
case PI_CMD_NB: res = gpioNotifyBegin(p[1], p[2]); break;
case PI_CMD_NC: res = gpioNotifyClose(p[1]); break;
case PI_CMD_NO: res = gpioNotifyOpen(); break;
case PI_CMD_NP: res = gpioNotifyPause(p[1]); break;
case PI_CMD_PFG: res = gpioGetPWMfrequency(p[1]); break;
case PI_CMD_PFS:
if (myPermit(p[1])) res = gpioSetPWMfrequency(p[1], p[2]);
else
{
DBG(DBG_USER,
"gpioSetPWMfrequency: gpio %d, no permission to update", p[1]);
res = PI_NOT_PERMITTED;
}
break;
case PI_CMD_PIGPV: res = gpioVersion(); break;
case PI_CMD_PRG: res = gpioGetPWMrange(p[1]); break;
case PI_CMD_PROC:
res = gpioStoreScript(buf);
break;
case PI_CMD_PROCD: res = gpioDeleteScript(p[1]); break;
case PI_CMD_PROCP:
res = gpioScriptStatus(p[1], (uint32_t *)buf);
break;
case PI_CMD_PROCR:
res = gpioRunScript(p[1], p[3]/4, (uint32_t *)buf);
break;
case PI_CMD_PROCS: res = gpioStopScript(p[1]); break;
case PI_CMD_PRRG: res = gpioGetPWMrealRange(p[1]); break;
case PI_CMD_PRS:
if (myPermit(p[1])) res = gpioSetPWMrange(p[1], p[2]);
else
{
DBG(DBG_USER,
"gpioSetPWMrange: gpio %d, no permission to update", p[1]);
res = PI_NOT_PERMITTED;
}
break;
case PI_CMD_PUD:
if (myPermit(p[1])) res = gpioSetPullUpDown(p[1], p[2]);
else
{
DBG(DBG_USER,
"gpioSetPullUpDown: gpio %d, no permission to update", p[1]);
res = PI_NOT_PERMITTED;
}
break;
case PI_CMD_PWM:
if (myPermit(p[1])) res = gpioPWM(p[1], p[2]);
else
{
DBG(DBG_USER, "gpioPWM: gpio %d, no permission to update", p[1]);
res = PI_NOT_PERMITTED;
}
break;
case PI_CMD_READ: res = gpioRead(p[1]); break;
case PI_CMD_SERVO:
if (myPermit(p[1])) res = gpioServo(p[1], p[2]);
else
{
DBG(DBG_USER, "gpioServo: gpio %d, no permission to update", p[1]);
res = PI_NOT_PERMITTED;
}
break;
case PI_CMD_SERRB: res = serReadByte(p[1]); break;
case PI_CMD_SERWB: res = serWriteByte(p[1], p[2]); break;
case PI_CMD_SERC: res = serClose(p[1]); break;
case PI_CMD_SERDA: res = serDataAvailable(p[1]); break;
case PI_CMD_SERO: res = serOpen(buf, p[1], p[2]); break;
case PI_CMD_SERR:
if (p[2] > bufSize) p[2] = bufSize;
res = serRead(p[1], buf, p[2]);
break;
case PI_CMD_SERW: res = serWrite(p[1], buf, p[3]); break;
case PI_CMD_SLR:
if (p[2] > bufSize) p[2] = bufSize;
res = gpioSerialRead(p[1], buf, p[2]);
break;
case PI_CMD_SLRC: res = gpioSerialReadClose(p[1]); break;
case PI_CMD_SLRO: res = gpioSerialReadOpen(p[1], p[2]); break;
case PI_CMD_SPIC: res = spiClose(p[1]); break;
case PI_CMD_SPIO:
memcpy(&p[4], buf, 4);
res = spiOpen(p[1], p[2], p[4]);
break;
case PI_CMD_SPIR:
if (p[2] > bufSize) p[2] = bufSize;
res = spiRead(p[1], buf, p[2]);
break;
case PI_CMD_SPIW:
if (p[3] > bufSize) p[3] = bufSize;
res = spiWrite(p[1], buf, p[3]);
break;
case PI_CMD_SPIX:
if (p[3] > bufSize) p[3] = bufSize;
res = spiXfer(p[1], buf, buf, p[3]);
break;
case PI_CMD_TICK: res = gpioTick(); break;
case PI_CMD_TRIG:
if (myPermit(p[1]))
{
memcpy(&p[4], buf, 4);
res = gpioTrigger(p[1], p[2], p[4]);
}
else
{
DBG(DBG_USER, "gpioTrigger: gpio %d, no permission to update", p[1]);
res = PI_NOT_PERMITTED;
}
break;
case PI_CMD_WDOG: res = gpioSetWatchdog(p[1], p[2]); break;
case PI_CMD_WRITE:
if (myPermit(p[1])) res = gpioWrite(p[1], p[2]);
else
{
DBG(DBG_USER, "gpioWrite: gpio %d, no permission to update", p[1]);
res = PI_NOT_PERMITTED;
}
break;
case PI_CMD_WVAG:
/* need to mask off any non permitted gpios */
mask = gpioMask;
pulse = (gpioPulse_t *)buf;
j = p[3]/sizeof(gpioPulse_t);
masked = 0;
for (i=0; i<j; i++)
{
tmp = pulse[i].gpioOn & mask;
if (tmp != pulse[i].gpioOn)
{
pulse[i].gpioOn = tmp;
masked = 1;
}
tmp = pulse[i].gpioOff & mask;
if (tmp != pulse[i].gpioOff)
{
pulse[i].gpioOff = tmp;
masked = 1;
}
DBG(DBG_SCRIPT, "on=%X off=%X delay=%d",
pulse[i].gpioOn, pulse[i].gpioOff, pulse[i].usDelay);
}
res = gpioWaveAddGeneric(j, pulse);
/* report permission error unless another error occurred */
if (masked && (res >= 0)) res = PI_SOME_PERMITTED;
break;
case PI_CMD_WVAS:
if (myPermit(p[1]))
{
memcpy(&p[4], buf, 4);
res = gpioWaveAddSerial(p[1], p[2], p[4], p[3]-4, buf+4);
}
else
{
DBG(
DBG_USER,
"gpioWaveAddSerial: gpio %d, no permission to update", p[1]);
res = PI_NOT_PERMITTED;
}
break;
case PI_CMD_WVBSY: res = gpioWaveTxBusy(); break;
case PI_CMD_WVCLR: res = gpioWaveClear(); break;
case PI_CMD_WVCRE: res = gpioWaveCreate(); break;
case PI_CMD_WVDEL: res = gpioWaveDelete(p[1]); break;
case PI_CMD_WVGO: res = gpioWaveTxStart(PI_WAVE_MODE_ONE_SHOT); break;
case PI_CMD_WVGOR: res = gpioWaveTxStart(PI_WAVE_MODE_REPEAT); break;
case PI_CMD_WVHLT: res = gpioWaveTxStop(); break;
case PI_CMD_WVNEW: res = gpioWaveAddNew(); break;
case PI_CMD_WVSC:
switch(p[1])
{
case 0: res = gpioWaveGetCbs(); break;
case 1: res = gpioWaveGetHighCbs(); break;
case 2: res = gpioWaveGetMaxCbs(); break;
default: res = PI_BAD_WVSC_COMMND;
}
break;
case PI_CMD_WVSM:
switch(p[1])
{
case 0: res = gpioWaveGetMicros(); break;
case 1: res = gpioWaveGetHighMicros(); break;
case 2: res = gpioWaveGetMaxMicros(); break;
default: res = PI_BAD_WVSM_COMMND;
}
break;
case PI_CMD_WVSP:
switch(p[1])
{
case 0: res = gpioWaveGetPulses(); break;
case 1: res = gpioWaveGetHighPulses(); break;
case 2: res = gpioWaveGetMaxPulses(); break;
default: res = PI_BAD_WVSP_COMMND;
}
break;
case PI_CMD_WVTX:
res = gpioWaveTxSend(p[1], PI_WAVE_MODE_ONE_SHOT); break;
case PI_CMD_WVTXR:
res = gpioWaveTxSend(p[1], PI_WAVE_MODE_REPEAT); break;
default:
res = PI_UNKNOWN_COMMAND;
break;
}
return res;
}
/* ----------------------------------------------------------------------- */
static void mySetGpioOff(unsigned gpio, int pos)
{
int page, slot;
myOffPageSlot(pos, &page, &slot);
dmaIVirt[page]->gpioOff[slot] |= (1<<gpio);
}
/* ----------------------------------------------------------------------- */
static void myClearGpioOff(unsigned gpio, int pos)
{
int page, slot;
myOffPageSlot(pos, &page, &slot);
dmaIVirt[page]->gpioOff[slot] &= ~(1<<gpio);
}
/* ----------------------------------------------------------------------- */
static void mySetGpioOn(unsigned gpio, int pos)
{
int page, slot;
page = pos/ON_PER_IPAGE;
slot = pos%ON_PER_IPAGE;
dmaIVirt[page]->gpioOn[slot] |= (1<<gpio);
}
/* ----------------------------------------------------------------------- */
static void myClearGpioOn(unsigned gpio, int pos)
{
int page, slot;
page = pos/ON_PER_IPAGE;
slot = pos%ON_PER_IPAGE;
dmaIVirt[page]->gpioOn[slot] &= ~(1<<gpio);
}
/* ----------------------------------------------------------------------- */
static void myGpioSetPwm(unsigned gpio, int oldVal, int newVal)
{
int switchGpioOff;
int newOff, oldOff, realRange, cycles, i;
DBG(DBG_INTERNAL,
"myGpioSetPwm %d from %d to %d", gpio, oldVal, newVal);
switchGpioOff = 0;
realRange = pwmRealRange[gpioInfo[gpio].freqIdx];
cycles = pwmCycles [gpioInfo[gpio].freqIdx];
newOff = (newVal * realRange)/gpioInfo[gpio].range;
oldOff = (oldVal * realRange)/gpioInfo[gpio].range;
if (newOff != oldOff)
{
if (newOff && oldOff) /* PWM CHANGE */
{
for (i=0; i<SUPERLEVEL; i+=realRange)
mySetGpioOff(gpio, i+newOff);
for (i=0; i<SUPERLEVEL; i+=realRange)
myClearGpioOff(gpio, i+oldOff);
}
else if (newOff) /* PWM START */
{
for (i=0; i<SUPERLEVEL; i+=realRange)
mySetGpioOff(gpio, i+newOff);
/* schedule new gpio on */
for (i=0; i<SUPERCYCLE; i+=cycles) mySetGpioOn(gpio, i);
}
else /* PWM STOP */
{
/* deschedule gpio on */
for (i=0; i<SUPERCYCLE; i+=cycles)
myClearGpioOn(gpio, i);
for (i=0; i<SUPERLEVEL; i+=realRange)
myClearGpioOff(gpio, i+oldOff);
switchGpioOff = 1;
}
if (switchGpioOff)
{
*(gpioReg + GPCLR0) = (1<<gpio);
*(gpioReg + GPCLR0) = (1<<gpio);
}
}
}
/* ----------------------------------------------------------------------- */
static void myGpioSetServo(unsigned gpio, int oldVal, int newVal)
{
int switchGpioOff;
int newOff, oldOff, realRange, cycles, i;
DBG(DBG_INTERNAL,
"myGpioSetServo %d from %d to %d", gpio, oldVal, newVal);
switchGpioOff = 0;
realRange = pwmRealRange[clkCfg[gpioCfg.clockMicros].servoIdx];
cycles = pwmCycles [clkCfg[gpioCfg.clockMicros].servoIdx];
newOff = (newVal * realRange)/20000;
oldOff = (oldVal * realRange)/20000;
if (newOff != oldOff)
{
if (newOff && oldOff) /* SERVO CHANGE */
{
for (i=0; i<SUPERLEVEL; i+=realRange)
mySetGpioOff(gpio, i+newOff);
for (i=0; i<SUPERLEVEL; i+=realRange)
myClearGpioOff(gpio, i+oldOff);
}
else if (newOff) /* SERVO START */
{
for (i=0; i<SUPERLEVEL; i+=realRange)
mySetGpioOff(gpio, i+newOff);
/* schedule new gpio on */
for (i=0; i<SUPERCYCLE; i+=cycles)
mySetGpioOn(gpio, i);
}
else /* SERVO STOP */
{
/* deschedule gpio on */
for (i=0; i<SUPERCYCLE; i+=cycles)
myClearGpioOn(gpio, i);
for (i=0; i<SUPERLEVEL; i+=realRange)
myClearGpioOff(gpio, i+oldOff);
switchGpioOff = 1;
}
if (switchGpioOff)
{
*(gpioReg + GPCLR0) = (1<<gpio);
*(gpioReg + GPCLR0) = (1<<gpio);
}
}
}
/* ======================================================================= */
rawCbs_t * rawWaveCBAdr(int cbNum)
{
int page, slot;
page = cbNum/CBS_PER_OPAGE;
slot = cbNum%CBS_PER_OPAGE;
return &dmaOVirt[page]->cb[slot];
}
/* ----------------------------------------------------------------------- */
static uint32_t waveCbPOadr(int pos)
{
int page, slot;
page = pos/CBS_PER_OPAGE;
slot = pos%CBS_PER_OPAGE;
return (uint32_t) &dmaOPhys[page]->cb[slot];
}
/* ----------------------------------------------------------------------- */
static void waveOOLPageSlot(int pos, int *page, int *slot)
{
*page = pos/OOL_PER_OPAGE;
*slot = pos%OOL_PER_OPAGE;
}
/* ----------------------------------------------------------------------- */
static void waveSetOOL(int pos, uint32_t OOL)
{
int page, slot;
waveOOLPageSlot(pos, &page, &slot);
dmaOVirt[page]->OOL[slot] = OOL;
}
/* ----------------------------------------------------------------------- */
static uint32_t waveOOLPOadr(int pos)
{
int page, slot;
waveOOLPageSlot(pos, &page, &slot);
return (uint32_t) &dmaOPhys[page]->OOL[slot];
}
/* ----------------------------------------------------------------------- */
static void waveCbOPrint(int pos)
{
rawCbs_t * p;
p = rawWaveCBAdr(pos);
fprintf(stderr, "i=%lx s=%lx d=%lx len=%lx s=%lx nxt=%lx\n",
p->info, p->src, p->dst, p->length, p->stride, p->next);
}
/* ----------------------------------------------------------------------- */
static void waveBitDelay(unsigned baud, unsigned * bitDelay)
{
unsigned fullBit, halfBit, s, e, d, m, i, err;
fullBit = 100000000 / baud;
halfBit = 50000000 / baud;
d = (fullBit/200)*200;
s = 0;
e = d;
bitDelay[0] = d/100;
err = d / 3;
for (i=0; i<8; i++)
{
s = e;
m = halfBit + (i+1)*fullBit;
e = s + d;
if ((e-m) < err) e+=200;
bitDelay[i+1] = (e-s)/100;
}
s = e;
e = ((1000000000 / baud)+100)/200*200;
bitDelay[9] = (e-s)/100;
}
static int errCBsOOL(int cb, int botOOL, int topOOL)
{
if (cb >= waveOutTopCB) return PI_TOO_MANY_CBS;
if (botOOL >= topOOL) return PI_TOO_MANY_OOL;
return 0;
}
/* ----------------------------------------------------------------------- */
static int wave2Cbs(unsigned wave_mode)
{
int botCB=waveOutBotCB, botOOL=waveOutBotOOL, topOOL=waveOutTopOOL;
int status;
rawCbs_t *p=NULL;
unsigned i, half, repeatCB;
unsigned numWaves;
rawWave_t * waves;
numWaves = wfc[wfcur];
waves = wf [wfcur];
half = PI_WF_MICROS/2;
if ((status = errCBsOOL(botCB+1, botOOL, topOOL))) return status;
/* add delay cb at start of DMA */
p = rawWaveCBAdr(botCB++);
/* use the secondary clock */
if (gpioCfg.clockPeriph != PI_CLOCK_PCM)
{
p->info = NORMAL_DMA |
DMA_DEST_DREQ |
DMA_PERIPHERAL_MAPPING(2);
p->dst = ((PCM_BASE + PCM_FIFO*4) & 0x00ffffff) | 0x7e000000;
}
else
{
p->info = NORMAL_DMA |
DMA_DEST_DREQ |
DMA_PERIPHERAL_MAPPING(5);
p->dst = ((PWM_BASE + PWM_FIFO*4) & 0x00ffffff) | 0x7e000000;
}
p->src = (uint32_t) (&dmaOPhys[0]->periphData) | DMA_BUS_ADR;
p->length = 4 * 20 / PI_WF_MICROS; /* 20 micros delay */
p->next = waveCbPOadr(botCB) | DMA_BUS_ADR;
repeatCB = botCB;
for (i=0; i<numWaves; i++)
{
if (waves[i].gpioOn)
{
if ((status = errCBsOOL(botCB+1, botOOL+1, topOOL))) return status;
waveSetOOL(botOOL, waves[i].gpioOn);
p = rawWaveCBAdr(botCB++);
p->info = NORMAL_DMA;
p->src = waveOOLPOadr(botOOL++) | DMA_BUS_ADR;
p->dst = ((GPIO_BASE + (GPSET0*4)) & 0x00ffffff) | 0x7e000000;
p->length = 4;
p->next = waveCbPOadr(botCB) | DMA_BUS_ADR;
}
if (waves[i].gpioOff)
{
if ((status = errCBsOOL(botCB+1, botOOL+1, topOOL))) return status;
waveSetOOL(botOOL, waves[i].gpioOff);
p = rawWaveCBAdr(botCB++);
p->info = NORMAL_DMA;
p->src = waveOOLPOadr(botOOL++) | DMA_BUS_ADR;
p->dst = ((GPIO_BASE + (GPCLR0*4)) & 0x00ffffff) | 0x7e000000;
p->length = 4;
p->next = waveCbPOadr(botCB) | DMA_BUS_ADR;
}
if (waves[i].flags & WAVE_FLAG_READ)
{
if ((status = errCBsOOL(botCB+1, botOOL, topOOL-1))) return status;
p = rawWaveCBAdr(botCB++);
p->info = NORMAL_DMA;
p->src = ((GPIO_BASE + (GPLEV0*4)) & 0x00ffffff) | 0x7e000000;
p->dst = waveOOLPOadr(--topOOL) | DMA_BUS_ADR;
p->length = 4;
p->next = waveCbPOadr(botCB) | DMA_BUS_ADR;
}
if (waves[i].flags & WAVE_FLAG_TICK)
{
if ((status = errCBsOOL(botCB+1, botOOL, topOOL-1))) return status;
p = rawWaveCBAdr(botCB++);
p->info = NORMAL_DMA;
p->src = ((SYST_BASE + (SYST_CLO*4)) & 0x00ffffff) | 0x7e000000;
p->dst = waveOOLPOadr(--topOOL) | DMA_BUS_ADR;
p->length = 4;
p->next = waveCbPOadr(botCB) | DMA_BUS_ADR;
}
if (waves[i].usDelay)
{
if ((status = errCBsOOL(botCB+1, botOOL, topOOL))) return status;
p = rawWaveCBAdr(botCB++);
/* use the secondary clock */
if (gpioCfg.clockPeriph != PI_CLOCK_PCM)
{
p->info = NORMAL_DMA |
DMA_DEST_DREQ |
DMA_PERIPHERAL_MAPPING(2);
p->dst = ((PCM_BASE + PCM_FIFO*4) & 0x00ffffff) | 0x7e000000;
}
else
{
p->info = NORMAL_DMA |
DMA_DEST_DREQ |
DMA_PERIPHERAL_MAPPING(5);
p->dst = ((PWM_BASE + PWM_FIFO*4) & 0x00ffffff) | 0x7e000000;
}
p->src = (uint32_t) (&dmaOPhys[0]->periphData) | DMA_BUS_ADR;
p->length = 4 * ((waves[i].usDelay+half)/PI_WF_MICROS);
p->next = waveCbPOadr(botCB) | DMA_BUS_ADR;
}
}
if (p != NULL)
{
if (wave_mode == PI_WAVE_MODE_ONE_SHOT)
p->next = 0;
else p->next = waveCbPOadr(repeatCB) | DMA_BUS_ADR;
}
status = botCB - waveOutBotCB;
waveOutBotCB = botCB;
waveOutBotOOL = botOOL;
waveOutTopOOL = topOOL;
return status;
}
/* ----------------------------------------------------------------------- */
static void waveRxSerial(volatile wfRx_t *s, int level, uint32_t tick)
{
int diffTicks;
int newWritePos;
if (s->bit >= 0)
{
diffTicks = tick - s->startBitTick;
if (level != PI_TIMEOUT) s->level = level;
while ((s->bit < 9) && (diffTicks > s->nextBitDiff))
{
if (s->bit)
{
if (!(s->level)) s->byte |= (1<<(s->bit-1));
}
else s->byte = 0;
++(s->bit);
s->nextBitDiff += s->fullBit;
}
if (s->bit == 9)
{
s->buf[s->writePos] = s->byte;
/* don't let writePos catch readPos */
newWritePos = s->writePos;
if (++newWritePos >= s->bufSize) newWritePos = 0;
if (newWritePos != s->readPos) s->writePos = newWritePos;
if (level == 0) /* true transition high->low, not a timeout */
{
s->bit = 0;
s->startBitTick = tick;
s->nextBitDiff = s->halfBit;
}
else
{
s->bit = -1;
gpioSetWatchdog(s->gpio, 0);
}
}
}
else
{
/* start bit if high->low */
if (level == 0)
{
gpioSetWatchdog(s->gpio, s->timeout);
s->level = 0;
s->bit = 0;
s->startBitTick = tick;
s->nextBitDiff = s->halfBit;
}
}
}
/* ----------------------------------------------------------------------- */
static void waveRxBit(int gpio, int level, uint32_t tick)
{
switch (wfRx[gpio].mode)
{
case PI_WFRX_NONE:
break;
case PI_WFRX_SERIAL:
waveRxSerial(&wfRx[gpio], level, tick);
}
}
/* ----------------------------------------------------------------------- */
int rawWaveAddGeneric(unsigned numIn1, rawWave_t *in1)
{
unsigned inPos1=0, inPos2=0, outPos=0, level = NUM_WAVE_OOL;
unsigned cbs=0;
unsigned numIn2, numOut;
uint32_t tNow, tNext1, tNext2, tDelay;
rawWave_t *in2, *out;
numIn2 = wfc[wfcur];
in2 = wf[wfcur];
numOut = PI_WAVE_MAX_PULSES;
out = wf[1-wfcur];
tNow = 0;
if (!numIn1) tNext1 = -1; else tNext1 = 0;
if (!numIn2) tNext2 = -1; else tNext2 = 0;
while (((inPos1<numIn1) || (inPos2<numIn2)) && (outPos<numOut))
{
if (tNext1 < tNext2)
{
/* pulse 1 due */
if (tNow < tNext1)
{
/* extend previous delay */
out[outPos-1].usDelay += (tNext1 - tNow);
tNow = tNext1;
}
out[outPos].gpioOn = in1[inPos1].gpioOn;
out[outPos].gpioOff = in1[inPos1].gpioOff;
out[outPos].flags = in1[inPos1].flags;
tNext1 = tNow + in1[inPos1].usDelay; ++inPos1;
