#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (C) 2013-2014 Florian Festi # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . from boxes import Boxes, edges, boolarg import math from functools import partial class DividerTray(Boxes): """Divider tray - rows and dividers""" ui_group = "Tray" def __init__(self): Boxes.__init__(self) self.buildArgParser("sx", "sy", "h", "outside") self.argparser.add_argument( "--slot_depth", type=float, default=20, help="depth of the slot in mm" ) self.argparser.add_argument( "--slot_angle", type=float, default=0, help="angle at which slots are generated, in degrees. 0° is vertical.", ) self.argparser.add_argument( "--slot_radius", type=float, default=2, help="radius of the slot entrance in mm", ) self.argparser.add_argument( "--slot_extra_slack", type=float, default=0.2, help="extra slack (in addition to thickness and kerf) for slot width to help insert dividers", ) self.argparser.add_argument( "--divider_bottom_margin", type=float, default=0, help="margin between box's bottom and divider's", ) self.argparser.add_argument( "--divider_upper_notch_radius", type=float, default=1, help="divider's notch's upper radius", ) self.argparser.add_argument( "--divider_lower_notch_radius", type=float, default=8, help="divider's notch's lower radius", ) self.argparser.add_argument( "--divider_notch_depth", type=float, default=15, help="divider's notch's depth", ) self.argparser.add_argument( "--left_wall", type=boolarg, default=True, help="generate wall on the left side", ) self.argparser.add_argument( "--right_wall", type=boolarg, default=True, help="generate wall on the right side", ) self.argparser.add_argument( "--bottom", type=boolarg, default=False, help="generate wall on the bottom", ) def render(self): side_walls_number = len(self.sx) - 1 + sum([self.left_wall, self.right_wall]) if side_walls_number == 0: raise ValueError("You need at least one side wall to generate this tray") slot_descriptions = self.generate_slot_descriptions(self.sy) if self.outside: self.sx = self.adjustSize(self.sx, self.left_wall, self.right_wall) side_wall_target_length = sum(self.sy) - 2 * self.thickness slot_descriptions.adjust_to_target_length(side_wall_target_length) else: # If the parameter 'h' is the inner height of the content itself, # then the actual tray height needs to be adjusted with the angle self.h = self.h * math.cos(math.radians(self.slot_angle)) self.ctx.save() # Facing walls (outer) with finger holes to support side walls facing_wall_length = sum(self.sx) + self.thickness * (len(self.sx) - 1) side_edge = lambda with_wall: "F" if with_wall else "e" bottom_edge = lambda with_wall: "F" if with_wall else "e" for _ in range(2): self.rectangularWall( facing_wall_length, self.h, [bottom_edge(self.bottom), side_edge(self.right_wall), "e", side_edge(self.left_wall)], callback=[partial(self.generate_finger_holes, self.h)], move="up", ) # Side walls (outer & inner) with slots to support dividers side_wall_length = slot_descriptions.total_length() for _ in range(side_walls_number): if _ < side_walls_number - (len(self.sx) - 1): be = "F" if self.bottom else "e" else: be = "f" if self.bottom else "e" se = DividerSlotsEdge(self, slot_descriptions.descriptions) self.rectangularWall( side_wall_length, self.h, [be, "f", se, "f"], move="up" ) # Switch to right side of the file self.ctx.restore() self.rectangularWall( max(facing_wall_length, side_wall_length), self.h, "ffff", move="right only" ) # Bottom piece. if self.bottom: self.rectangularWall(facing_wall_length, side_wall_length, ["f", "f" if self.right_wall else "e", "f", "f" if self.left_wall else "e"], callback=[partial(self.generate_finger_holes, side_wall_length)], move="up") # Dividers divider_height = ( # h, with angle adjustement self.h / math.cos(math.radians(self.slot_angle)) # removing what exceeds in the width of the divider - self.thickness * math.tan(math.radians(self.slot_angle)) # with margin - self.divider_bottom_margin ) for i, length in enumerate(self.sx): is_first_wall = i == 0 is_last_wall = i == len(self.sx) - 1 self.generate_divider( length, divider_height, "up", only_one_wall=(is_first_wall and not self.left_wall) or (is_last_wall and not self.right_wall), ) if self.debug: debug_info = ["Debug"] debug_info.append( "Slot_edge_outer_length:{0:.2f}".format( slot_descriptions.total_length() + 2 * self.thickness ) ) debug_info.append( "Slot_edge_inner_lengths:{0}".format( str.join( "|", [ "{0:.2f}".format(e.usefull_length()) for e in slot_descriptions.get_straigth_edges() ], ) ) ) debug_info.append( "Face_edge_outer_length:{0:.2f}".format( facing_wall_length + self.thickness * sum([self.left_wall, self.right_wall]) ) ) debug_info.append( "Face_edge_inner_lengths:{0}".format( str.join("|", ["{0:.2f}".format(e) for e in self.sx]) ) ) debug_info.append("Tray_height:{0:.2f}".format(self.h)) debug_info.append( "Content_height:{0:.2f}".format( self.h / math.cos(math.radians(self.slot_angle)) ) ) self.text(str.join("\n", debug_info), x=5, y=5, align="bottom left") def generate_slot_descriptions(self, sections): slot_width = self.thickness + self.slot_extra_slack descriptions = SlottedEdgeDescriptions() # Special case: if first slot start at 0, then radius is 0 first_correction = 0 current_section = 0 if sections[0] == 0: slot = SlotDescription( slot_width, depth=self.slot_depth, angle=self.slot_angle, start_radius=0, end_radius=self.slot_radius, ) descriptions.add(slot) first_correction = slot.round_edge_end_correction() current_section += 1 first_length = sections[current_section] current_section += 1 descriptions.add( StraightEdgeDescription( first_length, round_edge_compensation=first_correction ) ) for l in sections[current_section:]: slot = SlotDescription( slot_width, depth=self.slot_depth, angle=self.slot_angle, radius=self.slot_radius, ) # Fix previous edge length previous_edge = descriptions.get_last_edge() previous_edge.round_edge_compensation += slot.round_edge_start_correction() # Add this slot descriptions.add(slot) # Add the straigth edge after this slot descriptions.add( StraightEdgeDescription(l, slot.round_edge_end_correction()) ) # We need to add extra space for the divider (or the actual content) # to slide all the way down to the bottom of the tray in spite of walls end_length = self.h * math.tan(math.radians(self.slot_angle)) descriptions.get_last_edge().angle_compensation += end_length return descriptions def generate_finger_holes(self, length): posx = -0.5 * self.thickness for x in self.sx[:-1]: posx += x + self.thickness self.fingerHolesAt(posx, 0, length) def generate_divider(self, width, height, move, only_one_wall=False): second_tab_width = 0 if only_one_wall else self.thickness total_width = width + self.thickness + second_tab_width if self.move(total_width, height, move, True): return # Upper edge with a finger notch upper_radius = self.divider_upper_notch_radius lower_radius = self.divider_lower_notch_radius upper_third = (width - 2 * upper_radius - 2 * lower_radius) / 3 # Upper: first tab width self.edge(self.thickness) # Upper: divider width (with notch if possible) if upper_third > 0: self.edge(upper_third) self.corner(90, upper_radius) self.edge(self.divider_notch_depth - upper_radius - lower_radius) self.corner(-90, lower_radius) self.edge(upper_third) self.corner(-90, lower_radius) self.edge(self.divider_notch_depth - upper_radius - lower_radius) self.corner(90, upper_radius) self.edge(upper_third) else: # if there isn't enough room for the radius, we don't use it self.edge(width) # Upper: second tab width if needed self.edge(second_tab_width) # First side, with tab depth only if there is 2 walls self.corner(90) self.edge(self.slot_depth) self.corner(90) self.edge(second_tab_width) self.corner(-90) self.edge(height - self.slot_depth) # Lower edge self.corner(90) self.edge(width) # Second side, always a tab self.corner(90) self.edge(height - self.slot_depth) self.corner(-90) self.edge(self.thickness) self.corner(90) self.edge(self.slot_depth) # Move for next piece self.move(total_width, height, move) class SlottedEdgeDescriptions: def __init__(self): self.descriptions = [] def add(self, description): self.descriptions.append(description) def get_straigth_edges(self): return [x for x in self.descriptions if isinstance(x, StraightEdgeDescription)] def get_last_edge(self): return self.descriptions[-1] def adjust_to_target_length(self, target_length): actual_length = sum([d.tracing_length() for d in self.descriptions]) compensation = actual_length - target_length compensation_ratio = compensation / sum( [d.asked_length for d in self.get_straigth_edges()] ) for edge in self.get_straigth_edges(): edge.outside_ratio = 1 - compensation_ratio def total_length(self): return sum([x.tracing_length() for x in self.descriptions]) class StraightEdgeDescription: def __init__( self, asked_length, round_edge_compensation=0, outside_ratio=1, angle_compensation=0, ): self.asked_length = asked_length self.round_edge_compensation = round_edge_compensation self.outside_ratio = outside_ratio self.angle_compensation = angle_compensation def __repr__(self): return ( "StraightEdgeDescription({0}, round_edge_compensation={1}, angle_compensation={2}, outside_ratio={3})" ).format( self.asked_length, self.round_edge_compensation, self.angle_compensation, self.outside_ratio, ) def tracing_length(self): """ How much length should take tracing this straight edge """ return ( (self.asked_length * self.outside_ratio) - self.round_edge_compensation + self.angle_compensation ) def usefull_length(self): """ Part of the length which might be used by the content of the tray """ return self.asked_length * self.outside_ratio class Memoizer(dict): def __init__(self, computation): self.computation = computation def __missing__(self, key): res = self[key] = self.computation(key) return res class SlotDescription: _div_by_cos_cache = Memoizer(lambda a: 1 / math.cos(math.radians(a))) _tan_cache = Memoizer(lambda a: math.tan(math.radians(a))) def __init__( self, width, depth=20, angle=0, radius=0, start_radius=None, end_radius=None ): self.depth = depth self.width = width self.start_radius = radius if start_radius == None else start_radius self.end_radius = radius if end_radius == None else end_radius self.angle = angle def __repr__(self): return "SlotDescription({0}, depth={1}, angle={2}, start_radius={3}, end_radius={4})".format( self.width, self.depth, self.angle, self.start_radius, self.end_radius ) def _div_by_cos(self): return SlotDescription._div_by_cos_cache[self.angle] def _tan(self): return SlotDescription._tan_cache[self.angle] def angle_corrected_width(self): """ returns how much width is the slot when measured horizontally, since the angle makes it bigger. It's the same as the slot entrance width when radius is 0°. """ return self.width * self._div_by_cos() def round_edge_start_correction(self): """ returns by how much we need to stop tracing our straight lines at the start of the slot in order to do a curve line instead """ return self.start_radius * (self._div_by_cos() - self._tan()) def round_edge_end_correction(self): """ returns by how much we need to stop tracing our straight lines at the end of the slot in order to do a curve line instead """ return self.end_radius * (self._div_by_cos() + self._tan()) def _depth_angle_correction(self): """ The angle makes one side of the slot deeper than the other. """ extra_depth = self.width * self._tan() return extra_depth def corrected_start_depth(self): """ Returns the depth of the straigth part of the slot starting side """ extra_depth = self._depth_angle_correction() return self.depth + max(0, extra_depth) - self.round_edge_start_correction() def corrected_end_depth(self): """ Returns the depth of the straigth part of the slot ending side """ extra_depth = self._depth_angle_correction() return self.depth + max(0, -extra_depth) - self.round_edge_end_correction() def tracing_length(self): """ How much length this slot takes on an edge """ return ( self.round_edge_start_correction() + self.angle_corrected_width() + self.round_edge_end_correction() ) class DividerSlotsEdge(edges.BaseEdge): """Edge with multiple angled rounded slots for dividers""" description = "Edge with multiple angled rounded slots for dividers" def __init__(self, boxes, descriptions): super(DividerSlotsEdge, self).__init__(boxes, None) self.descriptions = descriptions def __call__(self, length, **kw): self.ctx.save() for description in self.descriptions: if isinstance(description, SlotDescription): self.do_slot(description) elif isinstance(description, StraightEdgeDescription): self.do_straight_edge(description) # rounding errors might accumulates : # restore context and redo the move straight self.ctx.restore() self.moveTo(length) def do_straight_edge(self, straight_edge): self.edge(straight_edge.tracing_length()) def do_slot(self, slot): self.ctx.save() self.corner(90 - slot.angle, slot.start_radius) self.edge(slot.corrected_start_depth()) self.corner(-90) self.edge(slot.width) self.corner(-90) self.edge(slot.corrected_end_depth()) self.corner(90 + slot.angle, slot.end_radius) # rounding errors might accumulates : # restore context and redo the move straight self.ctx.restore() self.moveTo(slot.tracing_length())