boxespy/boxes/generators/laptopstand.py

202 lines
6.2 KiB
Python
Raw Permalink Normal View History

2021-09-17 09:46:07 +02:00
#!/usr/bin/env python3
# Copyright (C) 2013-2016 Florian Festi
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from math import *
from boxes import *
2021-09-17 09:46:07 +02:00
class LaptopStand(Boxes): # Change class name!
"""A simple X shaped frame to support a laptop on a given angle"""
ui_group = "Misc" # see ./__init__.py for names
2023-01-08 19:41:02 +01:00
def __init__(self) -> None:
2021-09-17 09:46:07 +02:00
Boxes.__init__(self)
self.argparser.add_argument(
"--l_depth",
action="store",
type=float,
default=250,
help="laptop depth - front to back (mm)",
)
self.argparser.add_argument(
"--l_thickness",
action="store",
type=float,
default=10,
help="laptop thickness (mm)",
)
self.argparser.add_argument(
"--angle",
action="store",
type=float,
default=15,
help="desired tilt of keyboard (deg)",
)
self.argparser.add_argument(
"--ground_offset",
action="store",
type=float,
default=10,
help="desired height between bottom of laptop and ground at lowest point (front of laptop stand)",
)
self.argparser.add_argument(
"--nub_size",
action="store",
type=float,
default=10,
help="desired thickness of the supporting edge",
)
def render(self):
calcs = self.perform_calculations()
self.laptopstand_triangles(calcs, move="up")
2021-09-17 09:46:07 +02:00
def perform_calculations(self):
# a
angle_rads_a = math.radians(self.angle)
# h
height = self.l_depth * math.sin(angle_rads_a)
# y
base = sqrt(2) * self.l_depth * math.cos(angle_rads_a)
# z
hyp = self.l_depth * sqrt(math.pow(math.cos(angle_rads_a), 2) + 1)
# b
angle_rads_b = math.atan(math.tan(angle_rads_a) / math.sqrt(2))
# g
base_extra = (
1
/ math.cos(angle_rads_b)
* (self.nub_size - self.ground_offset * math.sin(angle_rads_b))
)
# x
lip_outer = (
self.ground_offset / math.cos(angle_rads_b)
+ self.l_thickness
- self.nub_size * math.tan(angle_rads_b)
)
bottom_slot_depth = (height / 4) + (self.ground_offset / 2)
top_slot_depth_big = (
height / 4 + self.ground_offset / 2 + (self.thickness * height) / (2 * base)
)
top_slot_depth_small = (
height / 4 + self.ground_offset / 2 - (self.thickness * height) / (2 * base)
)
half_hyp = (hyp * (base - self.thickness)) / (2 * base)
return dict(
height=height,
base=base,
hyp=hyp,
angle=math.degrees(angle_rads_b),
base_extra=base_extra,
lip_outer=lip_outer,
bottom_slot_depth=bottom_slot_depth,
top_slot_depth_small=top_slot_depth_small,
top_slot_depth_big=top_slot_depth_big,
half_hyp=half_hyp,
)
def laptopstand_triangles(self, calcs, move=None):
tw = calcs["base"] + self.spacing + 2 * (calcs["base_extra"] + math.sin(math.radians(calcs["angle"]))*(calcs["lip_outer"]+1))
th = calcs["height"] + 2 * self.ground_offset + self.spacing
if self.move(tw, th, move, True):
return
self.moveTo(calcs["base_extra"]+self.spacing + math.sin(math.radians(calcs["angle"]))*(calcs["lip_outer"]+1))
self.draw_triangle(calcs, top=False)
self.moveTo(calcs["base"] - self.spacing,
th, 180)
self.draw_triangle(calcs, top=True)
2021-09-17 09:46:07 +02:00
self.move(tw, th, move)
@restore
def draw_triangle(self, calcs, top):
2021-09-17 09:46:07 +02:00
# Rear end
self.moveTo(0, calcs["height"] + self.ground_offset, -90)
2021-09-17 09:46:07 +02:00
self.edge(calcs["height"] + self.ground_offset)
self.corner(90)
foot_length = 10 + self.nub_size
base_length_without_feet = (
calcs["base"] - foot_length * 2 - 7 # -7 to account for extra width gained by 45deg angles
)
if top:
# Bottom without slot
self.polyline(
foot_length, 45,
5, -45,
base_length_without_feet, -45,
5, 45,
foot_length + calcs["base_extra"], 0,
)
else:
# Bottom with slot
self.polyline(
foot_length, 45,
5, -45,
(base_length_without_feet - self.thickness) / 2, 90,
calcs["bottom_slot_depth"] - 3.5, -90,
self.thickness, -90,
calcs["bottom_slot_depth"] - 3.5, 90,
(base_length_without_feet - self.thickness) / 2, -45,
5, 45,
foot_length + calcs["base_extra"], 0,
)
# End nub
self.corner(90 - calcs["angle"])
self.edge(calcs["lip_outer"])
self.corner(90, 1)
self.edge(self.nub_size - 2)
self.corner(90, 1)
self.edge(self.l_thickness)
self.corner(-90)
if top:
# Top with slot
self.edge(calcs["half_hyp"])
self.corner(90 + calcs["angle"])
self.edge(calcs["top_slot_depth_small"])
self.corner(-90)
self.edge(self.thickness)
self.corner(-90)
self.edge(calcs["top_slot_depth_big"])
self.corner(90 - calcs["angle"])
self.edge(calcs["half_hyp"])
else:
# Top without slot
self.edge(calcs["hyp"])
self.corner(90 + calcs["angle"])