}
else if (tNext2 < tNext1)
{
/* pulse 2 due */
if (tNow < tNext2)
{
/* extend previous delay */
out[outPos-1].usDelay += (tNext2 - tNow);
tNow = tNext2;
}
out[outPos].gpioOn = in2[inPos2].gpioOn;
out[outPos].gpioOff = in2[inPos2].gpioOff;
out[outPos].flags = in2[inPos2].flags;
tNext2 = tNow + in2[inPos2].usDelay; ++inPos2;
}
else
{
/* pulse 1 and 2 both due */
if (tNow < tNext1)
{
/* extend previous delay */
out[outPos-1].usDelay += (tNext1 - tNow);
tNow = tNext1;
}
out[outPos].gpioOn = in1[inPos1].gpioOn | in2[inPos2].gpioOn;
out[outPos].gpioOff = in1[inPos1].gpioOff | in2[inPos2].gpioOff;
out[outPos].flags = in1[inPos1].flags | in2[inPos2].flags;
tNext1 = tNow + in1[inPos1].usDelay; ++inPos1;
tNext2 = tNow + in2[inPos2].usDelay; ++inPos2;
}
if (tNext1 <= tNext2) { tDelay = tNext1 - tNow; tNow = tNext1; }
else { tDelay = tNext2 - tNow; tNow = tNext2; }
out[outPos].usDelay = tDelay;
cbs++; /* one cb for delay */
if (out[outPos].gpioOn) cbs++; /* one cb if gpio on */
if (out[outPos].gpioOff) cbs++; /* one cb if gpio off */
if (out[outPos].flags & WAVE_FLAG_READ)
{
cbs++; /* one cb if read */
--level;
}
if (out[outPos].flags & WAVE_FLAG_TICK)
{
cbs++; /* one cb if tick */
--level;
}
outPos++;
if (inPos1 >= numIn1) tNext1 = -1;
if (inPos2 >= numIn2) tNext2 = -1;
}
if ((outPos < numOut) && (outPos < level))
{
wfStats.micros = tNow;
if (tNow > wfStats.highMicros) wfStats.highMicros = tNow;
wfStats.pulses = outPos;
if (outPos > wfStats.highPulses) wfStats.highPulses = outPos;
wfStats.cbs = cbs;
if (cbs > wfStats.highCbs) wfStats.highCbs = cbs;
wfc[1-wfcur] = outPos;
wfcur = 1 - wfcur;
return outPos;
}
else return PI_TOO_MANY_PULSES;
}
/* ======================================================================= */
int i2cWriteQuick(unsigned handle, unsigned bit)
{
int err;
DBG(DBG_USER, "handle=%d bit=%d", handle, bit);
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (bit > 1)
SOFT_ERROR(PI_BAD_PARAM, "bad bit (%d)", bit);
err = my_smbus_access(i2cInfo[handle].fd, bit, 0, PI_I2C_SMBUS_QUICK, NULL);
if (err < 0) return PI_I2C_WRITE_FAILED;
return err;
}
int i2cReadByte(unsigned handle)
{
union my_smbus_data data;
DBG(DBG_USER, "handle=%d", handle);
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (my_smbus_access(
i2cInfo[handle].fd, PI_I2C_SMBUS_READ, 0, PI_I2C_SMBUS_BYTE, &data))
return PI_I2C_READ_FAILED;
else
return 0xFF & data.byte;
}
int i2cWriteByte(unsigned handle, unsigned bVal)
{
int err;
DBG(DBG_USER, "handle=%d bVal=%d", handle, bVal);
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (bVal > 0xFF)
SOFT_ERROR(PI_BAD_PARAM, "bad bVal (%d)", bVal);
err = my_smbus_access(
i2cInfo[handle].fd,
PI_I2C_SMBUS_WRITE,
bVal,
PI_I2C_SMBUS_BYTE,
NULL);
if (err < 0) return PI_I2C_WRITE_FAILED;
return err;
}
int i2cReadByteData(unsigned handle, unsigned reg)
{
union my_smbus_data data;
DBG(DBG_USER, "handle=%d reg=%d", handle, reg);
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (reg > 0xFF)
SOFT_ERROR(PI_BAD_PARAM, "bad reg (%d)", reg);
if (my_smbus_access(
i2cInfo[handle].fd, PI_I2C_SMBUS_READ, reg, PI_I2C_SMBUS_BYTE_DATA, &data))
return PI_I2C_READ_FAILED;
else
return 0xFF & data.byte;
}
int i2cWriteByteData(unsigned handle, unsigned reg, unsigned bVal)
{
union my_smbus_data data;
int err;
DBG(DBG_USER, "handle=%d reg=%d bVal=%d", handle, reg, bVal);
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (reg > 0xFF)
SOFT_ERROR(PI_BAD_PARAM, "bad reg (%d)", reg);
if (bVal > 0xFF)
SOFT_ERROR(PI_BAD_PARAM, "bad bVal (%d)", bVal);
data.byte = bVal;
err = my_smbus_access(
i2cInfo[handle].fd,
PI_I2C_SMBUS_WRITE,
reg,
PI_I2C_SMBUS_BYTE_DATA,
&data);
if (err < 0) return PI_I2C_WRITE_FAILED;
return err;
}
int i2cReadWordData(unsigned handle, unsigned reg)
{
union my_smbus_data data;
DBG(DBG_USER, "handle=%d reg=%d", handle, reg);
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (reg > 0xFF)
SOFT_ERROR(PI_BAD_PARAM, "bad reg (%d)", reg);
if (my_smbus_access(
i2cInfo[handle].fd, PI_I2C_SMBUS_READ, reg, PI_I2C_SMBUS_WORD_DATA, &data))
return PI_I2C_READ_FAILED;
else
return 0xFFFF & data.word;
}
int i2cWriteWordData(unsigned handle, unsigned reg, unsigned wVal)
{
union my_smbus_data data;
int err;
DBG(DBG_USER, "handle=%d reg=%d wVal=%d", handle, reg, wVal);
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (reg > 0xFF)
SOFT_ERROR(PI_BAD_PARAM, "bad reg (%d)", reg);
if (wVal > 0xFFFF)
SOFT_ERROR(PI_BAD_PARAM, "bad wVal (%d)", wVal);
data.word = wVal;
err = my_smbus_access(
i2cInfo[handle].fd,
PI_I2C_SMBUS_WRITE,
reg,
PI_I2C_SMBUS_WORD_DATA,
&data);
if (err < 0) return PI_I2C_WRITE_FAILED;
return err;
}
int i2cProcessCall(unsigned handle, unsigned reg, unsigned wVal)
{
union my_smbus_data data;
DBG(DBG_USER, "handle=%d reg=%d wVal=%d", handle, reg, wVal);
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (reg > 0xFF)
SOFT_ERROR(PI_BAD_PARAM, "bad reg (%d)", reg);
if (wVal > 0xFFFF)
SOFT_ERROR(PI_BAD_PARAM, "bad wVal (%d)", wVal);
data.word = wVal;
if (my_smbus_access(
i2cInfo[handle].fd, PI_I2C_SMBUS_WRITE, reg, PI_I2C_SMBUS_PROC_CALL, &data))
return PI_I2C_READ_FAILED;
else
return 0xFFFF & data.word;
}
int i2cReadBlockData(unsigned handle, unsigned reg, char *buf)
{
union my_smbus_data data;
int i;
DBG(DBG_USER, "handle=%d reg=%d buf=%08X", handle, reg, (unsigned)buf);
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (reg > 0xFF)
SOFT_ERROR(PI_BAD_PARAM, "bad reg (%d)", reg);
if (my_smbus_access(
i2cInfo[handle].fd, PI_I2C_SMBUS_READ, reg, PI_I2C_SMBUS_BLOCK_DATA, &data))
return PI_I2C_READ_FAILED;
else
{
if (data.block[0] <= PI_I2C_SMBUS_BLOCK_MAX)
{
for (i=0; i<data.block[0]; i++) buf[i] = data.block[i+1];
return data.block[0];
}
else return PI_I2C_READ_FAILED;
}
}
int i2cWriteBlockData(
unsigned handle, unsigned reg, char *buf, unsigned count)
{
union my_smbus_data data;
int i, err;
DBG(DBG_USER, "handle=%d reg=%d count=%d [%s]",
handle, reg, count, myBuf2Str(count, buf));
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (reg > 0xFF)
SOFT_ERROR(PI_BAD_PARAM, "bad reg (%d)", reg);
if ((count < 1) || (count > 32))
SOFT_ERROR(PI_BAD_PARAM, "bad count (%d)", count);
for (i=1; i<=count; i++) data.block[i] = buf[i-1];
data.block[0] = count;
err = my_smbus_access(
i2cInfo[handle].fd,
PI_I2C_SMBUS_WRITE,
reg,
PI_I2C_SMBUS_BLOCK_DATA,
&data);
if (err < 0) return PI_I2C_WRITE_FAILED;
return err;
}
int i2cBlockProcessCall(
unsigned handle, unsigned reg, char *buf, unsigned count)
{
union my_smbus_data data;
int i;
DBG(DBG_USER, "handle=%d reg=%d count=%d [%s]",
handle, reg, count, myBuf2Str(count, buf));
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (reg > 0xFF)
SOFT_ERROR(PI_BAD_PARAM, "bad reg (%d)", reg);
if ((count < 1) || (count > 32))
SOFT_ERROR(PI_BAD_PARAM, "bad count (%d)", count);
for (i=1; i<=count; i++) data.block[i] = buf[i-1];
data.block[0] = count;
if (my_smbus_access(
i2cInfo[handle].fd, PI_I2C_SMBUS_WRITE, reg,
PI_I2C_SMBUS_BLOCK_PROC_CALL, &data))
return PI_I2C_READ_FAILED;
else
{
if (data.block[0] <= PI_I2C_SMBUS_BLOCK_MAX)
{
for (i=0; i<data.block[0]; i++) buf[i] = data.block[i+1];
return data.block[0];
}
else return PI_I2C_READ_FAILED;
}
}
int i2cReadI2CBlockData(
unsigned handle, unsigned reg, char *buf, unsigned count)
{
union my_smbus_data data;
int i;
uint32_t size;
DBG(DBG_USER, "handle=%d reg=%d count=%d buf=%08X",
handle, reg, count, (unsigned)buf);
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (reg > 0xFF)
SOFT_ERROR(PI_BAD_PARAM, "bad reg (%d)", reg);
if ((count < 1) || (count > 32))
SOFT_ERROR(PI_BAD_PARAM, "bad count (%d)", count);
if (count == 32)
size = PI_I2C_SMBUS_I2C_BLOCK_BROKEN;
else
size = PI_I2C_SMBUS_I2C_BLOCK_DATA;
data.block[0] = count;
if (my_smbus_access(
i2cInfo[handle].fd, PI_I2C_SMBUS_READ, reg, size, &data))
return PI_I2C_READ_FAILED;
else
{
if (data.block[0] <= PI_I2C_SMBUS_I2C_BLOCK_MAX)
{
for (i=0; i<data.block[0]; i++) buf[i] = data.block[i+1];
return data.block[0];
}
else return PI_I2C_READ_FAILED;
}
}
int i2cWriteI2CBlockData(
unsigned handle, unsigned reg, char *buf, unsigned count)
{
union my_smbus_data data;
int i, err;
DBG(DBG_USER, "handle=%d reg=%d count=%d [%s]",
handle, reg, count, myBuf2Str(count, buf));
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (reg > 0xFF)
SOFT_ERROR(PI_BAD_PARAM, "bad reg (%d)", reg);
if ((count < 1) || (count > 32))
SOFT_ERROR(PI_BAD_PARAM, "bad count (%d)", count);
for (i=1; i<=count; i++) data.block[i] = buf[i-1];
data.block[0] = count;
err = my_smbus_access(
i2cInfo[handle].fd,
PI_I2C_SMBUS_WRITE,
reg,
PI_I2C_SMBUS_I2C_BLOCK_BROKEN,
&data);
if (err < 0) return PI_I2C_WRITE_FAILED;
return err;
}
int i2cWriteDevice(unsigned handle, char *buf, unsigned count)
{
int bytes;
DBG(DBG_USER, "handle=%d count=%d [%s]",
handle, count, myBuf2Str(count, buf));
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if ((count < 1) || (count > PI_MAX_I2C_DEVICE_COUNT))
SOFT_ERROR(PI_BAD_PARAM, "bad count (%d)", count);
bytes = write(i2cInfo[handle].fd, buf, count);
if (bytes != count)
return PI_I2C_WRITE_FAILED;
else
return 0;
}
int i2cReadDevice(unsigned handle, char *buf, unsigned count)
{
int bytes;
DBG(DBG_USER, "handle=%d count=%d buf=%08X",
handle, count, (unsigned)buf);
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state == PI_I2C_CLOSED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if ((count < 1) || (count > PI_MAX_I2C_DEVICE_COUNT))
SOFT_ERROR(PI_BAD_PARAM, "bad count (%d)", count);
bytes = read(i2cInfo[handle].fd, buf, count);
if (bytes != count)
return PI_I2C_READ_FAILED;
else
return bytes;
}
int i2cOpen(unsigned i2cBus, unsigned i2cAddr, unsigned i2cFlags)
{
char dev[32];
int i, slot, fd;
DBG(DBG_USER, "i2cBus=%d i2cAddr=%d flags=0x%X",
i2cBus, i2cAddr, i2cFlags);
CHECK_INITED;
if (i2cBus >= PI_NUM_I2C_BUS)
SOFT_ERROR(PI_BAD_I2C_BUS, "bad I2C bus (%d)", i2cBus);
if ((i2cAddr < 0x08) || (i2cAddr > 0x77))
SOFT_ERROR(PI_BAD_I2C_ADDR, "bad I2C address (0x%X)", i2cAddr);
if (i2cFlags)
SOFT_ERROR(PI_BAD_FLAGS, "bad flags (0x%X)", i2cFlags);
slot = -1;
for (i=0; i<PI_I2C_SLOTS; i++)
{
if (i2cInfo[i].state == PI_I2C_CLOSED)
{
i2cInfo[i].state = PI_I2C_OPENED;
slot = i;
break;
}
}
if (slot < 0)
SOFT_ERROR(PI_NO_HANDLE, "no I2C handles");
sprintf(dev, "/dev/i2c-%d", i2cBus);
if ((fd = open(dev, O_RDWR)) < 0)
{
/* try a modprobe */
system("/sbin/modprobe i2c_dev");
system("/sbin/modprobe i2c_bcm2708");
usleep(100000);
if ((fd = open(dev, O_RDWR)) < 0)
{
i2cInfo[slot].state = PI_I2C_CLOSED;
return PI_I2C_OPEN_FAILED;
}
}
if (ioctl(fd, PI_I2C_SLAVE, i2cAddr) < 0)
{
close(fd);
i2cInfo[slot].state = PI_I2C_CLOSED;
return PI_I2C_OPEN_FAILED;
}
i2cInfo[slot].fd = fd;
i2cInfo[slot].flags = i2cFlags;
return slot;
}
int i2cClose(unsigned handle)
{
DBG(DBG_USER, "handle=%d", handle);
CHECK_INITED;
if (handle >= PI_I2C_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].state != PI_I2C_OPENED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (i2cInfo[handle].fd >= 0) close(i2cInfo[handle].fd);
i2cInfo[handle].fd = -1;
i2cInfo[handle].state = PI_I2C_CLOSED;
return 0;
}
/* ======================================================================= */
/*SPI */
static uint32_t spi_dummy; /* only used to prevent warning */
static unsigned old_mode_ce0;
static unsigned old_mode_ce1;
static unsigned old_mode_sclk;
static unsigned old_mode_miso;
static unsigned old_mode_mosi;
static uint32_t old_spi_cs;
static uint32_t old_spi_clk;
static unsigned old_mode_ace0;
static unsigned old_mode_ace1;
static unsigned old_mode_ace2;
static unsigned old_mode_asclk;
static unsigned old_mode_amiso;
static unsigned old_mode_amosi;
static uint32_t old_spi_cntl0;
static uint32_t old_spi_cntl1;
static void spiInit(uint32_t flags)
{
int resvd;
resvd = PI_SPI_FLAGS_GET_RESVD(flags);
if (PI_SPI_FLAGS_GET_AUX_SPI(flags))
{
/* enable module and access to registers */
auxReg[AUX_ENABLES] |= AUXENB_SPI1;
/* save original state */
old_mode_ace0 = gpioGetMode(PI_ASPI_CE0);
old_mode_ace1 = gpioGetMode(PI_ASPI_CE1);
old_mode_ace2 = gpioGetMode(PI_ASPI_CE2);
old_mode_asclk = gpioGetMode(PI_ASPI_SCLK);
old_mode_amiso = gpioGetMode(PI_ASPI_MISO);
old_mode_amosi = gpioGetMode(PI_ASPI_MOSI);
old_spi_cntl0 = auxReg[AUX_SPI0_CNTL0_REG];
old_spi_cntl1 = auxReg[AUX_SPI0_CNTL1_REG];
/* set gpios to SPI mode */
if (!(resvd&1)) gpioSetMode(PI_ASPI_CE0, PI_ALT4);
if (!(resvd&2)) gpioSetMode(PI_ASPI_CE1, PI_ALT4);
if (!(resvd&4)) gpioSetMode(PI_ASPI_CE2, PI_ALT4);
gpioSetMode(PI_ASPI_SCLK, PI_ALT4);
gpioSetMode(PI_ASPI_MISO, PI_ALT4);
gpioSetMode(PI_ASPI_MOSI, PI_ALT4);
}
else
{
/* save original state */
old_mode_ce0 = gpioGetMode(PI_SPI_CE0);
old_mode_ce1 = gpioGetMode(PI_SPI_CE1);
old_mode_sclk = gpioGetMode(PI_SPI_SCLK);
old_mode_miso = gpioGetMode(PI_SPI_MISO);
old_mode_mosi = gpioGetMode(PI_SPI_MOSI);
old_spi_cs = spiReg[SPI_CS];
old_spi_clk = spiReg[SPI_CLK];
/* set gpios to SPI mode */
if (!(resvd&1)) gpioSetMode(PI_SPI_CE0, PI_ALT0);
if (!(resvd&2)) gpioSetMode(PI_SPI_CE1, PI_ALT0);
gpioSetMode(PI_SPI_SCLK, PI_ALT0);
gpioSetMode(PI_SPI_MISO, PI_ALT0);
gpioSetMode(PI_SPI_MOSI, PI_ALT0);
}
}
void spiTerm(uint32_t flags)
{
int resvd;
resvd = PI_SPI_FLAGS_GET_RESVD(flags);
if (PI_SPI_FLAGS_GET_AUX_SPI(flags))
{
/* restore original state */
if (!(resvd&1)) gpioSetMode(PI_ASPI_CE0, old_mode_ace0);
if (!(resvd&2)) gpioSetMode(PI_ASPI_CE1, old_mode_ace1);
if (!(resvd&4)) gpioSetMode(PI_ASPI_CE2, old_mode_ace2);
gpioSetMode(PI_ASPI_SCLK, old_mode_asclk);
gpioSetMode(PI_ASPI_MISO, old_mode_amiso);
gpioSetMode(PI_ASPI_MOSI, old_mode_amosi);
auxReg[AUX_SPI0_CNTL0_REG] = old_spi_cntl0;
auxReg[AUX_SPI0_CNTL1_REG] = old_spi_cntl1;
}
else
{
/* restore original state */
if (!(resvd&1)) gpioSetMode(PI_SPI_CE0, old_mode_ce0);
if (!(resvd&2)) gpioSetMode(PI_SPI_CE1, old_mode_ce1);
gpioSetMode(PI_SPI_SCLK, old_mode_sclk);
gpioSetMode(PI_SPI_MISO, old_mode_miso);
gpioSetMode(PI_SPI_MOSI, old_mode_mosi);
spiReg[SPI_CS] = old_spi_cs;
spiReg[SPI_CLK] = old_spi_clk;
}
}
uint32_t _spiTXBits(char *buf, int pos, int bitlen, int msbf)
{
uint32_t bits=0;
if (buf)
{
if (bitlen <= 8) bits = *((( uint8_t*)buf)+pos);
else if (bitlen <= 16) bits = *(((uint16_t*)buf)+pos);
else bits = *(((uint32_t*)buf)+pos);
if (msbf) bits <<= (32-bitlen);
}
return bits;
}
void _spiRXBits(char *buf, int pos, int bitlen, int msbf, uint32_t bits)
{
if (buf)
{
if (!msbf) bits >>= (32-bitlen);
if (bitlen <= 8) *((( uint8_t*)buf)+pos) = bits;
else if (bitlen <= 16) *(((uint16_t*)buf)+pos) = bits;
else *(((uint32_t*)buf)+pos) = bits;
}
}
void spiGoA(
unsigned speed, /* bits per second */
uint32_t flags, /* flags */
char *txBuf, /* tx buffer */
char *rxBuf, /* rx buffer */
unsigned count) /* number of bytes */
{
char bit_cs;
char bit_ir[4] = {1, 0, 1, 0};
char bit_or[4] = {0, 1, 0, 1};
char bit_ic[4] = {0, 0, 1, 1};
int mode, bitlen, txmsbf, rxmsbf, channel;
unsigned txCnt=0;
unsigned rxCnt=0;
uint32_t spiDefaults;
uint32_t statusReg;
int txFull, rxEmpty;
channel = PI_SPI_FLAGS_GET_CHANNEL(flags);
mode = PI_SPI_FLAGS_GET_MODE (flags);
bitlen = PI_SPI_FLAGS_GET_BITLEN (flags);
if (!bitlen) bitlen = 8;
txmsbf = !PI_SPI_FLAGS_GET_TX_LSB (flags);
rxmsbf = !PI_SPI_FLAGS_GET_RX_LSB (flags);
bit_cs = ~PI_SPI_FLAGS_GET_CSPOLS(flags);
bit_cs = (1<<channel) ^ bit_cs;
bit_cs &= 7;
spiDefaults = AUXSPI_CNTL0_SPEED(125000000/speed) |
AUXSPI_CNTL0_CS(bit_cs) |
AUXSPI_CNTL0_IN_RISING(bit_ir[mode]) |
AUXSPI_CNTL0_OUT_RISING(bit_or[mode]) |
AUXSPI_CNTL0_INVERT_CLK(bit_ic[mode]) |
AUXSPI_CNTL0_MSB_FIRST(txmsbf) |
AUXSPI_CNTL0_SHIFT_LEN(bitlen);
auxReg[AUX_SPI0_CNTL0_REG] = AUXSPI_CNTL0_ENABLE | AUXSPI_CNTL0_CLR_FIFOS;
auxReg[AUX_SPI0_CNTL0_REG] = AUXSPI_CNTL0_ENABLE | spiDefaults;
auxReg[AUX_SPI0_CNTL1_REG] = AUXSPI_CNTL1_MSB_FIRST(rxmsbf);
while ((txCnt < count) || (rxCnt < count))
{
statusReg = auxReg[AUX_SPI0_STAT_REG];
rxEmpty = statusReg & AUXSPI_STAT_RX_EMPTY;
txFull = (((statusReg>>28)&15) > 2);
if (rxCnt < count)
{
if (!rxEmpty)
{
_spiRXBits(rxBuf, rxCnt++, bitlen, rxmsbf, auxReg[AUX_SPI0_IO_REG]);
}
}
if (txCnt < count)
{
if (!txFull)
{
if (txCnt != (count-1))
{
auxReg[AUX_SPI0_TX_HOLD] =
_spiTXBits(txBuf, txCnt++, bitlen, txmsbf);
}
else
{
auxReg[AUX_SPI0_IO_REG] =
_spiTXBits(txBuf, txCnt++, bitlen, txmsbf);
}
}
