#!/usr/bin/env python3
#-*- coding: utf-8 -*-
# Copyright (C) 2013-2016 Florian Festi
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see .
from boxes import *
import math
class ShadyEdge(edges.BaseEdge):
char = "s"
def __call__(self, lenght, **kw):
s = self.shades
h = self.h
a = math.atan(s/h)
angle = math.degrees(a)
for i in range(self.n):
self.polyline(0, -angle, h / math.cos(a), angle+90)
self.edges["f"](s)
self.corner(-90)
if i < self.n-1:
self.edge(self.thickness)
def margin(self):
return self.shades
class TrafficLight(Boxes): # change class name here and below
"""Traffic light"""
description = u"""The traffic light was created to visualize the status of a Icinga monitored system.
When turned by 90°, it can be also used to create a bottle holder."""
def __init__(self):
Boxes.__init__(self)
self.addSettingsArgs(edges.FingerJointSettings)
# remove cli params you do not need
self.buildArgParser("h", "hole_dD")
# Add non default cli params if needed (see argparse std lib)
self.argparser.add_argument(
"--depth", action="store", type=float, default=100,
help="inner depth not including the shades")
self.argparser.add_argument(
"--shades", action="store", type=float, default=50,
help="depth of the shaders")
self.argparser.add_argument(
"--n", action="store", type=int, default=3,
help="number of lights")
self.argparser.add_argument(
"--upright", action="store", type=boolarg, default=True,
help="stack lights upright (or side by side)")
def backCB(self):
t = self.thickness
for i in range(1, self.n):
self.fingerHolesAt(i*(self.h+t)-0.5*t, 0, self.h)
def sideCB(self):
t = self.thickness
for i in range(1, self.n):
self.fingerHolesAt(i*(self.h+t)-0.5*t, 0, self.depth)
for i in range(self.n):
self.fingerHolesAt(i*(self.h+t), self.depth-2*t, self.h, 0)
def topCB(self):
t = self.thickness
for i in range(1, self.n):
self.fingerHolesAt(i*(self.h+t)-0.5*t, 0, self.depth + self.shades)
for i in range(self.n):
self.fingerHolesAt(i*(self.h+t), self.depth-2*t, self.h, 0)
def frontCB(self):
self.hole(self.h/2, self.h/2, self.h/2-self.thickness)
def wall(self, h1, h2, w, edges="ffef", callback=None, move="", label=""):
edges = [self.edges.get(e, e) for e in edges]
edges += edges # append for wrapping around
overallwidth = w + edges[-1].spacing() + edges[1].spacing()
overallheight = max(h1, h2) + edges[0].spacing() + edges[2].spacing()
if self.move(overallwidth, overallheight, move, before=True, label=label):
return
a = math.atan((h2-h1)/float(w))
angle = math.degrees(a)
self.moveTo(edges[-1].spacing(), edges[0].margin())
for i, l in [(0, w), (1, h2)]:
self.cc(callback, i, y=edges[i].startwidth() + self.burn)
edges[i](l)
self.edgeCorner(edges[i], edges[i + 1], 90)
self.corner(angle)
self.cc(callback, i, y=edges[2].startwidth() + self.burn)
edges[2](w / math.cos(a))
self.corner(-angle)
self.edgeCorner(edges[2], edges[2 + 1], 90)
self.cc(callback, i, y=edges[3].startwidth() + self.burn)
edges[3](h1)
self.edgeCorner(edges[3], edges[3 + 1], 90)
self.move(overallwidth, overallheight, move, label=label)
def addMountH(self, width, height):
ds = self.hole_dD[0]
if len(self.hole_dD) < 2: # if no head diameter is given
dh = 0 # only a round hole is generated
y = height - max (self.thickness * 1.25, self.thickness * 1.0 + ds) # and we assume that a typical screw head diameter is twice the shaft diameter
else:
dh = self.hole_dD[1] # use given head diameter
y = height - max (self.thickness * 1.25, self.thickness * 1.0 + dh / 2) # and offset the hole to have enough space for the head
dx = width
x1 = dx * 0.125
x2 = dx * 0.875
self.mountingHole(x1, y, ds, dh, 90)
self.mountingHole(x2, y, ds, dh, 90)
def addMountV(self, width, height):
if self.hole_dD[0] < 2 * self.burn:
return # no hole if no diameter is given
ds = self.hole_dD[0]
if len(self.hole_dD) < 2: # if no head diameter is given
dh = 0 # only a round hole is generated
x = max (self.thickness * 2.75, self.thickness * 2.25 + ds) # and we assume that a typical screw head diameter is twice the shaft diameter
else:
dh = self.hole_dD[1] # use given head diameter
x = max (self.thickness * 2.75, self.thickness * 2.25 + dh / 2) # and offset the hole to have enough space for the head
dy = height
y1 = self.thickness * 0.75 + dy * 0.125
y2 = self.thickness * 0.75 + dy * 0.875
self.mountingHole(x, y1, ds, dh, 180)
self.mountingHole(x, y2, ds, dh, 180)
def render(self):
# adjust to the variables you want in the local scope
d, h, n = self.depth, self.h, self.n
s = self.shades
t = self.thickness
th = n * (h + t) - t
self.addPart(ShadyEdge(self, None))
# back
if self.upright:
self.rectangularWall(th, h, "FFFF", callback=[self.backCB, self.addMountV(th, h)], move="up", label="back")
else:
self.rectangularWall(th, h, "FFFF", callback=[self.backCB, self.addMountH(th, h)], move="up", label="back")
if self.upright:
# sides
self.rectangularWall(th, d, "fFsF", callback=[self.sideCB], move="up", label="left")
self.rectangularWall(th, d, "fFsF", callback=[self.sideCB], move="up", label="right")
# horizontal Walls / blinds tops
e = edges.CompoundEdge(self, "fF", (d, s))
e2 = edges.CompoundEdge(self, "Ff", (s, d))
for i in range(n):
self.rectangularWall(h, d+s, ['f', e, 'e', e2],
move="right" if i