}
}
while ((auxReg[AUX_SPI0_STAT_REG] & AUXSPI_STAT_BUSY)) ;
auxReg[AUX_SPI0_CNTL0_REG] = spiDefaults; /* stop */
}
static void spiGoS(
unsigned speed,
uint32_t flags,
char *txBuf,
char *rxBuf,
unsigned count)
{
unsigned txCnt=0;
unsigned rxCnt=0;
unsigned cnt, cnt4w, cnt3w;
uint32_t spiDefaults;
unsigned mode, channel, cspol, cspols, flag3w, ren3w;
channel = PI_SPI_FLAGS_GET_CHANNEL(flags);
mode = PI_SPI_FLAGS_GET_MODE (flags);
cspols = PI_SPI_FLAGS_GET_CSPOLS(flags);
cspol = (cspols>>channel) & 1;
flag3w = PI_SPI_FLAGS_GET_3WIRE(flags);
ren3w = PI_SPI_FLAGS_GET_3WREN(flags);
spiDefaults = SPI_CS_MODE(mode) |
SPI_CS_CSPOLS(cspols) |
SPI_CS_CS(channel) |
SPI_CS_CSPOL(cspol) |
SPI_CS_CLEAR(3);
if (flag3w)
{
if (ren3w < count)
{
cnt4w = ren3w;
cnt3w = count - ren3w;
}
else
{
cnt4w = count;
cnt3w = 0;
}
}
else
{
cnt4w = count;
cnt3w = 0;
}
spiReg[SPI_CLK] = 250000000/speed;
spiReg[SPI_CS] = spiDefaults | SPI_CS_TA; /* start */
cnt = cnt4w;
while((txCnt < cnt) || (rxCnt < cnt))
{
while((rxCnt < cnt) && ((spiReg[SPI_CS] & SPI_CS_RXD)))
{
if (rxBuf) rxBuf[rxCnt] = spiReg[SPI_FIFO];
else spi_dummy = spiReg[SPI_FIFO];
rxCnt++;
}
while((txCnt < cnt) && ((spiReg[SPI_CS] & SPI_CS_TXD)))
{
if (txBuf) spiReg[SPI_FIFO] = txBuf[txCnt];
else spiReg[SPI_FIFO] = 0;
txCnt++;
}
}
while (!(spiReg[SPI_CS] & SPI_CS_DONE)) ;
/* now switch to 3-wire bus */
cnt += cnt3w;
spiReg[SPI_CS] |= SPI_CS_REN;
while((txCnt < cnt) || (rxCnt < cnt))
{
while((rxCnt < cnt) && ((spiReg[SPI_CS] & SPI_CS_RXD)))
{
if (rxBuf) rxBuf[rxCnt] = spiReg[SPI_FIFO];
else spi_dummy = spiReg[SPI_FIFO];
rxCnt++;
}
while((txCnt < cnt) && ((spiReg[SPI_CS] & SPI_CS_TXD)))
{
if (txBuf) spiReg[SPI_FIFO] = txBuf[txCnt];
else spiReg[SPI_FIFO] = 0;
txCnt++;
}
}
while (!(spiReg[SPI_CS] & SPI_CS_DONE)) ;
spiReg[SPI_CS] = spiDefaults; /* stop */
}
static void spiGo(
unsigned speed,
uint32_t flags,
char *txBuf,
char *rxBuf,
unsigned count)
{
if (PI_SPI_FLAGS_GET_AUX_SPI(flags))
spiGoA(speed, flags, txBuf, rxBuf, count);
else
spiGoS(speed, flags, txBuf, rxBuf, count);
}
static int spiAnyOpen(uint32_t flags)
{
int i, aux;
aux = PI_SPI_FLAGS_GET_AUX_SPI(flags);
for (i=0; i<PI_SPI_SLOTS; i++)
{
if ((spiInfo[i].state == PI_SPI_OPENED) &&
(PI_SPI_FLAGS_GET_AUX_SPI(spiInfo[i].flags) == aux))
return 1;
}
return 0;
}
int spiOpen(unsigned spiChan, unsigned spiBaud, unsigned spiFlags)
{
int i, slot;
DBG(DBG_USER, "spiChan=%d spiBaud=%d spiFlags=0x%X",
spiChan, spiBaud, spiFlags);
CHECK_INITED;
if (PI_SPI_FLAGS_GET_AUX_SPI(spiFlags))
{
if (gpioHardwareRevision() < 16)
SOFT_ERROR(PI_NO_AUX_SPI, "no auxiliary SPI, need a B+");
i = PI_NUM_AUX_SPI_CHANNEL;
}
else
i = PI_NUM_STD_SPI_CHANNEL;
if (spiChan >= i)
SOFT_ERROR(PI_BAD_SPI_CHANNEL, "bad spiChan (%d)", spiChan);
if ((spiBaud < MIN_SPI_SPEED) || (spiBaud > MAX_SPI_SPEED))
SOFT_ERROR(PI_BAD_SPI_SPEED, "bad spiBaud (%d)", spiBaud);
if (spiFlags > (1<<22))
SOFT_ERROR(PI_BAD_FLAGS, "bad spiFlags (0x%X)", spiFlags);
if (!spiAnyOpen(spiFlags)) spiInit(spiFlags); /* initialise on first open */
slot = -1;
for (i=0; i<PI_SPI_SLOTS; i++)
{
if (spiInfo[i].state == PI_SPI_CLOSED)
{
spiInfo[i].state = PI_SPI_OPENED;
slot = i;
break;
}
}
if (slot < 0)
SOFT_ERROR(PI_NO_HANDLE, "no SPI handles");
spiInfo[slot].speed = spiBaud;
spiInfo[slot].flags = spiFlags | PI_SPI_FLAGS_CHANNEL(spiChan);
return slot;
}
int spiClose(unsigned handle)
{
DBG(DBG_USER, "handle=%d", handle);
CHECK_INITED;
if (handle >= PI_SPI_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (spiInfo[handle].state != PI_SPI_OPENED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
spiInfo[handle].state = PI_I2C_CLOSED;
if (!spiAnyOpen(spiInfo[handle].flags))
spiTerm(spiInfo[handle].flags); /* terminate on last close */
return 0;
}
int spiRead(unsigned handle, char *buf, unsigned count)
{
DBG(DBG_USER, "handle=%d count=%d [%s]",
handle, count, myBuf2Str(count, buf));
CHECK_INITED;
if (handle >= PI_SPI_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (spiInfo[handle].state != PI_SPI_OPENED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if ((count < 1) || (count > PI_MAX_SPI_DEVICE_COUNT))
SOFT_ERROR(PI_BAD_SPI_COUNT, "bad count (%d)", count);
spiGo(spiInfo[handle].speed, spiInfo[handle].flags, NULL, buf, count);
return count;
}
int spiWrite(unsigned handle, char *buf, unsigned count)
{
DBG(DBG_USER, "handle=%d count=%d [%s]",
handle, count, myBuf2Str(count, buf));
CHECK_INITED;
if (handle >= PI_SPI_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (spiInfo[handle].state != PI_SPI_OPENED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if ((count < 1) || (count > PI_MAX_SPI_DEVICE_COUNT))
SOFT_ERROR(PI_BAD_SPI_COUNT, "bad count (%d)", count);
spiGo(spiInfo[handle].speed, spiInfo[handle].flags, buf, NULL, count);
return count;
}
int spiXfer(unsigned handle, char *txBuf, char *rxBuf, unsigned count)
{
DBG(DBG_USER, "handle=%d count=%d [%s]",
handle, count, myBuf2Str(count, txBuf));
CHECK_INITED;
if (handle >= PI_SPI_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (spiInfo[handle].state != PI_SPI_OPENED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if ((count < 1) || (count > PI_MAX_SPI_DEVICE_COUNT))
SOFT_ERROR(PI_BAD_SPI_COUNT, "bad count (%d)", count);
spiGo(spiInfo[handle].speed, spiInfo[handle].flags, txBuf, rxBuf, count);
return count;
}
/* ======================================================================= */
int serOpen(char *tty, unsigned serBaud, unsigned serFlags)
{
struct termios new;
int speed;
int fd;
int i, slot;
DBG(DBG_USER, "tty=%s serBaud=%d serFlags=0x%X", tty, serBaud, serFlags);
CHECK_INITED;
if (strncmp("/dev/tty", tty, 8))
SOFT_ERROR(PI_BAD_SER_DEVICE, "bad device (%s)", tty);
switch (serBaud)
{
case 50: speed = B50; break;
case 75: speed = B75; break;
case 110: speed = B110; break;
case 134: speed = B134; break;
case 150: speed = B150; break;
case 200: speed = B200; break;
case 300: speed = B300; break;
case 600: speed = B600; break;
case 1200: speed = B1200; break;
case 1800: speed = B1800; break;
case 2400: speed = B2400; break;
case 4800: speed = B4800; break;
case 9600: speed = B9600; break;
case 19200: speed = B19200; break;
case 38400: speed = B38400; break;
case 57600: speed = B57600; break;
case 115200: speed = B115200; break;
case 230400: speed = B230400; break;
default:
SOFT_ERROR(PI_BAD_SER_SPEED, "bad speed (%d)", serBaud);
}
if (serFlags)
SOFT_ERROR(PI_BAD_FLAGS, "bad flags (0x%X)", serFlags);
slot = -1;
for (i=0; i<PI_SER_SLOTS; i++)
{
if (serInfo[i].state == PI_SER_CLOSED)
{
serInfo[i].state = PI_SER_OPENED;
slot = i;
break;
}
}
if (slot < 0)
SOFT_ERROR(PI_NO_HANDLE, "no serial handles");
if ((fd = open(tty, O_RDWR | O_NOCTTY | O_NDELAY | O_NONBLOCK)) == -1)
{
serInfo[slot].state = PI_SER_CLOSED;
return PI_SER_OPEN_FAILED;
}
tcgetattr(fd, &new);
cfmakeraw(&new);
cfsetispeed(&new, speed);
cfsetospeed(&new, speed);
new.c_cc [VMIN] = 0;
new.c_cc [VTIME] = 0;
tcflush(fd, TCIFLUSH);
tcsetattr(fd, TCSANOW, &new);
//fcntl(fd, F_SETFL, O_RDWR);
serInfo[slot].fd = fd;
serInfo[slot].flags = serFlags;
return slot;
}
int serClose(unsigned handle)
{
DBG(DBG_USER, "handle=%d", handle);
CHECK_INITED;
if (handle >= PI_SER_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (serInfo[handle].state != PI_SER_OPENED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (serInfo[handle].fd >= 0) close(serInfo[handle].fd);
serInfo[handle].fd = -1;
serInfo[handle].state = PI_SER_CLOSED;
return 0;
}
int serWriteByte(unsigned handle, unsigned bVal)
{
char c;
DBG(DBG_USER, "handle=%d bVal=%d", handle, bVal);
CHECK_INITED;
if (handle >= PI_SER_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (serInfo[handle].state != PI_SER_OPENED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (bVal > 0xFF)
SOFT_ERROR(PI_BAD_PARAM, "bad parameter (%d)", bVal);
c = bVal;
if (write(serInfo[handle].fd, &c, 1) != 1)
return PI_SER_WRITE_FAILED;
else
return 0;
}
int serReadByte(unsigned handle)
{
char x;
DBG(DBG_USER, "handle=%d", handle);
CHECK_INITED;
if (handle >= PI_SER_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (serInfo[handle].state != PI_SER_OPENED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (read(serInfo[handle].fd, &x, 1) != 1)
{
if (errno == EAGAIN)
return PI_SER_READ_NO_DATA;
else
return PI_SER_READ_FAILED;
}
return ((int)x) & 0xFF;
}
int serWrite(unsigned handle, char *buf, unsigned count)
{
DBG(DBG_USER, "handle=%d count=%d [%s]",
handle, count, myBuf2Str(count, buf));
CHECK_INITED;
if (handle >= PI_SER_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (serInfo[handle].state != PI_SER_OPENED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (!count)
SOFT_ERROR(PI_BAD_PARAM, "bad count (%d)", count);
if (write(serInfo[handle].fd, buf, count) != count)
return PI_SER_WRITE_FAILED;
else
return 0;
}
int serRead(unsigned handle, char *buf, unsigned count)
{
int r;
DBG(DBG_USER, "handle=%d count=%d buf=0x%X", handle, count, (unsigned)buf);
CHECK_INITED;
if (handle >= PI_SER_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (serInfo[handle].state != PI_SER_OPENED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (!count)
SOFT_ERROR(PI_BAD_PARAM, "bad count (%d)", count);
r = read(serInfo[handle].fd, buf, count);
if (r == -1)
{
if (errno == EAGAIN)
return PI_SER_READ_NO_DATA;
else
return PI_SER_READ_FAILED;
}
else
{
buf[r] = 0;
return r;
}
}
int serDataAvailable(unsigned handle)
{
int result;
DBG(DBG_USER, "handle=%d", handle);
CHECK_INITED;
if (handle >= PI_SER_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (serInfo[handle].state != PI_SER_OPENED)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (ioctl(serInfo[handle].fd, FIONREAD, &result) == -1) return 0;
return result;
}
/* ======================================================================= */
static rawCbs_t * dmaCB2adr(int pos)
{
int page, slot;
page = pos/CBS_PER_IPAGE;
slot = pos%CBS_PER_IPAGE;
return &dmaIVirt[page]->cb[slot];
}
/* ----------------------------------------------------------------------- */
static void dmaCbPrint(int pos)
{
rawCbs_t * p;
p = dmaCB2adr(pos);
fprintf(stderr, "i=%lx s=%lx d=%lx len=%lx s=%lx nxt=%lx\n",
p->info, p->src, p->dst, p->length, p->stride, p->next);
}
/* ----------------------------------------------------------------------- */
static unsigned dmaNowAtICB(void)
{
unsigned cb;
static unsigned lastPage=0;
unsigned page;
uint32_t cbAddr;
uint32_t startTick, endTick;
startTick = systReg[SYST_CLO];
cbAddr = dmaIn[DMA_CONBLK_AD];
page = lastPage;
/* which page are we dma'ing? */
while (1)
{
cb = (cbAddr - ((int)dmaIPhys[page] | DMA_BUS_ADR)) / 32;
if (cb < CBS_PER_IPAGE)
{
endTick = systReg[SYST_CLO];
if (endTick != startTick)
gpioStats.cbTicks += (endTick - startTick);
else gpioStats.cbTicks ++;
gpioStats.cbCalls++;
lastPage = page;
return (page*CBS_PER_IPAGE) + cb;
}
if (page++ >= DMAI_PAGES) page=0;
if (page == lastPage) break;
}
return 0;
}
/* ----------------------------------------------------------------------- */
unsigned rawWaveCB(void)
{
unsigned cb;
static unsigned lastPage=0;
unsigned page;
uint32_t cbAddr;
cbAddr = dmaOut[DMA_CONBLK_AD];
if (!cbAddr) return -1;
page = lastPage;
/* which page are we dma'ing? */
while (1)
{
cb = (cbAddr - ((int)dmaOPhys[page] | DMA_BUS_ADR)) / 32;
if (cb < CBS_PER_OPAGE)
{
lastPage = page;
return (page*CBS_PER_OPAGE) + cb;
}
if (page++ >= DMAO_PAGES) page=0;
if (page == lastPage) break;
}
return 0;
}
/* ----------------------------------------------------------------------- */
static unsigned dmaCurrentSlot(unsigned pos)
{
unsigned cycle=0, slot=0, tmp;
cycle = (pos/CBS_PER_CYCLE);
tmp = (pos%CBS_PER_CYCLE);
if (tmp > 2) slot = ((tmp-2)/3);
return (cycle*PULSE_PER_CYCLE)+slot;
}
/* ----------------------------------------------------------------------- */
static uint32_t dmaPwmDataAdr(int pos)
{
return (uint32_t) &dmaIPhys[pos]->periphData;
}
/* ----------------------------------------------------------------------- */
static uint32_t dmaGpioOnAdr(int pos)
{
int page, slot;
page = pos/ON_PER_IPAGE;
slot = pos%ON_PER_IPAGE;
return (uint32_t) &dmaIPhys[page]->gpioOn[slot];
}
/* ----------------------------------------------------------------------- */
static uint32_t dmaGpioOffAdr(int pos)
{
int page, slot;
myOffPageSlot(pos, &page, &slot);
return (uint32_t) &dmaIPhys[page]->gpioOff[slot];
}
/* ----------------------------------------------------------------------- */
static uint32_t dmaTickAdr(int pos)
{
int page, slot;
myTckPageSlot(pos, &page, &slot);
return (uint32_t) &dmaIPhys[page]->tick[slot];
}
/* ----------------------------------------------------------------------- */
static uint32_t dmaReadLevelsAdr(int pos)
{
int page, slot;
myLvsPageSlot(pos, &page, &slot);
return (uint32_t) &dmaIPhys[page]->level[slot];
}
/* ----------------------------------------------------------------------- */
static uint32_t dmaCbAdr(int pos)
{
int page, slot;
page = (pos/CBS_PER_IPAGE);
slot = (pos%CBS_PER_IPAGE);
return (uint32_t) &dmaIPhys[page]->cb[slot];
}
/* ----------------------------------------------------------------------- */
static void dmaGpioOnCb(int b, int pos)
{
rawCbs_t * p;
p = dmaCB2adr(b);
p->info = NORMAL_DMA;
p->src = dmaGpioOnAdr(pos) | DMA_BUS_ADR;
p->dst = ((GPIO_BASE + (GPSET0*4)) & 0x00ffffff) | 0x7e000000;
p->length = 4;
p->next = dmaCbAdr(b+1) | DMA_BUS_ADR;
}
/* ----------------------------------------------------------------------- */
static void dmaTickCb(int b, int pos)
{
rawCbs_t * p;
p = dmaCB2adr(b);
p->info = NORMAL_DMA;
p->src = ((SYST_BASE + (SYST_CLO*4)) & 0x00ffffff) | 0x7e000000;
p->dst = dmaTickAdr(pos) | DMA_BUS_ADR;
p->length = 4;
p->next = dmaCbAdr(b+1) | DMA_BUS_ADR;
}
/* ----------------------------------------------------------------------- */
static void dmaGpioOffCb(int b, int pos)
{
rawCbs_t * p;
p = dmaCB2adr(b);
p->info = NORMAL_DMA;
p->src = dmaGpioOffAdr(pos) | DMA_BUS_ADR;
p->dst = ((GPIO_BASE + (GPCLR0*4)) & 0x00ffffff) | 0x7e000000;
p->length = 4;
p->next = dmaCbAdr(b+1) | DMA_BUS_ADR;
}
/* ----------------------------------------------------------------------- */
static void dmaReadLevelsCb(int b, int pos)
{
rawCbs_t * p;
p = dmaCB2adr(b);
p->info = NORMAL_DMA;
p->src = ((GPIO_BASE + (GPLEV0*4)) & 0x00ffffff) | 0x7e000000;
p->dst = dmaReadLevelsAdr(pos) | DMA_BUS_ADR;
p->length = 4;
p->next = dmaCbAdr(b+1) | DMA_BUS_ADR;
}
/* ----------------------------------------------------------------------- */
static void dmaDelayCb(int b)
{
rawCbs_t * p;
p = dmaCB2adr(b);
if (gpioCfg.clockPeriph == PI_CLOCK_PCM)
{
p->info = NORMAL_DMA | TIMED_DMA(2);
p->dst = ((PCM_BASE + PCM_FIFO*4) & 0x00ffffff) | 0x7e000000;
}
else
{
p->info = NORMAL_DMA | TIMED_DMA(5);
p->dst = ((PWM_BASE + PWM_FIFO*4) & 0x00ffffff) | 0x7e000000;
}
p->src = dmaPwmDataAdr(b%DMAI_PAGES) | DMA_BUS_ADR;
p->length = 4;
p->next = dmaCbAdr(b+1) | DMA_BUS_ADR;
}
/* ----------------------------------------------------------------------- */
static void dmaInitCbs(void)
{
int b, pulse, level, cycle;
rawCbs_t * p;
/* set up the DMA control blocks */
DBG(DBG_STARTUP, "");
b = -1;
level = 0;
for (cycle=0; cycle<bufferCycles; cycle++)
{
b++; dmaGpioOnCb(b, cycle%SUPERCYCLE); /* gpio on slot */
b++; dmaTickCb(b, cycle); /* tick slot */
for (pulse=0; pulse<PULSE_PER_CYCLE; pulse++)
{
b++; dmaReadLevelsCb(b, level); /* read levels slot */
b++; dmaDelayCb(b); /* delay slot */
b++; dmaGpioOffCb(b, (level%SUPERLEVEL)+1); /* gpio off slot */
++level;
}
}
/* point last cb back to first for continuous loop */
p = dmaCB2adr(b);
p->next = dmaCbAdr(0) | DMA_BUS_ADR;
DBG(DBG_STARTUP, "DMA page type count = %d", sizeof(dmaIPage_t));
DBG(DBG_STARTUP, "%d control blocks (exp=%d)", b+1, NUM_CBS);
}
/* ======================================================================= */
static void sigHandler(int signum)
{
if ((signum >= PI_MIN_SIGNUM) && (signum <= PI_MAX_SIGNUM))
{
if (gpioSignal[signum].func)
{
if (gpioSignal[signum].ex)
{
(gpioSignal[signum].func)(signum, gpioSignal[signum].userdata);
}
else
{
(gpioSignal[signum].func)(signum);
}
}
else
{
if (signum == SIGUSR1)
{
if (gpioCfg.dbgLevel > DBG_MIN_LEVEL)
{
--gpioCfg.dbgLevel;
}
else gpioCfg.dbgLevel = DBG_MIN_LEVEL;
DBG(DBG_USER, "Debug level %d\n", gpioCfg.dbgLevel);
}
else if (signum == SIGUSR2)
{
if (gpioCfg.dbgLevel < DBG_MAX_LEVEL)
{
++gpioCfg.dbgLevel;
}
else gpioCfg.dbgLevel = DBG_MAX_LEVEL;
DBG(DBG_USER, "Debug level %d\n", gpioCfg.dbgLevel);
}
else if (signum == SIGPIPE)
{
/* can happen when pipe/socket is remote closed */
DBG(DBG_USER, "SIGPIPE received");
}
else if (signum == SIGCHLD)
{
/* happens when system call is made */
DBG(DBG_USER, "SIGCHLD received");
}
else
{
/* exit */
DBG(DBG_ALWAYS, "Unhandled signal %d, terminating\n", signum);
exit(-1);
}
}
}
else
{
/* exit */
DBG(DBG_ALWAYS, "Unhandled signal %d, terminating\n", signum);
exit(-1);
}
}
/* ----------------------------------------------------------------------- */
static void sigSetHandler(void)
{
int i;
struct sigaction new;
for (i=PI_MIN_SIGNUM; i<=PI_MAX_SIGNUM; i++)
{
memset(&new, 0, sizeof(new));
new.sa_handler = sigHandler;
sigaction(i, &new, NULL);
}
}
/* ======================================================================= */
static void * pthAlertThread(void *x)
{
struct timespec req, rem;
uint32_t oldLevel, newLevel, level, reportedLevel;
uint32_t oldSlot, newSlot;
uint32_t tick, expected;
int32_t diff;
int cycle, pulse;
int emit, seqno, emitted;
uint32_t changes, bits, changedBits, timeoutBits;
int numSamples, d;
int b, n, v;
int err;
char fifo[32];
req.tv_sec = 0;
/* don't start until DMA started */
while (!DMAstarted) myGpioDelay(1000);
myGpioDelay(20000); /* let DMA run for a while */
reportedLevel = gpioReg[GPLEV0];
tick = systReg[SYST_CLO];
gpioStats.startTick = tick;
oldSlot = dmaCurrentSlot(dmaNowAtICB());
cycle = (oldSlot/PULSE_PER_CYCLE);
pulse = (oldSlot%PULSE_PER_CYCLE);
while (1)
{
gpioStats.alertTicks++;
req.tv_nsec = 850000;
while (nanosleep(&req, &rem))
{
req.tv_sec = rem.tv_sec;
req.tv_nsec = rem.tv_nsec;
}
newSlot = dmaCurrentSlot(dmaNowAtICB());
numSamples = 0;
changedBits = 0;
oldLevel = reportedLevel & monitorBits;
while ((oldSlot != newSlot) && (numSamples < DATUMS))
{
level = myGetLevel(oldSlot++);
newLevel = (level & monitorBits);
if (newLevel != oldLevel)
{
gpioSample[numSamples].tick = tick;
gpioSample[numSamples].level = level;
changedBits |= (newLevel ^ oldLevel);
oldLevel = newLevel;
numSamples++;
}
tick += gpioCfg.clockMicros;
if (++pulse >= PULSE_PER_CYCLE)
{
pulse = 0;
if (++cycle >= bufferCycles)
{
cycle = 0;
oldSlot = 0;
}
expected = tick;
tick = myGetTick(cycle);
diff = tick - expected;
diff += (TICKSLOTS/2);
if (diff < 0) gpioStats.diffTick[0]++;
else if (diff >= TICKSLOTS)
gpioStats.diffTick[TICKSLOTS-1]++;
else gpioStats.diffTick[diff]++;
}
}
/* should gpioGetSamples be called */
if (changedBits)
{
if (gpioGetSamples.func)
{
if (gpioGetSamples.ex)
{
(gpioGetSamples.func)
(gpioSample, numSamples, gpioGetSamples.userdata);
}
else
{
(gpioGetSamples.func)
(gpioSample, numSamples);
}
}
}
/* reset timeouts for any changed bits */
if (changedBits)
{
for (b=0; b<=PI_MAX_USER_GPIO; b++)
{
if (changedBits & (1<<b)) gpioAlert[b].tick = tick;
}
}
/* call alert callbacks for each bit transition */
if (changedBits & alertBits)
{
oldLevel = reportedLevel & alertBits;
for (d=0; d<numSamples; d++)
{
newLevel = gpioSample[d].level & alertBits;
if (newLevel != oldLevel)
{
changes = newLevel ^ oldLevel;
for (b=0; b<=PI_MAX_USER_GPIO; b++)
{
if (changes & (1<<b))
{
if (newLevel & (1<<b)) v = 1; else v = 0;
if (gpioAlert[b].func)
{
if (gpioAlert[b].ex)
{
(gpioAlert[b].func)
(b, v, gpioSample[d].tick,
gpioAlert[b].userdata);
}
else
{
(gpioAlert[b].func)
(b, v, gpioSample[d].tick);
}
}
}
}
oldLevel = newLevel;
}
}
}
/* check for timeout watchdogs */
timeoutBits = 0;
for (b=0; b<=PI_MAX_USER_GPIO; b++)
{
if (gpioAlert[b].timeout)
{
diff = tick - gpioAlert[b].tick;
if (diff > (gpioAlert[b].timeout*1000))
{
timeoutBits |= (1<<b);
gpioAlert[b].tick += (gpioAlert[b].timeout*1000);
if (gpioAlert[b].func)
{
if (gpioAlert[b].ex)
{
(gpioAlert[b].func)(b, 2, tick, gpioAlert[b].userdata);
}
else
{
(gpioAlert[b].func)(b, 2, tick);
}
}
}
}
}
for (n=0; n<PI_NOTIFY_SLOTS; n++)
{
if (gpioNotify[n].state == PI_NOTIFY_CLOSING)
{
if (gpioNotify[n].pipe)
{
close(gpioNotify[n].fd);
sprintf(fifo, "/dev/pigpio%d", n);
unlink(fifo);
}
gpioNotify[n].state = PI_NOTIFY_CLOSED;
}
else if (gpioNotify[n].state == PI_NOTIFY_RUNNING)
{
bits = gpioNotify[n].bits;
emit = 0;
seqno = gpioNotify[n].seqno;
/* check to see if any bits have changed for this
notification.
bits is the set of notification bits
changedBits is the set of changed bits
*/
if (changedBits & bits)
{
oldLevel = reportedLevel & bits;
for (d=0; d<numSamples; d++)
{
newLevel = gpioSample[d].level & bits;
if (newLevel != oldLevel)
{
gpioReport[emit].seqno = seqno;
gpioReport[emit].flags = 0;
gpioReport[emit].tick = gpioSample[d].tick;
gpioReport[emit].level = gpioSample[d].level;
oldLevel = newLevel;
emit++;
seqno++;
}
}
}
/* check to see if any watchdogs are due for this
notification.
bits is the set of notification bits
timeoutBits is the set of timed out bits
*/
if (timeoutBits & bits)
{
/* at least one watchdog has fired for this
notification.
*/
for (b=0; b<=PI_MAX_USER_GPIO; b++)
{
if (timeoutBits & bits & (1<<b))
{
if (numSamples)
newLevel = gpioSample[numSamples-1].level;
else
newLevel = reportedLevel;
gpioReport[emit].seqno = seqno;
gpioReport[emit].flags = PI_NTFY_FLAGS_WDOG |
PI_NTFY_FLAGS_BIT(b);
gpioReport[emit].tick = tick;
gpioReport[emit].level = newLevel;
emit++;
seqno++;
}
}
}
if (emit)
{
if (emit > gpioStats.maxEmit) gpioStats.maxEmit = emit;
emitted = 0;
while (emit > 0)
{
if (emit > MAX_EMITS)
{
gpioStats.emitFrags++;
err = write(gpioNotify[n].fd,
gpioReport+emitted,
MAX_EMITS*sizeof(gpioReport_t));
if (err != (MAX_EMITS*sizeof(gpioReport_t)))
{
if (err < 0)
{
if ((errno != EAGAIN) && (errno != EWOULDBLOCK))
{
/* serious error, no point continuing */
DBG(0, "fd=%d err=%d errno=%d",
gpioNotify[n].fd, err, errno);
DBG(0, "%s", strerror(errno));
gpioNotify[n].bits = 0;
gpioNotify[n].state = PI_NOTIFY_CLOSING;
intNotifyBits();
break;
}
}
}
emitted += MAX_EMITS;
emit -= MAX_EMITS;
}
else
{
err = write(gpioNotify[n].fd,
gpioReport+emitted,
emit*sizeof(gpioReport_t));
if (err != (emit*sizeof(gpioReport_t)))
{
if (err < 0)
{
if ((errno != EAGAIN) && (errno != EWOULDBLOCK))
{
DBG(0, "fd=%d err=%d errno=%d",
gpioNotify[n].fd, err, errno);
DBG(0, "%s", strerror(errno));
/* serious error, no point continuing */
gpioNotify[n].bits = 0;
gpioNotify[n].state = PI_NOTIFY_CLOSING;
intNotifyBits();
break;
}
}
}
emitted += emit;
emit = 0;
}
}
gpioNotify[n].seqno = seqno;
}
}
}
if (changedBits & scriptBits)
{
for (n=0; n<PI_MAX_SCRIPTS; n++)
{
if ((gpioScript[n].state == PI_SCRIPT_IN_USE) &&
(gpioScript[n].run_state == PI_SCRIPT_WAITING) &&
(gpioScript[n].waitBits & changedBits))
{
pthread_mutex_lock(&gpioScript[n].pthMutex);
if (gpioScript[n].run_state == PI_SCRIPT_WAITING)
{
gpioScript[n].changedBits =
gpioScript[n].waitBits & changedBits;
pthread_cond_signal(&gpioScript[n].pthCond);
}
pthread_mutex_unlock(&gpioScript[n].pthMutex);
}
}
}
/* once all outputs have been emitted set reported level */
if (numSamples) reportedLevel = gpioSample[numSamples-1].level;
if (numSamples > gpioStats.maxSamples)
gpioStats.maxSamples = numSamples;
gpioStats.numSamples += numSamples;
}
return 0;
}
/* ======================================================================= */
static int scrPop(gpioScript_t *s, int *SP, int *S)
{
if ((*SP) > 0)
{
return S[--(*SP)];
}
else
{
s->run_state = PI_SCRIPT_FAILED;
DBG(DBG_ALWAYS, "script %d too many pops", s->id);
return 0;
}
}
/* ----------------------------------------------------------------------- */
static void scrPush(gpioScript_t *s, int *SP, int *S, int val)
{
if ((*SP) < PI_SCRIPT_STACK_SIZE)
{
S[(*SP)++] = val;
}
else
{
s->run_state = PI_SCRIPT_FAILED;
DBG(DBG_ALWAYS, "script %d too many pushes", s->id);
}
}
/* ----------------------------------------------------------------------- */
static void scrSwap(int *v1, int *v2)
{
int t;
t=*v1; *v1=*v2; *v2= t;
}
/* ----------------------------------------------------------------------- */
static int scrWait(gpioScript_t *s, uint32_t bits)
{
pthread_mutex_lock(&s->pthMutex);
if (s->request == PI_SCRIPT_RUN)
{
s->run_state = PI_SCRIPT_WAITING;
s->waitBits = bits;
intScriptBits();
pthread_cond_wait(&s->pthCond, &s->pthMutex);
s->waitBits = 0;
intScriptBits();
s->run_state = PI_SCRIPT_RUNNING;
}
pthread_mutex_unlock(&s->pthMutex);
return s->changedBits;
}
/* ----------------------------------------------------------------------- */
static int scrSys(char *cmd, int param)
{
char buf[256];
char par[16];
sprintf(par, " %d", param);
strcpy(buf, "/opt/pigpio/cgi/");
strncat(buf, cmd, 200);
strcat(buf, par);
DBG(DBG_USER, "sys %s", buf);
return system(buf);
}
/* ----------------------------------------------------------------------- */
static void *pthScript(void *x)
{
gpioScript_t *s;
cmdInstr_t instr;
int p1, p2, p1o, p2o, *t1, *t2;
int PC, A, F, SP;
int S[PI_SCRIPT_STACK_SIZE];
char buf[CMD_MAX_EXTENSION];
S[0] = 0; /* to prevent compiler warning */
s = x;
while ((volatile int)s->request != PI_SCRIPT_DELETE)
{
pthread_mutex_lock(&s->pthMutex);
s->run_state = PI_SCRIPT_HALTED;
pthread_cond_wait(&s->pthCond, &s->pthMutex);
pthread_mutex_unlock(&s->pthMutex);
s->run_state = PI_SCRIPT_RUNNING;
A = 0;
F = 0;
PC = 0;
SP = 0;
while (((volatile int)s->request == PI_SCRIPT_RUN ) &&
(s->run_state == PI_SCRIPT_RUNNING))
{
instr = s->script.instr[PC];
p1o = instr.p[1];
p2o = instr.p[2];
if (instr.opt[1] == CMD_VAR) instr.p[1] = s->script.var[p1o];
else if (instr.opt[1] == CMD_PAR) instr.p[1] = s->script.par[p1o];
if (instr.opt[2] == CMD_VAR) instr.p[2] = s->script.var[p2o];
else if (instr.opt[2] == CMD_PAR) instr.p[2] = s->script.par[p2o];
/*
fprintf(stderr, "PC=%d cmd=%d p1o=%d p1=%d p2o=%d p2=%d\n",
PC, instr.p[0], p1o, instr.p[1], p2o, instr.p[2]);
fflush(stderr);
*/
if (instr.p[0] < 100)
{
if (instr.p[3])
{
memcpy(buf, (char *)instr.p[4], instr.p[3]);
}
A = myDoCommand(instr.p, sizeof(buf)-1, buf);
F = A;
PC++;
}
else
{
p1 = instr.p[1];
p2 = instr.p[2];
switch (instr.p[0])
{
case PI_CMD_ADD: A+=p1; F=A; PC++; break;
case PI_CMD_AND: A&=p1; F=A; PC++; break;
case PI_CMD_CALL: scrPush(s, &SP, S, PC+1); PC = p1; break;
case PI_CMD_CMP: F=A-p1; PC++; break;
case PI_CMD_DCR:
if (instr.opt[1] == CMD_PAR)
{--s->script.par[p1o]; F=s->script.par[p1o];}
else
{--s->script.var[p1o]; F=s->script.var[p1o];}
PC++;
break;
case PI_CMD_DCRA: --A; F=A; PC++; break;
case PI_CMD_DIV: A/=p1; F=A; PC++; break;
case PI_CMD_HALT: s->run_state = PI_SCRIPT_HALTED; break;
case PI_CMD_INR:
if (instr.opt[1] == CMD_PAR)
{++s->script.par[p1o]; F=s->script.par[p1o];}
else
{++s->script.var[p1o]; F=s->script.var[p1o];}
PC++;
break;
case PI_CMD_INRA: ++A; F=A; PC++; break;
case PI_CMD_JM: if (F<0) PC=p1; else PC++; break;
case PI_CMD_JMP: PC=p1; break;
case PI_CMD_JNZ: if (F) PC=p1; else PC++; break;
case PI_CMD_JP: if (F>=0) PC=p1; else PC++; break;
case PI_CMD_JZ: if (!F) PC=p1; else PC++; break;
case PI_CMD_LD:
if (instr.opt[1] == CMD_PAR) s->script.par[p1o]=p2;
else s->script.var[p1o]=p2;
PC++;
break;
case PI_CMD_LDA: A=p1; PC++; break;
case PI_CMD_LDAB:
if ((p1 >= 0) && (p1 < sizeof(buf))) A = buf[p1];
PC++;
break;
case PI_CMD_MLT: A*=p1; F=A; PC++; break;
case PI_CMD_MOD: A%=p1; F=A; PC++; break;
case PI_CMD_OR: A|=p1; F=A; PC++; break;
case PI_CMD_POP:
if (instr.opt[1] == CMD_PAR)
s->script.par[p1o]=scrPop(s, &SP, S);
else
s->script.var[p1o]=scrPop(s, &SP, S);
PC++;
break;
case PI_CMD_POPA: A=scrPop(s, &SP, S); PC++; break;
case PI_CMD_PUSH:
if (instr.opt[1] == CMD_PAR)
scrPush(s, &SP, S, s->script.par[p1o]);
else
scrPush(s, &SP, S, s->script.var[p1o]);
PC++;
break;
case PI_CMD_PUSHA: scrPush(s, &SP, S, A); PC++; break;
case PI_CMD_RET: PC=scrPop(s, &SP, S); break;
case PI_CMD_RL:
if (instr.opt[1] == CMD_PAR)
{s->script.par[p1o]<<=p2; F=s->script.par[p1o];}
else
{s->script.var[p1o]<<=p2; F=s->script.var[p1o];}
PC++;
break;
case PI_CMD_RLA: A<<=p1; F=A; PC++; break;
case PI_CMD_RR:
if (instr.opt[1] == CMD_PAR)
{s->script.par[p1o]>>=p2; F=s->script.par[p1o];}
else
{s->script.var[p1o]>>=p2; F=s->script.var[p1o];}
PC++;
break;
case PI_CMD_RRA: A>>=p1; F=A; PC++; break;
case PI_CMD_STA:
if (instr.opt[1] == CMD_PAR) s->script.par[p1o]=A;
else s->script.var[p1o]=A;
PC++;
break;
case PI_CMD_STAB:
if ((p1 >= 0) && (p1 < sizeof(buf))) buf[p1] = A;
PC++;
break;
case PI_CMD_SUB: A-=p1; F=A; PC++; break;
case PI_CMD_SYS:
A=scrSys((char*)instr.p[4], A);
F=A;
PC++;
break;
case PI_CMD_WAIT: A=scrWait(s, p1); F=A; PC++; break;
case PI_CMD_X:
if (instr.opt[1] == CMD_PAR) t1 = &s->script.par[p1o];
else t1 = &s->script.var[p1o];
if (instr.opt[2] == CMD_PAR) t2 = &s->script.par[p2o];
else t2 = &s->script.var[p2o];
scrSwap(t1, t2);
PC++;
break;
case PI_CMD_XA:
if (instr.opt[1] == CMD_PAR)
scrSwap(&s->script.par[p1o], &A);
else
scrSwap(&s->script.var[p1o], &A);
PC++;
break;
case PI_CMD_XOR: A^=p1; F=A; PC++; break;
}
}
if (PC >= s->script.instrs) s->run_state = PI_SCRIPT_HALTED;
}
if ((volatile int)s->request == PI_SCRIPT_HALT)
s->run_state = PI_SCRIPT_HALTED;
}
return 0;
}
/* ----------------------------------------------------------------------- */
static void * pthTimerTick(void *x)
{
gpioTimer_t * tp;
struct timespec req, rem, period;
char buf[256];
tp = x;
clock_gettime(CLOCK_REALTIME, &tp->nextTick);
while (1)
{
clock_gettime(CLOCK_REALTIME, &rem);
period.tv_sec = tp->millis / THOUSAND;
period.tv_nsec = (tp->millis % THOUSAND) * THOUSAND * THOUSAND;
do
{
TIMER_ADD(&tp->nextTick, &period, &tp->nextTick);
TIMER_SUB(&tp->nextTick, &rem, &req);
}
while (req.tv_sec < 0);
while (nanosleep(&req, &rem))
{
req.tv_sec = rem.tv_sec;
req.tv_nsec = rem.tv_nsec;
}
if (gpioCfg.dbgLevel >= DBG_SLOW_TICK)
{
if ((tp->millis > 50) || (gpioCfg.dbgLevel >= DBG_FAST_TICK))
{
sprintf(buf, "pigpio: TIMER=%d @ %u %u\n",
tp->id,
(unsigned)tp->nextTick.tv_sec,
(unsigned)tp->nextTick.tv_nsec);
fprintf(stderr, buf);
}
}
if (tp->ex) (tp->func)(tp->userdata);
else (tp->func)();
}
return 0;
}
/* ----------------------------------------------------------------------- */
static void * pthFifoThread(void *x)
{
char buf[CMD_MAX_EXTENSION];
int idx, flags, len, res, i;
uint32_t p[CMD_P_ARR];
cmdCtlParse_t ctl;
uint32_t *param;
char v[CMD_MAX_EXTENSION];
myCreatePipe(PI_INPFIFO, 0662);
if ((inpFifo = fopen(PI_INPFIFO, "r+")) == NULL)
SOFT_ERROR((void*)PI_INIT_FAILED, "fopen %s failed(%m)", PI_INPFIFO);
myCreatePipe(PI_OUTFIFO, 0664);
if ((outFifo = fopen(PI_OUTFIFO, "w+")) == NULL)
SOFT_ERROR((void*)PI_INIT_FAILED, "fopen %s failed (%m)", PI_OUTFIFO);
/* set outFifo non-blocking */
flags = fcntl(fileno(outFifo), F_GETFL, 0);
fcntl(fileno(outFifo), F_SETFL, flags | O_NONBLOCK);
while (1)
{
if (fgets(buf, sizeof(buf), inpFifo) == NULL)
SOFT_ERROR((void*)PI_INIT_FAILED, "fifo fgets failed (%m)");
len = strlen(buf);
if (len)
{
--len;
buf[len] = 0; /* replace terminating */
}
ctl.eaten = 0;
idx = 0;
while (((ctl.eaten)<len) && (idx >= 0))
{
if ((idx=cmdParse(buf, p, CMD_MAX_EXTENSION, v, &ctl)) >= 0)
{
/* make sure extensions are null terminated */
v[p[3]] = 0;
res = myDoCommand(p, sizeof(v)-1, v);
switch (cmdInfo[idx].rv)
{
case 0:
fprintf(outFifo, "%d\n", res);
break;
case 1:
fprintf(outFifo, "%d\n", res);
break;
case 2:
fprintf(outFifo, "%d\n", res);
break;
case 3:
fprintf(outFifo, "%08X\n", res);
break;
case 4:
fprintf(outFifo, "%u\n", res);
break;
case 5:
fprintf(outFifo, cmdUsage);
break;
case 6:
fprintf(outFifo, "%d", res);
if (res > 0)
{
for (i=0; i<res; i++)
{
fprintf(outFifo, " %d", v[i]);
}
}
fprintf(outFifo, "\n");
break;
case 7:
if (res < 0) fprintf(outFifo, "%d\n", res);
else
{
fprintf(outFifo, "%d", res);
param = (uint32_t *)v;
for (i=0; i<PI_MAX_SCRIPT_PARAMS; i++)
{
fprintf(outFifo, " %d", param[i]);
}
fprintf(outFifo, "\n");
}
break;
}
}
else fprintf(outFifo, "%d\n", PI_BAD_FIFO_COMMAND);
}
fflush(outFifo);
}
return 0;
}
/* ----------------------------------------------------------------------- */
static void *pthSocketThreadHandler(void *fdC)
{
int sock = *(int*)fdC;
uint32_t p[10];
int opt;
char buf[CMD_MAX_EXTENSION];
free(fdC);
/* Disable the Nagle algorithm. */
opt = 1;
setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (char*)&opt, sizeof(int));
while (1)
{
if (recv(sock, p, 16, MSG_WAITALL) != 16) break;
if (p[3])
{
if (p[3] < sizeof(buf))
{
/* read extension into buf */
if (recv(sock, buf, p[3], MSG_WAITALL) != p[3])
{
/* Serious error. No point continuing. */
DBG(0, "recv failed for %d bytes", p[3]);
close(sock);
return 0;
}
}
else
{
/* Serious error. No point continuing. */
DBG(0, "ext too large %d(%d)", p[3], sizeof(buf));
close(sock);
return 0;
}
}
/* add null terminator in case it's a string */
buf[p[3]] = 0;
switch (p[0])
{
case PI_CMD_NOIB:
p[3] = gpioNotifyOpenInBand(sock);
/* Enable the Nagle algorithm. */
opt = 0;
setsockopt(
sock, IPPROTO_TCP, TCP_NODELAY, (char*)&opt, sizeof(int));
break;
case PI_CMD_PROCP:
p[3] = myDoCommand(p, sizeof(buf)-1, buf+sizeof(int));
if (((int)p[3]) >= 0)
{
memcpy(buf, &p[3], 4);
p[3] = 4 + (4*PI_MAX_SCRIPT_PARAMS);
}
break;
default:
p[3] = myDoCommand(p, sizeof(buf)-1, buf);
}
write(sock, p, 16);
switch (p[0])
{
/* extensions */
case PI_CMD_I2CPK:
case PI_CMD_I2CRD:
case PI_CMD_I2CRI:
case PI_CMD_I2CRK:
case PI_CMD_PROCP:
case PI_CMD_SERR:
case PI_CMD_SLR:
case PI_CMD_SPIX:
case PI_CMD_SPIR:
if (((int)p[3]) > 0)
{
write(sock, buf, p[3]);
}
break;
default:
break;
}
}
close(sock);
return 0;
}
/* ----------------------------------------------------------------------- */
static void * pthSocketThread(void *x)
{
int fdC, c, *sock;
struct sockaddr_in client;
pthread_attr_t attr;
if (pthread_attr_init(&attr))
SOFT_ERROR((void*)PI_INIT_FAILED,
"pthread_attr_init failed (%m)");
if (pthread_attr_setstacksize(&attr, STACK_SIZE))
SOFT_ERROR((void*)PI_INIT_FAILED,
"pthread_attr_setstacksize failed (%m)");
if (pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED))
SOFT_ERROR((void*)PI_INIT_FAILED,
"pthread_attr_setdetachstate failed (%m)");
/* fdSock opened in gpioInitialise so that we can treat
failure to bind as fatal. */
listen(fdSock, 100);
c = sizeof(struct sockaddr_in);
while ((fdC =
accept(fdSock, (struct sockaddr *)&client, (socklen_t*)&c)))
{
pthread_t thr;
sock = malloc(sizeof(int));
*sock = fdC;
if (pthread_create
(&thr, &attr, pthSocketThreadHandler, (void*) sock) < 0)
SOFT_ERROR((void*)PI_INIT_FAILED,
"socket pthread_create failed (%m)");
}
if (fdC < 0)
SOFT_ERROR((void*)PI_INIT_FAILED, "accept failed (%m)");
return 0;
}
/* ======================================================================= */
static int initGrabLockFile(void)
{
int fd;
int lockResult;
char pidStr[20];
/* try to grab the lock file */
fd = open(PI_LOCKFILE, O_WRONLY|O_CREAT|O_EXCL|O_TRUNC, 0644);
if (fd != -1)
{
lockResult = flock(fd, LOCK_EX|LOCK_NB);
if(lockResult == 0)
{
sprintf(pidStr, "%d\n", (int)getpid());
write(fd, pidStr, strlen(pidStr));
}
else
{
close(fd);
return -1;
}
}
return fd;
}
/* ----------------------------------------------------------------------- */
static int initZaps
(
int pmapFd,
dmaPage_t *dmaV1,
dmaPage_t *dmaV2[],
dmaPage_t *dmaP[],
int pages)
{
int n;
long index;
off_t offset;
ssize_t t;
int status;
uint32_t pageAdr2;
unsigned long long pa;
DBG(DBG_STARTUP, "");
status = 0;
pageAdr2 = (uint32_t) dmaV2[0];
index = ((uint32_t)dmaV1 / PAGE_SIZE) * 8;
offset = lseek(pmapFd, index, SEEK_SET);
if (offset != index)
SOFT_ERROR(PI_INIT_FAILED, "lseek pagemap failed (%m)");
for (n=0; n<pages; n++)
{
t = read(pmapFd, &pa, sizeof(pa));
if (t != sizeof(pa))
SOFT_ERROR(PI_INIT_FAILED, "read pagemap failed (%m)");
DBG(DBG_STARTUP, "pf%d=%016llX", n, pa);
dmaP[n] = (dmaPage_t *) (uint32_t) (PAGE_SIZE * (pa & 0xFFFFFFFF));
dmaV2[n] = mmap
(
(void *)pageAdr2,
PAGE_SIZE,
PROT_READ|PROT_WRITE,
MAP_SHARED|MAP_FIXED|MAP_LOCKED|MAP_NORESERVE,
fdMem,
(uint32_t)dmaP[n] | 0x40000000
);
pageAdr2 += PAGE_SIZE;
if (dmaP[n] == 0) status = 1;
}
return status;
}
/* ----------------------------------------------------------------------- */
static uint32_t * initMapMem(int fd, uint32_t addr, uint32_t len)
{
return (uint32_t *) mmap(0, len,
PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_SHARED|MAP_LOCKED,
fd, addr);
}
/* ----------------------------------------------------------------------- */
static int initCheckPermitted(void)
{
DBG(DBG_STARTUP, "");
if ((fdMem = open("/dev/mem", O_RDWR | O_SYNC) ) < 0)
{
fprintf(stderr,
"\n" \
"+---------------------------------------------------------+\n" \
"|Sorry, you don't have permission to run this program. |\n" \
"|Try running as root, e.g. precede the command with sudo. |\n" \
"+---------------------------------------------------------+\n\n");
exit(-1);
}
return 0;
}
/* ----------------------------------------------------------------------- */
static int initPeripherals(void)
{
uint32_t dmaBase;
DBG(DBG_STARTUP, "");
gpioReg = initMapMem(fdMem, GPIO_BASE, GPIO_LEN);
if (gpioReg == MAP_FAILED)
SOFT_ERROR(PI_INIT_FAILED, "mmap gpio failed (%m)");
/* dma channels 0-14 share one page, 15 has another */
if (gpioCfg.DMAprimaryChannel < 15)
{
dmaBase = DMA_BASE;
}
else dmaBase = DMA15_BASE;
dmaReg = initMapMem(fdMem, dmaBase, DMA_LEN);
if (dmaReg == MAP_FAILED)
SOFT_ERROR(PI_INIT_FAILED, "mmap dma failed (%m)");
if (gpioCfg.DMAprimaryChannel < 15)
{
dmaIn = dmaReg + (gpioCfg.DMAprimaryChannel * 0x40);
dmaOut = dmaReg + (gpioCfg.DMAsecondaryChannel * 0x40);
}
DBG(DBG_STARTUP, "DMA #%d @ %08X @ %08X",
gpioCfg.DMAprimaryChannel, dmaBase, (uint32_t)dmaIn);
DBG(DBG_STARTUP, "debug reg is %08X", dmaIn[DMA_DEBUG]);
clkReg = initMapMem(fdMem, CLK_BASE, CLK_LEN);
if (clkReg == MAP_FAILED)
SOFT_ERROR(PI_INIT_FAILED, "mmap clk failed (%m)");
systReg = initMapMem(fdMem, SYST_BASE, SYST_LEN);
if (systReg == MAP_FAILED)
SOFT_ERROR(PI_INIT_FAILED, "mmap syst failed (%m)");
spiReg = initMapMem(fdMem, SPI_BASE, SPI_LEN);
if (spiReg == MAP_FAILED)
SOFT_ERROR(PI_INIT_FAILED, "mmap spi failed (%m)");
pwmReg = initMapMem(fdMem, PWM_BASE, PWM_LEN);
if (pwmReg == MAP_FAILED)
SOFT_ERROR(PI_INIT_FAILED, "mmap pwm failed (%m)");
pcmReg = initMapMem(fdMem, PCM_BASE, PCM_LEN);
if (pcmReg == MAP_FAILED)
SOFT_ERROR(PI_INIT_FAILED, "mmap pcm failed (%m)");
auxReg = initMapMem(fdMem, AUX_BASE, AUX_LEN);
if (auxReg == MAP_FAILED)
SOFT_ERROR(PI_INIT_FAILED, "mmap aux failed (%m)");
return 0;
}
/* ----------------------------------------------------------------------- */
static int initDMAblock(int pagemapFd, int block)
{
int trys, ok;
unsigned pageNum;
DBG(DBG_STARTUP, "");
dmaBloc[block] = mmap(
0, (PAGES_PER_BLOCK*PAGE_SIZE),
PROT_READ|PROT_WRITE,
MAP_SHARED|MAP_ANONYMOUS|MAP_NORESERVE|MAP_LOCKED,
-1, 0);
if (dmaBloc[block] == MAP_FAILED)
SOFT_ERROR(PI_INIT_FAILED, "mmap dma block %d failed (%m)", block);
/* force allocation of physical memory */
memset((void *)dmaBloc[block], 0, (PAGES_PER_BLOCK*PAGE_SIZE));
pageNum = block * PAGES_PER_BLOCK;
dmaVirt[pageNum] = mmap(
0, (PAGES_PER_BLOCK*PAGE_SIZE),
PROT_READ|PROT_WRITE,
MAP_SHARED|MAP_ANONYMOUS|MAP_NORESERVE|MAP_LOCKED,
-1, 0);
if (dmaVirt[pageNum] == MAP_FAILED)
SOFT_ERROR(PI_INIT_FAILED, "mmap dma block %d failed (%m)", block);
munmap(dmaVirt[pageNum], PAGES_PER_BLOCK*PAGE_SIZE);
trys = 0;
ok = 0;
while ((trys < 10) && !ok)
{
if (initZaps(pagemapFd,
dmaBloc[block],
&dmaVirt[pageNum],
&dmaPhys[pageNum],
PAGES_PER_BLOCK) == 0) ok = 1;
else myGpioDelay(50000);
++trys;
}
if (!ok) SOFT_ERROR(PI_INIT_FAILED, "initZaps failed");
return 0;
}
/* ----------------------------------------------------------------------- */
static int initDMAcbs(void)
{
int pid;
char str[64];
int pagemapFd;
int i, servoCycles, superCycles;
DBG(DBG_STARTUP, "");
/* Calculate the number of blocks needed for buffers. The number
of blocks must be a multiple of the 20ms servo cycle.
*/
servoCycles = gpioCfg.bufferMilliseconds / 20;
if (gpioCfg.bufferMilliseconds % 20) servoCycles++;
bufferCycles = (SUPERCYCLE * servoCycles) / gpioCfg.clockMicros;
superCycles = bufferCycles / SUPERCYCLE;
if (bufferCycles % SUPERCYCLE) superCycles++;
bufferCycles = SUPERCYCLE * superCycles;
bufferBlocks = bufferCycles / CYCLES_PER_BLOCK;
DBG(DBG_STARTUP, "bmillis=%d mics=%d bblk=%d bcyc=%d",
gpioCfg.bufferMilliseconds, gpioCfg.clockMicros,
bufferBlocks, bufferCycles);
/* allocate memory for pointers to virtual and physical pages */
dmaBloc = mmap(
0, (bufferBlocks+PI_WAVE_BLOCKS)*sizeof(dmaPage_t *),
PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_LOCKED,
-1, 0);
if (dmaBloc == MAP_FAILED)
SOFT_ERROR(PI_INIT_FAILED, "mmap dma virtual failed (%m)");
dmaVirt = mmap(
0, PAGES_PER_BLOCK*(bufferBlocks+PI_WAVE_BLOCKS)*sizeof(dmaPage_t *),
PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_LOCKED,
-1, 0);
if (dmaVirt == MAP_FAILED)
SOFT_ERROR(PI_INIT_FAILED, "mmap dma virtual failed (%m)");
dmaPhys = mmap(
0, PAGES_PER_BLOCK*(bufferBlocks+PI_WAVE_BLOCKS)*sizeof(dmaPage_t *),
PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_LOCKED,
-1, 0);
if (dmaPhys == MAP_FAILED)
SOFT_ERROR(PI_INIT_FAILED, "mmap dma physical failed (%m)");
dmaIPhys = (dmaIPage_t **) dmaPhys;
dmaIVirt = (dmaIPage_t **) dmaVirt;
dmaOPhys = (dmaOPage_t **)(dmaPhys + (PAGES_PER_BLOCK*bufferBlocks));
dmaOVirt = (dmaOPage_t **)(dmaVirt + (PAGES_PER_BLOCK*bufferBlocks));
pid = getpid();
sprintf(str, "/proc/%d/pagemap", pid);
pagemapFd = open(str, O_RDONLY);
if (pagemapFd < 0)
SOFT_ERROR(PI_INIT_FAILED, "open pagemap failed(%m)");
for (i=0; i<(bufferBlocks+PI_WAVE_BLOCKS); i++) initDMAblock(pagemapFd, i);
close(pagemapFd);
DBG(DBG_STARTUP, "dmaBloc=%08X dmaIn=%08X",
(uint32_t)dmaBloc, (uint32_t)dmaIn);
DBG(DBG_STARTUP,
"gpioReg=%08X pwmReg=%08X pcmReg=%08X clkReg=%08X auxReg=%08X",
(uint32_t)gpioReg, (uint32_t)pwmReg,
(uint32_t)pcmReg, (uint32_t)clkReg, (uint32_t)auxReg);
for (i=0; i<DMAI_PAGES; i++)
DBG(DBG_STARTUP, "dmaIPhys[%d]=%08X", i, (uint32_t)dmaIPhys[i]);
dmaInitCbs();
if (gpioCfg.dbgLevel >= DBG_DMACBS)
{
fprintf(stderr, "*** INPUT DMA CONTROL BLOCKS ***\n");
for (i=0; i<NUM_CBS; i++) dmaCbPrint(i);
}
return 0;
}
/* ----------------------------------------------------------------------- */
static void initPWM(unsigned bits)
{
DBG(DBG_STARTUP, "");
/* reset PWM */
pwmReg[PWM_CTL] = 0;
myGpioDelay(10);
pwmReg[PWM_STA] = -1;
myGpioDelay(10);
/* set number of bits to transmit */
pwmReg[PWM_RNG1] = bits;
myGpioDelay(10);
dmaIVirt[0]->periphData = 1;
/* enable PWM DMA, raise panic and dreq thresholds to 15 */
pwmReg[PWM_DMAC] = PWM_DMAC_ENAB |
PWM_DMAC_PANIC(15) |
PWM_DMAC_DREQ(15);
myGpioDelay(10);
/* clear PWM fifo */
pwmReg[PWM_CTL] = PWM_CTL_CLRF1;
myGpioDelay(10);
/* enable PWM channel 1 and use fifo */
pwmReg[PWM_CTL] = PWM_CTL_USEF1 | PWM_CTL_MODE1 | PWM_CTL_PWEN1;
}
/* ----------------------------------------------------------------------- */
static void initPCM(unsigned bits)
{
DBG(DBG_STARTUP, "");
/* disable PCM so we can modify the regs */
pcmReg[PCM_CS] = 0;
myGpioDelay(1000);
pcmReg[PCM_FIFO] = 0;
pcmReg[PCM_MODE] = 0;
pcmReg[PCM_RXC] = 0;
pcmReg[PCM_TXC] = 0;
pcmReg[PCM_DREQ] = 0;
pcmReg[PCM_INTEN] = 0;
pcmReg[PCM_INTSTC] = 0;
pcmReg[PCM_GRAY] = 0;
myGpioDelay(1000);
pcmReg[PCM_MODE] = PCM_MODE_FLEN(bits-1); /* # bits in frame */
/* enable channel 1 with # bits width */
pcmReg[PCM_TXC] = PCM_TXC_CH1EN | PCM_TXC_CH1WID(bits-8);
pcmReg[PCM_CS] |= PCM_CS_STBY; /* clear standby */
myGpioDelay(1000);
pcmReg[PCM_CS] |= PCM_CS_TXCLR; /* clear TX FIFO */
pcmReg[PCM_CS] |= PCM_CS_DMAEN; /* enable DREQ */
pcmReg[PCM_DREQ] = PCM_DREQ_TX_PANIC(16) | PCM_DREQ_TX_REQ_L(30);
pcmReg[PCM_INTSTC] = 0b1111; /* clear status bits */
/* enable PCM */
pcmReg[PCM_CS] |= PCM_CS_EN;
/* enable tx */
pcmReg[PCM_CS] |= PCM_CS_TXON;
dmaIVirt[0]->periphData = 0x0F;
}
/* ----------------------------------------------------------------------- */
static void initClock(int mainClock)
{
int clockPWM;
unsigned clkCtl, clkDiv, clkSrc, clkDivI, clkDivF, clkMash, clkBits;
char * per, * src;
unsigned micros;
DBG(DBG_STARTUP, "");
if (mainClock) micros = gpioCfg.clockMicros;
else micros = PI_WF_MICROS;
clockPWM = mainClock ^ (gpioCfg.clockPeriph == PI_CLOCK_PCM);
if (clockPWM)
{
clkCtl = CLK_PWMCTL;
clkDiv = CLK_PWMDIV;
per = "PWM";
}
else
{
clkCtl = CLK_PCMCTL;
clkDiv = CLK_PCMDIV;
per = "PCM";
}
if (gpioCfg.clockSource == PI_CLOCK_PLLD)
{
clkSrc = CLK_CTL_SRC_PLLD;
clkDivI = 50 * micros;
clkDivF = 0;
clkMash = 0;
clkBits = 10;
src = "PLLD";
}
else
{
clkSrc = CLK_CTL_SRC_OSC;
clkDivI = clkCfg[micros].divi;
clkDivF = clkCfg[micros].divf;
clkMash = clkCfg[micros].mash;
clkBits = clkCfg[micros].bits;
src = "OSC";
}
DBG(DBG_STARTUP, "%s %s divi=%d divf=%d mash=%d bits=%d",
per, src, clkDivI, clkDivF, clkMash, clkBits);
clkReg[clkCtl] = CLK_PASSWD | CLK_CTL_KILL;
myGpioDelay(10);
clkReg[clkDiv] =
(CLK_PASSWD | CLK_DIV_DIVI(clkDivI) | CLK_DIV_DIVF(clkDivF));
myGpioDelay(10);
clkReg[clkCtl] =
(CLK_PASSWD | CLK_CTL_MASH(clkMash) | CLK_CTL_SRC(clkSrc));
myGpioDelay(10);
clkReg[clkCtl] |= (CLK_PASSWD | CLK_CTL_ENAB);
myGpioDelay(10);
if (clockPWM) initPWM(clkBits);
else initPCM(clkBits);
myGpioDelay(2000);
}
/* ----------------------------------------------------------------------- */
static void initDMAgo(volatile uint32_t *dmaAddr, uint32_t cbAddr)
{
DBG(DBG_STARTUP, "");
dmaAddr[DMA_CS] = DMA_CHANNEL_RESET;
dmaAddr[DMA_CS] = DMA_INTERRUPT_STATUS | DMA_END_FLAG;
dmaAddr[DMA_CONBLK_AD] = cbAddr | DMA_BUS_ADR;
/* clear READ/FIFO/READ_LAST_NOT_SET error bits */
dmaAddr[DMA_DEBUG] = DMA_DEBUG_READ_ERR |
DMA_DEBUG_FIFO_ERR |
DMA_DEBUG_RD_LST_NOT_SET_ERR;
dmaAddr[DMA_CS] = DMA_WAIT_ON_WRITES |
DMA_PANIC_PRIORITY(8) |
DMA_PRIORITY(8) |
DMA_ACTIVATE;
DMAstarted = 1;
}
/* ----------------------------------------------------------------------- */
static void initClearGlobals(void)
{
int i;
DBG(DBG_STARTUP, "");
alertBits = 0;
monitorBits = 0;
notifyBits = 0;
scriptBits = 0;
libInitialised = 0;
DMAstarted = 0;
pthAlertRunning = 0;
pthFifoRunning = 0;
pthSocketRunning = 0;
wfc[0] = 0;
wfc[1] = 0;
wfc[2] = 0;
wfcur=0;
wfStats.micros = 0;
wfStats.highMicros = 0;
wfStats.maxMicros = PI_WAVE_MAX_MICROS;
wfStats.pulses = 0;
wfStats.highPulses = 0;
wfStats.maxPulses = PI_WAVE_MAX_PULSES;
wfStats.cbs = 0;
wfStats.highCbs = 0;
wfStats.maxCbs = (PI_WAVE_BLOCKS * PAGES_PER_BLOCK * CBS_PER_OPAGE);
gpioGetSamples.func = NULL;
gpioGetSamples.ex = 0;
gpioGetSamples.userdata = NULL;
gpioGetSamples.bits = 0;
for (i=0; i<=PI_MAX_USER_GPIO; i++)
{
wfRx[i].mode = PI_WFRX_NONE;
gpioAlert[i].func = NULL;
gpioInfo [i].is = GPIO_UNDEFINED;
gpioInfo [i].width = 0;
gpioInfo [i].range = PI_DEFAULT_DUTYCYCLE_RANGE;
gpioInfo [i].freqIdx = DEFAULT_PWM_IDX;
}
for (i=0; i<PI_NOTIFY_SLOTS; i++)
{
gpioNotify[i].seqno = 0;
gpioNotify[i].state = PI_NOTIFY_CLOSED;
}
for (i=0; i<=PI_MAX_SIGNUM; i++)
{
gpioSignal[i].func = NULL;
gpioSignal[i].ex = 0;
gpioSignal[i].userdata = NULL;
}
for (i=0; i<=PI_MAX_TIMER; i++)
{
gpioTimer[i].running = 0;
gpioTimer[i].func = NULL;
}
/* calculate the usable PWM frequencies */
for (i=0; i<PWM_FREQS; i++)
{
pwmFreq[i]=
(1000000.0/
((float)PULSE_PER_CYCLE*gpioCfg.clockMicros*pwmCycles[i]))+0.5;
DBG(DBG_STARTUP, "f%d is %d", i, pwmFreq[i]);
}
inpFifo = NULL;
outFifo = NULL;
fdLock = -1;
fdMem = -1;
fdSock = -1;
dmaBloc = MAP_FAILED;
dmaVirt = MAP_FAILED;
dmaPhys = MAP_FAILED;
auxReg = MAP_FAILED;
clkReg = MAP_FAILED;
dmaReg = MAP_FAILED;
gpioReg = MAP_FAILED;
pcmReg = MAP_FAILED;
pwmReg = MAP_FAILED;
systReg = MAP_FAILED;
spiReg = MAP_FAILED;
}
/* ----------------------------------------------------------------------- */
static void initReleaseResources(void)
{
int i;
DBG(DBG_STARTUP, "");
/* shut down running threads */
for (i=0; i<=PI_MAX_TIMER; i++)
{
if (gpioTimer[i].running)
{
/* destroy thread */
pthread_cancel(gpioTimer[i].pthId);
pthread_join(gpioTimer[i].pthId, NULL);
gpioTimer[i].running = 0;
}
}
if (pthAlertRunning)
{
pthread_cancel(pthAlert);
pthread_join(pthAlert, NULL);
pthAlertRunning = 0;
}
if (pthFifoRunning)
{
pthread_cancel(pthFifo);
pthread_join(pthFifo, NULL);
pthFifoRunning = 0;
}
if (pthSocketRunning)
{
pthread_cancel(pthSocket);
pthread_join(pthSocket, NULL);
pthSocketRunning = 0;
}
/* release mmap'd memory */
if (auxReg != MAP_FAILED) munmap((void *)auxReg, AUX_LEN);
if (clkReg != MAP_FAILED) munmap((void *)clkReg, CLK_LEN);
if (dmaReg != MAP_FAILED) munmap((void *)dmaReg, DMA_LEN);
if (gpioReg != MAP_FAILED) munmap((void *)gpioReg, GPIO_LEN);
if (pcmReg != MAP_FAILED) munmap((void *)pcmReg, PCM_LEN);
if (pwmReg != MAP_FAILED) munmap((void *)pwmReg, PWM_LEN);
if (systReg != MAP_FAILED) munmap((void *)systReg, SYST_LEN);
if (spiReg != MAP_FAILED) munmap((void *)spiReg, SPI_LEN);
auxReg = MAP_FAILED;
clkReg = MAP_FAILED;
dmaReg = MAP_FAILED;
gpioReg = MAP_FAILED;
pcmReg = MAP_FAILED;
pwmReg = MAP_FAILED;
systReg = MAP_FAILED;
spiReg = MAP_FAILED;
if (dmaVirt != MAP_FAILED)
{
for (i=0; i<PAGES_PER_BLOCK*(bufferBlocks+PI_WAVE_BLOCKS); i++)
{
munmap(dmaVirt[i], PAGE_SIZE);
}
munmap(dmaVirt,
PAGES_PER_BLOCK*(bufferBlocks+PI_WAVE_BLOCKS)*sizeof(dmaPage_t *));
}
dmaVirt = MAP_FAILED;
if (dmaPhys != MAP_FAILED)
{
for (i=0; i<PAGES_PER_BLOCK*(bufferBlocks+PI_WAVE_BLOCKS); i++)
{
munmap(dmaPhys[i], PAGE_SIZE);
}
munmap(dmaPhys,
PAGES_PER_BLOCK*(bufferBlocks+PI_WAVE_BLOCKS)*sizeof(dmaPage_t *));
}
dmaPhys = MAP_FAILED;
if (dmaBloc != MAP_FAILED)
{
for (i=0; i<(bufferBlocks+PI_WAVE_BLOCKS); i++)
{
munmap(dmaBloc[i], PAGES_PER_BLOCK*PAGE_SIZE);
}
munmap(dmaBloc, (bufferBlocks+PI_WAVE_BLOCKS)*sizeof(dmaPage_t *));
}
dmaBloc = MAP_FAILED;
if (inpFifo != NULL)
{
fclose(inpFifo);
unlink(PI_INPFIFO);
inpFifo = NULL;
}
if (outFifo != NULL)
{
fclose(outFifo);
unlink(PI_OUTFIFO);
outFifo = NULL;
}
if (fdMem != -1)
{
close(fdMem);
fdMem = -1;
}
if (fdLock != -1)
{
close(fdLock);
unlink(PI_LOCKFILE);
fdLock = -1;
}
if (fdSock != -1)
{
close(fdSock);
fdSock = -1;
}
}
/* ======================================================================= */
int getBitInBytes(int bitPos, char *buf, int numBits)
{
int bitp, bufp;
if (bitPos < numBits)
{
bufp = bitPos / 8;
bitp = 7 - (bitPos % 8);
if (buf[bufp] & (1<<bitp)) return 1;
}
return 0;
}
/* ----------------------------------------------------------------------- */
void putBitInBytes(int bitPos, char *buf, int bit)
{
int bitp, bufp;
bufp = bitPos / 8;
bitp = 7 - (bitPos % 8);
if (bit) buf[bufp] |= (1<<bitp);
else buf[bufp] &= (~(1<<bitp));
}
/* ----------------------------------------------------------------------- */
uint32_t rawWaveGetOut(int pos)
{
int page, slot;
if ((pos >= 0) && (pos < NUM_WAVE_OOL))
{
waveOOLPageSlot(pos, &page, &slot);
return (dmaOVirt[page]->OOL[slot]);
}
return -1;
}
/* ----------------------------------------------------------------------- */
void rawWaveSetOut(int pos, uint32_t value)
{
int page, slot;
if ((pos >= 0) && (pos < NUM_WAVE_OOL))
{
waveOOLPageSlot(pos, &page, &slot);
dmaOVirt[page]->OOL[slot] = value;
}
}
/* ----------------------------------------------------------------------- */
uint32_t rawWaveGetIn(int pos)
{
int page, slot;
if ((pos >= 0) && (pos < NUM_WAVE_OOL))
{
waveOOLPageSlot((NUM_WAVE_OOL-1)-pos, &page, &slot);
return (dmaOVirt[page]->OOL[slot]);
}
return -1;
}
/* ----------------------------------------------------------------------- */
void rawWaveSetIn(int pos, uint32_t value)
{
int page, slot;
if ((pos >= 0) && (pos < NUM_WAVE_OOL))
{
waveOOLPageSlot((NUM_WAVE_OOL-1)-pos, &page, &slot);
dmaOVirt[page]->OOL[slot] = value;
}
}
/* ----------------------------------------------------------------------- */
rawWaveInfo_t rawWaveInfo(int wave_id)
{
rawWaveInfo_t dummy = {-1, -1, -1, -1};
if ((wave_id >=0) && (wave_id < PI_MAX_WAVES)) return waveInfo[wave_id];
else return dummy;
}
/* ----------------------------------------------------------------------- */
double time_time(void)
{
struct timeval tv;
double t;
gettimeofday(&tv, 0);
t = (double)tv.tv_sec + ((double)tv.tv_usec / 1E6);
return t;
}
/* ----------------------------------------------------------------------- */
void time_sleep(double seconds)
{
struct timespec ts, rem;
if (seconds > 0.0)
{
ts.tv_sec = seconds;
ts.tv_nsec = (seconds-(double)ts.tv_sec) * 1E9;
while (clock_nanosleep(CLOCK_REALTIME, 0, &ts, &rem))
{
/* copy remaining time to ts */
ts.tv_sec = rem.tv_sec;
ts.tv_nsec = rem.tv_nsec;
}
}
}
/* ----------------------------------------------------------------------- */
void rawDumpWave(void)
{
int i;
unsigned numWaves, t;
rawWave_t *waves;
numWaves = wfc[wfcur];
waves = wf [wfcur];
t = 0;
for (i=0; i<numWaves; i++)
{
fprintf(stderr, "%10u %08X %08X %08X %10u\n",
t, waves[i].gpioOn, waves[i].gpioOff,
waves[i].flags, waves[i].usDelay);
t += waves[i].usDelay;
}
}
/* ----------------------------------------------------------------------- */
void rawDumpScript(unsigned script_id)
{
int i;
if (script_id >= PI_MAX_SCRIPTS) return;
if (gpioScript[script_id].state == PI_SCRIPT_IN_USE)
{
for (i=0; i<PI_MAX_SCRIPT_PARAMS; i++)
{
fprintf(stderr, "p%d=%d ", i, gpioScript[script_id].script.par[i]);
}
fprintf(stderr, "\n");
for (i=0; i<PI_MAX_SCRIPT_VARS; i++)
{
fprintf(stderr, "v%d=%d ", i, gpioScript[script_id].script.var[i]);
}
fprintf(stderr, "\n");
for (i=0; i<gpioScript[script_id].script.instrs; i++)
{
fprintf(stderr,
"c%d=[%d, %d(%d), %d(%d), %d, %d]\n",
i,
gpioScript[script_id].script.instr[i].p[0],
gpioScript[script_id].script.instr[i].p[1],
gpioScript[script_id].script.instr[i].opt[1],
gpioScript[script_id].script.instr[i].p[2],
gpioScript[script_id].script.instr[i].opt[2],
gpioScript[script_id].script.instr[i].p[3],
gpioScript[script_id].script.instr[i].p[4]);
}
}
}
/* ======================================================================= */
int gpioInitialise(void)
{
int i;
struct sockaddr_in server;
char * portStr;
unsigned port;
clock_gettime(CLOCK_REALTIME, &libStarted);
DBG(DBG_STARTUP, "");
if (libInitialised) return PIGPIO_VERSION;
initClearGlobals();
if (initCheckPermitted() < 0) return PI_INIT_FAILED;
fdLock = initGrabLockFile();
if (fdLock < 0)
SOFT_ERROR(PI_INIT_FAILED, "Can't lock %s", PI_LOCKFILE);
if (!gpioMaskSet)
{
i = gpioHardwareRevision();
if (i == 0) gpioMask = PI_DEFAULT_UPDATE_MASK_R0;
else if (i < 4) gpioMask = PI_DEFAULT_UPDATE_MASK_R1;
else if (i < 16) gpioMask = PI_DEFAULT_UPDATE_MASK_R2;
else gpioMask = PI_DEFAULT_UPDATE_MASK_R3;
gpioMaskSet = 1;
}
sigSetHandler();
if (initPeripherals() < 0) return PI_INIT_FAILED;
if (initDMAcbs() < 0) return PI_INIT_FAILED;
/* done with /dev/mem */
if (fdMem != -1)
{
close(fdMem);
fdMem = -1;
}
initClock(1); /* initialise main clock */
libInitialised = 1;
atexit(gpioTerminate);
if (pthread_attr_init(&pthAttr))
SOFT_ERROR(PI_INIT_FAILED, "pthread_attr_init failed (%m)");
if (pthread_attr_setstacksize(&pthAttr, STACK_SIZE))
SOFT_ERROR(PI_INIT_FAILED, "pthread_attr_setstacksize failed (%m)");
if (pthread_create(&pthAlert, &pthAttr, pthAlertThread, &i))
SOFT_ERROR(PI_INIT_FAILED, "pthread_create alert failed (%m)");
pthAlertRunning = 1;
if (!(gpioCfg.ifFlags & PI_DISABLE_FIFO_IF))
{
if (pthread_create(&pthFifo, &pthAttr, pthFifoThread, &i))
SOFT_ERROR(PI_INIT_FAILED, "pthread_create fifo failed (%m)");
pthFifoRunning = 1;
}
if (!(gpioCfg.ifFlags & PI_DISABLE_SOCK_IF))
{
fdSock = socket(AF_INET , SOCK_STREAM , 0);
if (fdSock == -1)
SOFT_ERROR(PI_INIT_FAILED, "socket failed (%m)");
portStr = getenv(PI_ENVPORT);
if (portStr) port = atoi(portStr); else port = gpioCfg.socketPort;
server.sin_family = AF_INET;
server.sin_addr.s_addr = INADDR_ANY;
server.sin_port = htons(port);
if (bind(fdSock,(struct sockaddr *)&server , sizeof(server)) < 0)
SOFT_ERROR(PI_INIT_FAILED, "bind to port %d failed (%m)", port);
if (pthread_create(&pthSocket, &pthAttr, pthSocketThread, &i))
SOFT_ERROR(PI_INIT_FAILED, "pthread_create socket failed (%m)");
pthSocketRunning = 1;
}
initDMAgo((uint32_t *)dmaIn, (uint32_t)dmaIPhys[0]);
return PIGPIO_VERSION;
}
/* ----------------------------------------------------------------------- */
void gpioTerminate(void)
{
int i;
DBG(DBG_USER, "");
gpioMaskSet = 0;
if (libInitialised)
{
/* reset DMA */
dmaIn[DMA_CS] = DMA_CHANNEL_RESET;
dmaOut[DMA_CS] = DMA_CHANNEL_RESET;
/* reset PWM */
pwmReg[PWM_CTL] = 0;
libInitialised = 0;
DMAstarted = 0;
if (gpioCfg.showStats)
{
fprintf(stderr, "micros=%d\n", gpioCfg.clockMicros);
fprintf(stderr, "samples %u maxSamples %u maxEmit %u emitFrags %u\n",
gpioStats.numSamples, gpioStats.maxSamples,
gpioStats.maxEmit, gpioStats.emitFrags);
fprintf(stderr, "cb time %d, calls %u alert ticks %u\n",
gpioStats.cbTicks, gpioStats.cbCalls, gpioStats.alertTicks);
for (i=0; i< TICKSLOTS; i++)
fprintf(stderr, "%9u ", gpioStats.diffTick[i]);
fprintf(stderr, "\n");
}
}
initReleaseResources();
fflush(NULL);
}
/* ----------------------------------------------------------------------- */
int gpioSetMode(unsigned gpio, unsigned mode)
{
int reg, shift;
DBG(DBG_USER, "gpio=%d mode=%d", gpio, mode);
CHECK_INITED;
if (gpio > PI_MAX_GPIO)
SOFT_ERROR(PI_BAD_GPIO, "bad gpio (%d)", gpio);
if (mode > PI_ALT3)
SOFT_ERROR(PI_BAD_MODE, "gpio %d, bad mode (%d)", gpio, mode);
reg = gpio/10;
shift = (gpio%10) * 3;
if (gpio <= PI_MAX_USER_GPIO)
{
if (mode != PI_OUTPUT)
{
switch (gpioInfo[gpio].is)
{
case GPIO_SERVO:
/* switch servo off */
myGpioSetServo(gpio,
gpioInfo[gpio].width/gpioCfg.clockMicros, 0);
break;
case GPIO_PWM:
/* switch pwm off */
myGpioSetPwm(gpio, gpioInfo[gpio].width, 0);
break;
}
gpioInfo[gpio].is = GPIO_UNDEFINED;
}
}
gpioReg[reg] = (gpioReg[reg] & ~(7<<shift)) | (mode<<shift);
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioGetMode(unsigned gpio)
{
int reg, shift;
DBG(DBG_USER, "gpio=%d", gpio);
CHECK_INITED;
if (gpio > PI_MAX_GPIO)
SOFT_ERROR(PI_BAD_GPIO, "bad gpio (%d)", gpio);
reg = gpio/10;
shift = (gpio%10) * 3;
return (*(gpioReg + reg) >> shift) & 7;
}
/* ----------------------------------------------------------------------- */
int gpioSetPullUpDown(unsigned gpio, unsigned pud)
{
DBG(DBG_USER, "gpio=%d pud=%d", gpio, pud);
CHECK_INITED;
if (gpio > PI_MAX_GPIO)
SOFT_ERROR(PI_BAD_GPIO, "bad gpio (%d)", gpio);
if (pud > PI_PUD_UP)
SOFT_ERROR(PI_BAD_PUD, "gpio %d, bad pud (%d)", gpio, pud);
*(gpioReg + GPPUD) = pud;
myGpioDelay(20);
*(gpioReg + GPPUDCLK0 + BANK) = BIT;
myGpioDelay(20);
*(gpioReg + GPPUD) = 0;
*(gpioReg + GPPUDCLK0 + BANK) = 0;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioRead(unsigned gpio)
{
DBG(DBG_USER, "gpio=%d", gpio);
CHECK_INITED;
if (gpio > PI_MAX_GPIO)
SOFT_ERROR(PI_BAD_GPIO, "bad gpio (%d)", gpio);
if ((*(gpioReg + GPLEV0 + BANK) & BIT) != 0) return PI_ON;
else return PI_OFF;
}
/* ----------------------------------------------------------------------- */
int gpioWrite(unsigned gpio, unsigned level)
{
DBG(DBG_USER, "gpio=%d level=%d", gpio, level);
CHECK_INITED;
if (gpio > PI_MAX_GPIO)
SOFT_ERROR(PI_BAD_GPIO, "bad gpio (%d)", gpio);
if (level > PI_ON)
SOFT_ERROR(PI_BAD_LEVEL, "gpio %d, bad level (%d)", gpio, level);
if (gpio <= PI_MAX_USER_GPIO)
{
if (gpioInfo[gpio].is != GPIO_WRITE)
{
if (gpioInfo[gpio].is == GPIO_UNDEFINED)
{
if (level == PI_OFF) *(gpioReg + GPCLR0 + BANK) = BIT;
else *(gpioReg + GPSET0 + BANK) = BIT;
gpioSetMode(gpio, PI_OUTPUT);
}
else if (gpioInfo[gpio].is == GPIO_PWM)
{
/* switch pwm off */
myGpioSetPwm(gpio, gpioInfo[gpio].width, 0);
}
else if (gpioInfo[gpio].is == GPIO_SERVO)
{
/* switch servo off */
myGpioSetServo(
gpio, gpioInfo[gpio].width/gpioCfg.clockMicros, 0);
}
gpioInfo[gpio].is=GPIO_WRITE;
gpioInfo[gpio].width=0;
}
}
if (level == PI_OFF) *(gpioReg + GPCLR0 + BANK) = BIT;
else *(gpioReg + GPSET0 + BANK) = BIT;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioPWM(unsigned gpio, unsigned val)
{
DBG(DBG_USER, "gpio=%d dutycycle=%d", gpio, val);
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
if (val > gpioInfo[gpio].range)
SOFT_ERROR(PI_BAD_DUTYCYCLE, "gpio %d, bad dutycycle (%d)", gpio, val);
if (gpioInfo[gpio].is != GPIO_PWM)
{
if (gpioInfo[gpio].is == GPIO_UNDEFINED)
{
gpioSetMode(gpio, PI_OUTPUT);
}
else if (gpioInfo[gpio].is == GPIO_SERVO)
{
/* switch servo off */
myGpioSetServo(gpio, gpioInfo[gpio].width, 0);
gpioInfo[gpio].width = 0;
}
gpioInfo[gpio].is = GPIO_PWM;
}
myGpioSetPwm(gpio, gpioInfo[gpio].width, val);
gpioInfo[gpio].width=val;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioSetPWMrange(unsigned gpio, unsigned range)
{
int oldWidth, newWidth;
DBG(DBG_USER, "gpio=%d range=%d", gpio, range);
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
if ((range < PI_MIN_DUTYCYCLE_RANGE) || (range > PI_MAX_DUTYCYCLE_RANGE))
SOFT_ERROR(PI_BAD_DUTYRANGE, "gpio %d, bad range (%d)", gpio, range);
oldWidth = gpioInfo[gpio].width;
if (oldWidth)
{
if (gpioInfo[gpio].is == GPIO_PWM)
{
newWidth = (range * oldWidth) / gpioInfo[gpio].range;
myGpioSetPwm(gpio, oldWidth, 0);
gpioInfo[gpio].range = range;
gpioInfo[gpio].width = newWidth;
myGpioSetPwm(gpio, 0, newWidth);
}
}
gpioInfo[gpio].range = range;
/* return the actual range for the current gpio frequency */
return pwmRealRange[gpioInfo[gpio].freqIdx];
}
/* ----------------------------------------------------------------------- */
int gpioGetPWMrange(unsigned gpio)
{
DBG(DBG_USER, "gpio=%d", gpio);
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
return (gpioInfo[gpio].range);
}
/* ----------------------------------------------------------------------- */
int gpioGetPWMrealRange(unsigned gpio)
{
DBG(DBG_USER, "gpio=%d", gpio);
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
return pwmRealRange[gpioInfo[gpio].freqIdx];
}
/* ----------------------------------------------------------------------- */
int gpioSetPWMfrequency(unsigned gpio, unsigned frequency)
{
int i, width;
unsigned diff, best, idx;
DBG(DBG_USER, "gpio=%d frequency=%d", gpio, frequency);
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
if (frequency > pwmFreq[0]) idx = 0;
else if (frequency < pwmFreq[PWM_FREQS-1]) idx = PWM_FREQS-1;
else
{
best = 100000; /* impossibly high frequency difference */
idx = 0;
for (i=0; i<PWM_FREQS; i++)
{
if (frequency > pwmFreq[i]) diff = frequency - pwmFreq[i];
else diff = pwmFreq[i] - frequency;
if (diff < best)
{
best = diff;
idx = i;
}
}
}
width = gpioInfo[gpio].width;
if (width)
{
if (gpioInfo[gpio].is == GPIO_PWM)
{
myGpioSetPwm(gpio, width, 0);
gpioInfo[gpio].freqIdx = idx;
myGpioSetPwm(gpio, 0, width);
}
}
gpioInfo[gpio].freqIdx = idx;
return pwmFreq[idx];
}
/* ----------------------------------------------------------------------- */
int gpioGetPWMfrequency(unsigned gpio)
{
DBG(DBG_USER, "gpio=%d", gpio);
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
return (pwmFreq[gpioInfo[gpio].freqIdx]);
}
/* ----------------------------------------------------------------------- */
int gpioServo(unsigned gpio, unsigned val)
{
DBG(DBG_USER, "gpio=%d pulsewidth=%d", gpio, val);
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
if ((val!=PI_SERVO_OFF) && (val<PI_MIN_SERVO_PULSEWIDTH))
SOFT_ERROR(PI_BAD_PULSEWIDTH,
"gpio %d, bad pulsewidth (%d)", gpio, val);
if (val>PI_MAX_SERVO_PULSEWIDTH)
SOFT_ERROR(PI_BAD_PULSEWIDTH,
"gpio %d, bad pulsewidth (%d)", gpio, val);
if (gpioInfo[gpio].is != GPIO_SERVO)
{
if (gpioInfo[gpio].is == GPIO_UNDEFINED)
{
gpioSetMode(gpio, PI_OUTPUT);
}
else if (gpioInfo[gpio].is == GPIO_PWM)
{
/* switch pwm off */
myGpioSetPwm(gpio, gpioInfo[gpio].width, 0);
gpioInfo[gpio].width=0;
}
gpioInfo[gpio].is = GPIO_SERVO;
}
myGpioSetServo(gpio, gpioInfo[gpio].width, val);
gpioInfo[gpio].width=val;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioWaveClear(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
wfc[0] = 0;
wfc[1] = 0;
wfc[2] = 0;
wfcur = 0;
wfStats.micros = 0;
wfStats.pulses = 0;
wfStats.cbs = 0;
waveOutBotCB = 0;
waveOutTopCB = NUM_WAVE_CBS;
waveOutBotOOL = 0;
waveOutTopOOL = NUM_WAVE_OOL;
waveOutCount = 0;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioWaveAddNew(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
wfc[0] = 0;
wfc[1] = 0;
wfc[2] = 0;
wfcur = 0;
wfStats.micros = 0;
wfStats.pulses = 0;
wfStats.cbs = 0;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioWaveAddGeneric(unsigned numPulses, gpioPulse_t *pulses)
{
int p;
DBG(DBG_USER, "numPulses=%u pulses=%08X", numPulses, (uint32_t)pulses);
CHECK_INITED;
if (numPulses > PI_WAVE_MAX_PULSES)
SOFT_ERROR(PI_TOO_MANY_PULSES, "bad number of pulses (%d)", numPulses);
if (!pulses) SOFT_ERROR(PI_BAD_POINTER, "bad (NULL) pulses pointer");
for (p=0; p<numPulses; p++)
{
wf[2][p].gpioOff = pulses[p].gpioOff;
wf[2][p].gpioOn = pulses[p].gpioOn;
wf[2][p].usDelay = pulses[p].usDelay;
wf[2][p].flags = 0;
}
return rawWaveAddGeneric(numPulses, wf[2]);
}
/* ----------------------------------------------------------------------- */
int gpioWaveAddSerial
(unsigned gpio,
unsigned bbBaud,
unsigned offset,
unsigned numChar,
char *str)
{
int i, b, p, lev, c, v;
unsigned bitDelay[10];
DBG(DBG_USER, "gpio=%d bbBaud=%d offset=%d numChar=%d str=[%s]",
gpio, bbBaud, offset, numChar, myBuf2Str(numChar, (char *)str));
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
if ((bbBaud < PI_WAVE_MIN_BAUD) || (bbBaud > PI_WAVE_MAX_BAUD))
SOFT_ERROR(PI_BAD_WAVE_BAUD,
"gpio %d, bad baud rate (%d)", gpio, bbBaud);
if (numChar > PI_WAVE_MAX_CHARS)
SOFT_ERROR(PI_TOO_MANY_CHARS, "too many chars (%d)", numChar);
if (offset > PI_WAVE_MAX_MICROS)
SOFT_ERROR(PI_BAD_SER_OFFSET, "offset too large (%d)", offset);
if (!numChar) return 0;
waveBitDelay(bbBaud, bitDelay);
p = 0;
wf[2][p].gpioOn = (1<<gpio);
wf[2][p].gpioOff = 0;
wf[2][p].flags = 0;
if (offset > bitDelay[0]) wf[2][p].usDelay = offset;
else wf[2][p].usDelay = bitDelay[0];
for (i=0; i<numChar; i++)
{
p++;
/* start bit */
wf[2][p].gpioOn = 0;
wf[2][p].gpioOff = (1<<gpio);
wf[2][p].usDelay = bitDelay[0];
wf[2][p].flags = 0;
lev = 0;
c = str[i];
for (b=0; b<8; b++)
{
if (c & (1<<b)) v=1; else v=0;
if (v == lev) wf[2][p].usDelay += bitDelay[b+1];
else
{
p++;
lev = v;
if (lev)
{
wf[2][p].gpioOn = (1<<gpio);
wf[2][p].gpioOff = 0;
wf[2][p].flags = 0;
}
else
{
wf[2][p].gpioOn = 0;
wf[2][p].gpioOff = (1<<gpio);
wf[2][p].flags = 0;
}
wf[2][p].usDelay = bitDelay[b+1];
}
}
/* stop bit */
if (lev) wf[2][p].usDelay += bitDelay[9];
else
{
p++;
wf[2][p].gpioOn = (1<<gpio);
wf[2][p].gpioOff = 0;
wf[2][p].usDelay = bitDelay[9];
wf[2][p].flags = 0;
}
}
p++;
wf[2][p].gpioOn = (1<<gpio);
wf[2][p].gpioOff = 0;
wf[2][p].usDelay = bitDelay[0];
wf[2][p].flags = 0;
return rawWaveAddGeneric(p, wf[2]);
}
/* ----------------------------------------------------------------------- */
int rawWaveAddSPI(
rawSPI_t *spi,
unsigned offset,
unsigned spiSS,
char *buf,
unsigned spiTxBits,
unsigned spiBitFirst,
unsigned spiBitLast,
unsigned spiBits)
{
int p, dbv, bit, halfbit;
int rising_edge[2], read_cycle[2];
uint32_t on_bits, off_bits;
int tx_bit_pos;
DBG(DBG_USER, "spi=%08X off=%d spiSS=%d tx=%08X, num=%d fb=%d lb=%d spiBits=%d",
(uint32_t)spi, offset, spiSS, (uint32_t)buf, spiTxBits,
spiBitFirst, spiBitLast, spiBits);
CHECK_INITED;
if (spiSS > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", spiSS);
/*
CPOL CPHA
0 0 read rising/write falling
0 1 read falling/write rising
1 0 read falling/write rising
1 1 read rising/write falling
*/
if (spi->clk_pol) {rising_edge[0] = 0; rising_edge[1] = 1;}
else {rising_edge[0] = 1; rising_edge[1] = 0;}
if (spi->clk_pha) {read_cycle[0] = 0; read_cycle[1] = 1;}
else {read_cycle[0] = 1; read_cycle[1] = 0;}
p = 0;
if (offset)
{
wf[2][p].gpioOn = 0;
wf[2][p].gpioOff = 0;
wf[2][p].flags = 0;
wf[2][p].usDelay = offset;
p++;
}
/* preset initial mosi bit in case it's read at leading clock bit */
on_bits = 0;
off_bits = 0;
tx_bit_pos = 0;
if (getBitInBytes(tx_bit_pos, buf, spiTxBits))
{
dbv = 1;
on_bits |= (1<<(spi->mosi));
}
else
{
dbv = 0;
off_bits |= (1<<(spi->mosi));
}
if (spi->ss_pol) off_bits |= (1<<spiSS);
else on_bits |= (1<<spiSS);
wf[2][p].gpioOn = on_bits;
wf[2][p].gpioOff = off_bits;
wf[2][p].flags = 0;
if (spi->clk_us > spi->ss_us) wf[2][p].usDelay = spi->clk_us;
else wf[2][p].usDelay = spi->ss_us;
p++;
for (bit=1; bit<=spiBits; bit++)
{
for (halfbit=0; halfbit<2; halfbit++)
{
wf[2][p].usDelay = spi->clk_us;
wf[2][p].flags = 0;
on_bits = 0;
off_bits = 0;
if (read_cycle[halfbit])
{
if ((bit>=spiBitFirst) && (bit<=spiBitLast))
wf[2][p].flags = WAVE_FLAG_READ;
}
else
{
if (getBitInBytes(tx_bit_pos, buf, spiTxBits))
{
if (!dbv) on_bits |= (1<<(spi->mosi));
dbv = 1;
}
else
{
if (dbv) off_bits |= (1<<(spi->mosi));
dbv = 0;
}
++tx_bit_pos;
}
if (rising_edge[halfbit]) on_bits |= (1<<(spi->clk));
else off_bits |= (1<<(spi->clk));
wf[2][p].gpioOn = on_bits;
wf[2][p].gpioOff = off_bits;
p++;
}
}
on_bits = 0;
off_bits = 0;
if (spi->ss_pol) on_bits |= (1<<spiSS);
else off_bits |= (1<<spiSS);
wf[2][p].gpioOn = on_bits;
wf[2][p].gpioOff = off_bits;
wf[2][p].flags = 0;
wf[2][p].usDelay = 0;
p++;
return rawWaveAddGeneric(p, wf[2]);
}
/* ----------------------------------------------------------------------- */
int gpioWaveCreate(void)
{
int cb;
DBG(DBG_USER, "");
CHECK_INITED;
if (wfc[wfcur] == 0) return PI_EMPTY_WAVEFORM;
if (waveOutCount < PI_MAX_WAVES)
{
waveInfo[waveOutCount].botCB = waveOutBotCB;
waveInfo[waveOutCount].botOOL = waveOutBotOOL;
waveInfo[waveOutCount].topOOL = waveOutTopOOL;
if ((cb = wave2Cbs(PI_WAVE_MODE_ONE_SHOT)) < 0) return cb;
waveInfo[waveOutCount].topCB = waveOutBotCB-1;
gpioWaveAddNew();
return waveOutCount++;
}
return PI_NO_WAVEFORM_ID;
}
/* ----------------------------------------------------------------------- */
int gpioWaveDelete(unsigned wave_id)
{
DBG(DBG_USER, "wave id=%d", wave_id);
CHECK_INITED;
if (wave_id >= waveOutCount)
SOFT_ERROR(PI_BAD_WAVE_ID, "bad wave id (%d)", wave_id);
waveOutBotCB = waveInfo[wave_id].botCB;
waveOutBotOOL = waveInfo[wave_id].botOOL;
waveOutTopOOL = waveInfo[wave_id].topOOL;
waveOutCount = wave_id;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioWaveTxStart(unsigned wave_mode)
{
/* This function is deprecated and will be removed. */
static int secondaryClockInited = 0;
int cb, i;
DBG(DBG_USER, "wave_mode=%d", wave_mode);
CHECK_INITED;
if (wave_mode > PI_WAVE_MODE_REPEAT)
SOFT_ERROR(PI_BAD_WAVE_MODE, "bad wave mode (%d)", wave_mode);
if (wfc[wfcur] == 0) return 0;
if (!secondaryClockInited)
{
initClock(0); /* initialise secondary clock */
secondaryClockInited = 1;
}
dmaOut[DMA_CS] = DMA_CHANNEL_RESET;
dmaOut[DMA_CONBLK_AD] = 0;
waveOutBotCB = 0;
waveOutTopCB = NUM_WAVE_CBS;
waveOutBotOOL = 0;
waveOutTopOOL = NUM_WAVE_OOL;
waveOutCount = 0;
cb = wave2Cbs(wave_mode);
if (gpioCfg.dbgLevel >= DBG_SLOW_TICK)
{
fprintf(stderr, "*** OUTPUT DMA CONTROL BLOCKS ***\n");
for (i=0; i<cb; i++) waveCbOPrint(i);
}
initDMAgo((uint32_t *)dmaOut, (uint32_t)dmaOPhys[0]);
return cb;
}
/* ----------------------------------------------------------------------- */
int gpioWaveTxSend(unsigned wave_id, unsigned wave_mode)
{
rawCbs_t *p=NULL;
static int secondaryClockInited = 0;
DBG(DBG_USER, "wave_id=%d wave_mode=%d", wave_id, wave_mode);
CHECK_INITED;
if (wave_id >= waveOutCount)
SOFT_ERROR(PI_BAD_WAVE_ID, "bad wave id (%d)", wave_id);
if (wave_mode > PI_WAVE_MODE_REPEAT)
SOFT_ERROR(PI_BAD_WAVE_MODE, "bad wave mode (%d)", wave_mode);
if (!secondaryClockInited)
{
initClock(0); /* initialise secondary clock */
secondaryClockInited = 1;
}
p = rawWaveCBAdr(waveInfo[wave_id].topCB);
if (wave_mode == PI_WAVE_MODE_ONE_SHOT) p->next = 0;
else p->next = waveCbPOadr(waveInfo[wave_id].botCB+1) | DMA_BUS_ADR;
dmaOut[DMA_CS] = DMA_CHANNEL_RESET;
dmaOut[DMA_CONBLK_AD] = 0;
initDMAgo((uint32_t *)dmaOut, waveCbPOadr(waveInfo[wave_id].botCB));
/* for compatability with the deprecated gpioWaveTxStart return the
number of cbs
*/
return (waveInfo[wave_id].topCB - waveInfo[wave_id].botCB) + 1;
}
/*-------------------------------------------------------------------------*/
int gpioWaveTxBusy(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
if (dmaOut[DMA_CONBLK_AD])
return 1;
else
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioWaveTxStop(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
dmaOut[DMA_CS] = DMA_CHANNEL_RESET;
dmaOut[DMA_CONBLK_AD] = 0;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioWaveGetMicros(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
return wfStats.micros;
}
/* ----------------------------------------------------------------------- */
int gpioWaveGetHighMicros(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
return wfStats.highMicros;
}
/* ----------------------------------------------------------------------- */
int gpioWaveGetMaxMicros(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
return wfStats.maxMicros;
}
/* ----------------------------------------------------------------------- */
int gpioWaveGetPulses(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
return wfStats.pulses;
}
/* ----------------------------------------------------------------------- */
int gpioWaveGetHighPulses(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
return wfStats.highPulses;
}
/* ----------------------------------------------------------------------- */
int gpioWaveGetMaxPulses(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
return wfStats.maxPulses;
}
/* ----------------------------------------------------------------------- */
int gpioWaveGetCbs(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
return wfStats.cbs;
}
/* ----------------------------------------------------------------------- */
int gpioWaveGetHighCbs(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
return wfStats.highCbs;
}
/* ----------------------------------------------------------------------- */
int gpioWaveGetMaxCbs(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
return wfStats.maxCbs;
}
/*-------------------------------------------------------------------------*/
int gpioSerialReadOpen(unsigned gpio, unsigned bbBaud)
{
int bitTime, timeout;
DBG(DBG_USER, "gpio=%d bbBaud=%d", gpio, bbBaud);
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
if ((bbBaud < PI_WAVE_MIN_BAUD) || (bbBaud > PI_WAVE_MAX_BAUD))
SOFT_ERROR(PI_BAD_WAVE_BAUD,
"gpio %d, bad baud rate (%d)", gpio, bbBaud);
if (wfRx[gpio].mode != PI_WFRX_NONE)
SOFT_ERROR(PI_GPIO_IN_USE, "gpio %d is already being used", gpio);
bitTime = MILLION / bbBaud;
timeout = (10 * bitTime)/1000;
if (timeout < 1) timeout = 1;
wfRx[gpio].gpio = gpio;
wfRx[gpio].buf = malloc(SRX_BUF_SIZE);
wfRx[gpio].bufSize = SRX_BUF_SIZE;
wfRx[gpio].mode = PI_WFRX_SERIAL;
wfRx[gpio].baud = bbBaud;
wfRx[gpio].timeout = timeout;
wfRx[gpio].fullBit = bitTime;
wfRx[gpio].halfBit = bitTime/2;
wfRx[gpio].readPos = 0;
wfRx[gpio].writePos = 0;
wfRx[gpio].bit = -1;
gpioSetAlertFunc(gpio, waveRxBit);
return 0;
}
/*-------------------------------------------------------------------------*/
int gpioSerialRead(unsigned gpio, void *buf, size_t bufSize)
{
unsigned bytes=0, wpos;
volatile wfRx_t *p;
DBG(DBG_USER, "gpio=%d buf=%08X bufSize=%d", gpio, (int)buf, bufSize);
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
if (bufSize == 0)
SOFT_ERROR(PI_BAD_SERIAL_COUNT, "buffer size can't be zero");
if (wfRx[gpio].mode != PI_WFRX_SERIAL)
SOFT_ERROR(PI_NOT_SERIAL_GPIO, "no serial read on gpio (%d)", gpio);
p = &wfRx[gpio];
if (p->readPos != p->writePos)
{
wpos = p->writePos;
if (wpos > p->readPos) bytes = wpos - p->readPos;
else bytes = p->bufSize - p->readPos;
if (bytes > bufSize) bytes = bufSize;
if (buf) memcpy(buf, p->buf+p->readPos, bytes);
p->readPos += bytes;
if (p->readPos >= p->bufSize) p->readPos = 0;
}
return bytes;
}
/*-------------------------------------------------------------------------*/
int gpioSerialReadClose(unsigned gpio)
{
DBG(DBG_USER, "gpio=%d", gpio);
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
switch(wfRx[gpio].mode)
{
case PI_WFRX_NONE:
SOFT_ERROR(PI_NOT_SERIAL_GPIO, "no serial read on gpio (%d)", gpio);
break;
case PI_WFRX_SERIAL:
free(wfRx[gpio].buf);
gpioSetWatchdog(gpio, 0); /* switch off timeouts */
gpioSetAlertFunc(gpio, NULL); /* cancel alert */
wfRx[gpio].mode = PI_WFRX_NONE;
break;
}
return 0;
}
/* ----------------------------------------------------------------------- */
static int intGpioSetAlertFunc(
unsigned gpio,
void * f,
int user,
void * userdata)
{
DBG(DBG_INTERNAL, "gpio=%d function=%08X, user=%d, userdata=%08X",
gpio, (uint32_t)f, user, (uint32_t)userdata);
gpioAlert[gpio].ex = user;
gpioAlert[gpio].userdata = userdata;
gpioAlert[gpio].func = f;
if (f)
{
alertBits |= BIT;
}
else
{
alertBits &= ~BIT;
}
monitorBits = alertBits | notifyBits | scriptBits | gpioGetSamples.bits;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioSetAlertFunc(unsigned gpio, gpioAlertFunc_t f)
{
DBG(DBG_USER, "gpio=%d function=%08X", gpio, (uint32_t)f);
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
intGpioSetAlertFunc(gpio, f, 0, NULL);
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioSetAlertFuncEx(unsigned gpio, gpioAlertFuncEx_t f, void *userdata)
{
DBG(DBG_USER, "gpio=%d function=%08X userdata=%08X",
gpio, (uint32_t)f, (uint32_t)userdata);
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
intGpioSetAlertFunc(gpio, f, 1, userdata);
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioNotifyOpen(void)
{
int i, slot, fd;
char name[32];
DBG(DBG_USER, "");
CHECK_INITED;
slot = -1;
for (i=0; i<PI_NOTIFY_SLOTS; i++)
{
if (gpioNotify[i].state == PI_NOTIFY_CLOSED)
{
gpioNotify[i].state = PI_NOTIFY_OPENED;
slot = i;
break;
}
}
if (slot < 0)
SOFT_ERROR(PI_NO_HANDLE, "no handle");
sprintf(name, "/dev/pigpio%d", slot);
myCreatePipe(name, 0664);
fd = open(name, O_RDWR|O_NONBLOCK);
if (fd < 0)
{
gpioNotify[slot].state = PI_NOTIFY_CLOSED;
SOFT_ERROR(PI_BAD_PATHNAME, "open %s failed (%m)", name);
}
gpioNotify[slot].seqno = 0;
gpioNotify[slot].bits = 0;
gpioNotify[slot].fd = fd;
gpioNotify[slot].pipe = 1;
return slot;
}
/* ----------------------------------------------------------------------- */
static int gpioNotifyOpenInBand(int fd)
{
int i, slot;
DBG(DBG_USER, "");
CHECK_INITED;
slot = -1;
for (i=0; i<PI_NOTIFY_SLOTS; i++)
{
if (gpioNotify[i].state == PI_NOTIFY_CLOSED)
{
slot = i;
break;
}
}
if (slot < 0) SOFT_ERROR(PI_NO_HANDLE, "no handle");
gpioNotify[slot].state = PI_NOTIFY_OPENED;
gpioNotify[slot].seqno = 0;
gpioNotify[slot].bits = 0;
gpioNotify[slot].fd = fd;
gpioNotify[slot].pipe = 0;
return slot;
}
/* ----------------------------------------------------------------------- */
static void intScriptBits(void)
{
int i;
uint32_t bits;
bits = 0;
for (i=0; i<PI_MAX_SCRIPTS; i++)
{
if (gpioScript[i].state == PI_SCRIPT_IN_USE)
{
bits |= gpioScript[i].waitBits;
}
}
scriptBits = bits;
monitorBits = alertBits | notifyBits | scriptBits | gpioGetSamples.bits;
}
static void intNotifyBits(void)
{
int i;
uint32_t bits;
bits = 0;
for (i=0; i<PI_NOTIFY_SLOTS; i++)
{
if (gpioNotify[i].state == PI_NOTIFY_RUNNING)
{
bits |= gpioNotify[i].bits;
}
}
notifyBits = bits;
monitorBits = alertBits | notifyBits | scriptBits | gpioGetSamples.bits;
}
/* ----------------------------------------------------------------------- */
int gpioNotifyBegin(unsigned handle, uint32_t bits)
{
DBG(DBG_USER, "handle=%d bits=%08X", handle, bits);
CHECK_INITED;
if (handle >= PI_NOTIFY_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (gpioNotify[handle].state <= PI_NOTIFY_CLOSING)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
gpioNotify[handle].bits = bits;
gpioNotify[handle].state = PI_NOTIFY_RUNNING;
intNotifyBits();
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioNotifyPause (unsigned handle)
{
DBG(DBG_USER, "handle=%d", handle);
CHECK_INITED;
if (handle >= PI_NOTIFY_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (gpioNotify[handle].state <= PI_NOTIFY_CLOSING)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
gpioNotify[handle].bits = 0;
gpioNotify[handle].state = PI_NOTIFY_PAUSED;
intNotifyBits();
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioNotifyClose(unsigned handle)
{
DBG(DBG_USER, "handle=%d", handle);
CHECK_INITED;
if (handle >= PI_NOTIFY_SLOTS)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
if (gpioNotify[handle].state <= PI_NOTIFY_CLOSING)
SOFT_ERROR(PI_BAD_HANDLE, "bad handle (%d)", handle);
gpioNotify[handle].bits = 0;
gpioNotify[handle].state = PI_NOTIFY_CLOSING;
intNotifyBits();
/* actual close done in alert thread */
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioTrigger(unsigned gpio, unsigned pulseLen, unsigned level)
{
DBG(DBG_USER, "gpio=%d pulseLen=%d level=%d", gpio, pulseLen, level);
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
if (level > PI_ON)
SOFT_ERROR(PI_BAD_LEVEL, "gpio %d, bad level (%d)", gpio, level);
if ((pulseLen > PI_MAX_BUSY_DELAY) || (!pulseLen))
SOFT_ERROR(PI_BAD_PULSELEN,
"gpio %d, bad pulseLen (%d)", gpio, pulseLen);
if (level == PI_OFF) *(gpioReg + GPCLR0 + BANK) = BIT;
else *(gpioReg + GPSET0 + BANK) = BIT;
myGpioDelay(pulseLen);
if (level != PI_OFF) *(gpioReg + GPCLR0 + BANK) = BIT;
else *(gpioReg + GPSET0 + BANK) = BIT;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioSetWatchdog(unsigned gpio, unsigned timeout)
{
DBG(DBG_USER, "gpio=%d timeout=%d", gpio, timeout);
CHECK_INITED;
if (gpio > PI_MAX_USER_GPIO)
SOFT_ERROR(PI_BAD_USER_GPIO, "bad gpio (%d)", gpio);
if (timeout > PI_MAX_WDOG_TIMEOUT)
SOFT_ERROR(PI_BAD_WDOG_TIMEOUT,
"gpio %d, bad timeout (%d)", gpio, timeout);
gpioAlert[gpio].timeout = timeout;
gpioAlert[gpio].tick = systReg[SYST_CLO];
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioSetGetSamplesFunc(gpioGetSamplesFunc_t f, uint32_t bits)
{
DBG(DBG_USER, "function=%08X bits=%08X", (uint32_t)f, bits);
CHECK_INITED;
gpioGetSamples.ex = 0;
gpioGetSamples.userdata = NULL;
gpioGetSamples.func = f;
if (f) gpioGetSamples.bits = bits;
else gpioGetSamples.bits = 0;
monitorBits = alertBits | notifyBits | scriptBits | gpioGetSamples.bits;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioSetGetSamplesFuncEx(gpioGetSamplesFuncEx_t f,
uint32_t bits,
void * userdata)
{
DBG(DBG_USER, "function=%08X bits=%08X", (uint32_t)f, bits);
CHECK_INITED;
gpioGetSamples.ex = 1;
gpioGetSamples.userdata = userdata;
gpioGetSamples.func = f;
if (f) gpioGetSamples.bits = bits;
else gpioGetSamples.bits = 0;
monitorBits = alertBits | notifyBits | scriptBits | gpioGetSamples.bits;
return 0;
}
/* ----------------------------------------------------------------------- */
static int intGpioSetTimerFunc(unsigned id,
unsigned millis,
void *f,
int user,
void *userdata)
{
DBG(DBG_INTERNAL, "id=%d millis=%d function=%08X user=%d userdata=%08X",
id, millis, (uint32_t)f, user, (uint32_t)userdata);
gpioTimer[id].id = id;
if (f)
{
gpioTimer[id].func = f;
gpioTimer[id].ex = user;
gpioTimer[id].userdata = userdata;
gpioTimer[id].millis = millis;
if (!gpioTimer[id].running)
{
if (pthread_create(
&gpioTimer[id].pthId, &pthAttr, pthTimerTick, &gpioTimer[id]))
SOFT_ERROR(PI_TIMER_FAILED,
"timer %d, create failed (%m)", id);
gpioTimer[id].running = 1;
}
}
else
{
if (gpioTimer[id].running)
{
/* destroy thread */
if (pthread_cancel(gpioTimer[id].pthId))
SOFT_ERROR(PI_TIMER_FAILED, "timer %d, cancel failed (%m)", id);
if (pthread_join(gpioTimer[id].pthId, NULL))
SOFT_ERROR(PI_TIMER_FAILED, "timer %d, join failed (%m)", id);
gpioTimer[id].running = 0;
gpioTimer[id].func = f;
}
}
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioSetTimerFunc(unsigned id, unsigned millis, gpioTimerFunc_t f)
{
DBG(DBG_USER, "id=%d millis=%d function=%08X", id, millis, (uint32_t)f);
CHECK_INITED;
if (id > PI_MAX_TIMER)
SOFT_ERROR(PI_BAD_TIMER, "bad timer id (%d)", id);
if ((millis < PI_MIN_MS) || (millis > PI_MAX_MS))
SOFT_ERROR(PI_BAD_MS, "timer %d, bad millis (%d)", id, millis);
intGpioSetTimerFunc(id, millis, f, 0, NULL);
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioSetTimerFuncEx(unsigned id, unsigned millis, gpioTimerFuncEx_t f,
void * userdata)
{
DBG(DBG_USER, "id=%d millis=%d function=%08X, userdata=%08X",
id, millis, (uint32_t)f, (uint32_t)userdata);
CHECK_INITED;
if (id > PI_MAX_TIMER)
SOFT_ERROR(PI_BAD_TIMER, "bad timer id (%d)", id);
if ((millis < PI_MIN_MS) || (millis > PI_MAX_MS))
SOFT_ERROR(PI_BAD_MS, "timer %d, bad millis (%d)", id, millis);
intGpioSetTimerFunc(id, millis, f, 1, userdata);
return 0;
}
/* ----------------------------------------------------------------------- */
pthread_t *gpioStartThread(gpioThreadFunc_t f, void *arg)
{
pthread_t *pth;
pthread_attr_t pthAttr;
DBG(DBG_USER, "f=%08X, arg=%08X", (uint32_t)f, (uint32_t)arg);
CHECK_INITED_RET_NULL_PTR;
pth = malloc(sizeof(pthread_t));
if (pth)
{
if (pthread_attr_init(&pthAttr))
{
free(pth);
SOFT_ERROR(NULL, "pthread_attr_init failed");
}
if (pthread_attr_setstacksize(&pthAttr, STACK_SIZE))
{
free(pth);
SOFT_ERROR(NULL, "pthread_attr_setstacksize failed");
}
if (pthread_create(pth, &pthAttr, f, arg))
{
free(pth);
SOFT_ERROR(NULL, "pthread_create failed");
}
}
return pth;
}
/* ----------------------------------------------------------------------- */
void gpioStopThread(pthread_t *pth)
{
DBG(DBG_USER, "pth=%08X", (uint32_t)pth);
CHECK_INITED_RET_NIL;
if (pth)
{
pthread_cancel(*pth);
pthread_join(*pth, NULL);
}
}
/* ----------------------------------------------------------------------- */
int gpioStoreScript(char *script)
{
gpioScript_t *s;
int status, slot, i;
DBG(DBG_USER, "script=[%s]", script);
CHECK_INITED;
slot = -1;
for (i=0; i<PI_MAX_SCRIPTS; i++)
{
if (gpioScript[i].state == PI_SCRIPT_FREE)
{
gpioScript[i].state = PI_SCRIPT_RESERVED;
slot = i;
break;
}
}
if (slot < 0)
SOFT_ERROR(PI_NO_SCRIPT_ROOM, "no room for scripts");
s = &gpioScript[slot];
status = cmdParseScript(script, &s->script, 0);
if (status == 0)
{
s->request = PI_SCRIPT_HALT;
s->run_state = PI_SCRIPT_INITING;
pthread_cond_init(&s->pthCond, NULL);
pthread_mutex_init(&s->pthMutex, NULL);
s->id = slot;
gpioScript[slot].state = PI_SCRIPT_IN_USE;
s->pthIdp = gpioStartThread(pthScript, s);
status = slot;
}
else
{
if (s->script.par) free(s->script.par);
s->script.par = NULL;
gpioScript[slot].state = PI_SCRIPT_FREE;
}
return status;
}
/* ----------------------------------------------------------------------- */
int gpioRunScript(unsigned script_id, unsigned numParam, uint32_t *param)
{
int status = 0;
DBG(DBG_USER, "script_id=%d numParam=%d param=%08X",
script_id, numParam, (uint32_t)param);
CHECK_INITED;
if (script_id >= PI_MAX_SCRIPTS)
SOFT_ERROR(PI_BAD_SCRIPT_ID, "bad script id(%d)", script_id);
if (numParam > PI_MAX_SCRIPT_PARAMS)
SOFT_ERROR(PI_TOO_MANY_PARAM, "bad number of parameters(%d)", numParam);
if (gpioScript[script_id].state == PI_SCRIPT_IN_USE)
{
pthread_mutex_lock(&gpioScript[script_id].pthMutex);
if (gpioScript[script_id].run_state == PI_SCRIPT_HALTED)
{
if ((numParam > 0) && (param != 0))
{
memcpy(gpioScript[script_id].script.par, param,
sizeof(uint32_t) * numParam);
}
gpioScript[script_id].request = PI_SCRIPT_RUN;
pthread_cond_signal(&gpioScript[script_id].pthCond);
}
else
{
status = PI_NOT_HALTED;
}
pthread_mutex_unlock(&gpioScript[script_id].pthMutex);
return status;
}
else
{
return PI_BAD_SCRIPT_ID;
}
}
/* ----------------------------------------------------------------------- */
int gpioScriptStatus(unsigned script_id, uint32_t *param)
{
DBG(DBG_USER, "script_id=%d param=%08X", script_id, (uint32_t)param);
CHECK_INITED;
if (script_id >= PI_MAX_SCRIPTS)
SOFT_ERROR(PI_BAD_SCRIPT_ID, "bad script id(%d)", script_id);
if (gpioScript[script_id].state == PI_SCRIPT_IN_USE)
{
if (param != NULL)
{
memcpy(param, gpioScript[script_id].script.par,
sizeof(uint32_t) * PI_MAX_SCRIPT_PARAMS);
}
return gpioScript[script_id].run_state;
}
else return PI_BAD_SCRIPT_ID;
}
/* ----------------------------------------------------------------------- */
int gpioStopScript(unsigned script_id)
{
DBG(DBG_USER, "script_id=%d", script_id);
CHECK_INITED;
if (script_id >= PI_MAX_SCRIPTS)
SOFT_ERROR(PI_BAD_SCRIPT_ID, "bad script id(%d)", script_id);
if (gpioScript[script_id].state == PI_SCRIPT_IN_USE)
{
pthread_mutex_lock(&gpioScript[script_id].pthMutex);
gpioScript[script_id].request = PI_SCRIPT_HALT;
if (gpioScript[script_id].run_state == PI_SCRIPT_WAITING)
{
pthread_cond_signal(&gpioScript[script_id].pthCond);
}
pthread_mutex_unlock(&gpioScript[script_id].pthMutex);
return 0;
}
else return PI_BAD_SCRIPT_ID;
}
/* ----------------------------------------------------------------------- */
int gpioDeleteScript(unsigned script_id)
{
DBG(DBG_USER, "script_id=%d", script_id);
CHECK_INITED;
if (script_id >= PI_MAX_SCRIPTS)
SOFT_ERROR(PI_BAD_SCRIPT_ID, "bad script id(%d)", script_id);
if (gpioScript[script_id].state == PI_SCRIPT_IN_USE)
{
gpioScript[script_id].state = PI_SCRIPT_DYING;
pthread_mutex_lock(&gpioScript[script_id].pthMutex);
gpioScript[script_id].request = PI_SCRIPT_HALT;
if (gpioScript[script_id].run_state == PI_SCRIPT_WAITING)
{
pthread_cond_signal(&gpioScript[script_id].pthCond);
}
pthread_mutex_unlock(&gpioScript[script_id].pthMutex);
while (gpioScript[script_id].run_state == PI_SCRIPT_RUNNING)
{
myGpioSleep(0, 5000); /* give script time to halt */
}
gpioStopThread(gpioScript[script_id].pthIdp);
if (gpioScript[script_id].script.par)
free(gpioScript[script_id].script.par);
gpioScript[script_id].script.par = NULL;
gpioScript[script_id].state = PI_SCRIPT_FREE;
return 0;
}
else return PI_BAD_SCRIPT_ID;
}
/* ----------------------------------------------------------------------- */
int gpioSetSignalFunc(unsigned signum, gpioSignalFunc_t f)
{
DBG(DBG_USER, "signum=%d function=%08X", signum, (uint32_t)f);
CHECK_INITED;
if (signum > PI_MAX_SIGNUM)
SOFT_ERROR(PI_BAD_SIGNUM, "bad signum (%d)", signum);
gpioSignal[signum].ex = 0;
gpioSignal[signum].userdata = NULL;
gpioSignal[signum].func = f;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioSetSignalFuncEx(unsigned signum, gpioSignalFuncEx_t f,
void *userdata)
{
DBG(DBG_USER, "signum=%d function=%08X userdata=%08X",
signum, (uint32_t)f, (uint32_t)userdata);
CHECK_INITED;
if (signum > PI_MAX_SIGNUM)
SOFT_ERROR(PI_BAD_SIGNUM, "bad signum (%d)", signum);
gpioSignal[signum].ex = 1;
gpioSignal[signum].userdata = userdata;
gpioSignal[signum].func = f;
return 0;
}
/* ----------------------------------------------------------------------- */
uint32_t gpioRead_Bits_0_31(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
return (*(gpioReg + GPLEV0));
}
/* ----------------------------------------------------------------------- */
uint32_t gpioRead_Bits_32_53(void)
{
DBG(DBG_USER, "");
CHECK_INITED;
return (*(gpioReg + GPLEV1));
}
/* ----------------------------------------------------------------------- */
int gpioWrite_Bits_0_31_Clear(uint32_t bits)
{
DBG(DBG_USER, "bits=%08X", bits);
CHECK_INITED;
*(gpioReg + GPCLR0) = bits;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioWrite_Bits_32_53_Clear(uint32_t bits)
{
DBG(DBG_USER, "bits=%08X", bits);
CHECK_INITED;
*(gpioReg + GPCLR1) = bits;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioWrite_Bits_0_31_Set(uint32_t bits)
{
DBG(DBG_USER, "bits=%08X", bits);
CHECK_INITED;
*(gpioReg + GPSET0) = bits;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioWrite_Bits_32_53_Set(uint32_t bits)
{
DBG(DBG_USER, "bits=%08X", bits);
CHECK_INITED;
*(gpioReg + GPSET1) = bits;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioTime(unsigned timetype, int *seconds, int *micros)
{
struct timespec ts;
DBG(DBG_USER, "timetype=%d &seconds=%08X &micros=%08X",
timetype, (uint32_t)seconds, (uint32_t)micros);
CHECK_INITED;
if (timetype > PI_TIME_ABSOLUTE)
SOFT_ERROR(PI_BAD_TIMETYPE, "bad timetype (%d)", timetype);
if (timetype == PI_TIME_ABSOLUTE)
{
clock_gettime(CLOCK_REALTIME, &ts);
*seconds = ts.tv_sec;
*micros = ts.tv_nsec/1000;
}
else
{
clock_gettime(CLOCK_REALTIME, &ts);
TIMER_SUB(&ts, &libStarted, &ts);
*seconds = ts.tv_sec;
*micros = ts.tv_nsec/1000;
}
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioSleep(unsigned timetype, int seconds, int micros)
{
struct timespec ts, rem;
DBG(DBG_USER, "timetype=%d seconds=%d micros=%d",
timetype, seconds, micros);
CHECK_INITED;
if (timetype > PI_TIME_ABSOLUTE)
SOFT_ERROR(PI_BAD_TIMETYPE, "bad timetype (%d)", timetype);
if (seconds < 0)
SOFT_ERROR(PI_BAD_SECONDS, "bad seconds (%d)", seconds);
if ((micros < 0) || (micros > 999999))
SOFT_ERROR(PI_BAD_MICROS, "bad micros (%d)", micros);
ts.tv_sec = seconds;
ts.tv_nsec = micros * 1000;
if (timetype == PI_TIME_ABSOLUTE)
{
while (clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &ts, &rem));
}
else
{
while (clock_nanosleep(CLOCK_REALTIME, 0, &ts, &rem))
{
/* copy remaining time to ts */
ts.tv_sec = rem.tv_sec;
ts.tv_nsec = rem.tv_nsec;
}
}
return 0;
}
/* ----------------------------------------------------------------------- */
uint32_t gpioDelay(uint32_t micros)
{
uint32_t start;
DBG(DBG_USER, "microseconds=%u", micros);
CHECK_INITED;
start = systReg[SYST_CLO];
if (micros <= PI_MAX_BUSY_DELAY) while ((systReg[SYST_CLO] - start) <= micros);
else gpioSleep(PI_TIME_RELATIVE, (micros/MILLION), (micros%MILLION));
return (systReg[SYST_CLO] - start);
}
/* ----------------------------------------------------------------------- */
uint32_t gpioTick(void)
{
CHECK_INITED;
return systReg[SYST_CLO];
}
/* ----------------------------------------------------------------------- */
unsigned gpioVersion(void)
{
DBG(DBG_USER, "");
return PIGPIO_VERSION;
}
/* ----------------------------------------------------------------------- */
unsigned gpioHardwareRevision(void)
{
static unsigned rev = 0;
FILE * filp;
char buf[512];
char term;
DBG(DBG_USER, "");
if (rev) return rev;
filp = fopen ("/proc/cpuinfo", "r");
if (filp != NULL)
{
while (fgets(buf, sizeof(buf), filp) != NULL)
{
if (!strncasecmp("revision\t", buf, 9))
{
if (sscanf(buf+strlen(buf)-5, "%x%c", &rev, &term) == 2)
{
if (term == '\n') break;
rev = 0;
}
}
}
fclose(filp);
}
return rev;
}
/* ----------------------------------------------------------------------- */
int gpioCfgBufferSize(unsigned millis)
{
DBG(DBG_USER, "millis=%d", millis);
CHECK_NOT_INITED;
if ((millis < PI_BUF_MILLIS_MIN) || (millis > PI_BUF_MILLIS_MAX))
SOFT_ERROR(PI_BAD_BUF_MILLIS, "bad millis (%d)", millis);
gpioCfg.bufferMilliseconds = millis;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioCfgClock(unsigned micros, unsigned peripheral, unsigned source)
{
DBG(DBG_USER, "micros=%d peripheral=%d source=%d",
micros, peripheral, source);
CHECK_NOT_INITED;
if ((micros < 1) || (micros > 10))
SOFT_ERROR(PI_BAD_CLK_MICROS, "bad micros (%d)", micros);
if (!clkCfg[micros].valid)
SOFT_ERROR(PI_BAD_CLK_MICROS, "bad micros (%d)", micros);
if (peripheral > PI_CLOCK_PCM)
SOFT_ERROR(PI_BAD_CLK_PERIPH, "bad peripheral (%d)", peripheral);
if (source > PI_CLOCK_PLLD)
SOFT_ERROR(PI_BAD_CLK_SOURCE, "bad clock (%d)", source);
gpioCfg.clockMicros = micros;
gpioCfg.clockPeriph = peripheral;
gpioCfg.clockSource = source;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioCfgDMAchannel(unsigned DMAchannel)
{
DBG(DBG_USER, "channel=%d", DMAchannel);
CHECK_NOT_INITED;
if ((DMAchannel < PI_MIN_DMA_CHANNEL) || (DMAchannel > PI_MAX_DMA_CHANNEL))
SOFT_ERROR(PI_BAD_CHANNEL, "bad channel (%d)", DMAchannel);
gpioCfg.DMAprimaryChannel = DMAchannel;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioCfgDMAchannels(unsigned primaryChannel, unsigned secondaryChannel)
{
DBG(DBG_USER, "primary channel=%d, secondary channel=%d",
primaryChannel, secondaryChannel);
CHECK_NOT_INITED;
if (primaryChannel > PI_MAX_PRIMARY_CHANNEL)
SOFT_ERROR(PI_BAD_PRIM_CHANNEL, "bad primary channel (%d)",
primaryChannel);
if (secondaryChannel > PI_MAX_SECONDARY_CHANNEL)
SOFT_ERROR(PI_BAD_SECO_CHANNEL, "bad secondary channel (%d)",
secondaryChannel);
gpioCfg.DMAprimaryChannel = primaryChannel;
gpioCfg.DMAsecondaryChannel = secondaryChannel;
return 0;
}
/*-------------------------------------------------------------------------*/
int gpioCfgPermissions(uint64_t updateMask)
{
DBG(DBG_USER, "gpio update mask=%llX", updateMask);
CHECK_NOT_INITED;
gpioMask = updateMask;
gpioMaskSet = 1;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioCfgInterfaces(unsigned ifFlags)
{
DBG(DBG_USER, "ifFlags=%X", ifFlags);
CHECK_NOT_INITED;
if (ifFlags > 3)
SOFT_ERROR(PI_BAD_IF_FLAGS, "bad ifFlags (%X)", ifFlags);
gpioCfg.ifFlags = ifFlags;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioCfgSocketPort(unsigned port)
{
DBG(DBG_USER, "port=%d", port);
CHECK_NOT_INITED;
if ((port < PI_MIN_SOCKET_PORT) || (port > PI_MAX_SOCKET_PORT))
SOFT_ERROR(PI_BAD_SOCKET_PORT, "bad port (%d)", port);
gpioCfg.socketPort = port;
return 0;
}
/* ----------------------------------------------------------------------- */
int gpioCfgInternals(unsigned cfgWhat, int cfgVal)
{
int retVal = PI_BAD_CFG_INTERNAL;
DBG(DBG_USER, "cfgWhat=%u, cfgVal=%d", cfgWhat, cfgVal);
/*
133084774
207081315
293640712
394342930
472769257
430873902
635370313
684442696
786301093
816051706
858202631
997413601
*/
switch(cfgWhat)
{
case 562484977:
gpioCfg.showStats = cfgVal;
DBG(DBG_ALWAYS, "showStats is %u", cfgVal);
retVal = 0;
break;
case 984762879:
if (cfgVal < DBG_ALWAYS) cfgVal = DBG_ALWAYS;
if (cfgVal > DBG_MAX_LEVEL) cfgVal = DBG_MAX_LEVEL;
gpioCfg.dbgLevel = cfgVal;
DBG(DBG_ALWAYS, "Debug level is %u", cfgVal);
retVal = 0;
break;
}
return retVal;
}