#!/usr/bin/env python3 # Copyright (C) 2013-2014 Florian Festi # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . import math import sys import argparse from argparse import ArgumentParser import re from functools import wraps from xml.sax.saxutils import quoteattr from contextlib import contextmanager import copy from shlex import quote from boxes import edges from boxes import formats from boxes import svgutil from boxes import gears from boxes import pulley from boxes import parts from boxes.Color import * ### Helpers def dist(dx, dy): """ Return distance :param dx: delta x :param dy: delat y """ return (dx * dx + dy * dy) ** 0.5 def restore(func): """ Wrapper: Restore coordiantes after function :param func: function to wrap """ @wraps(func) def f(self, *args, **kw): with self.saved_context(): pt = self.ctx.get_current_point() func(self, *args, **kw) self.ctx.move_to(*pt) return f def holeCol(func): """ Wrapper: color holes differently :param func: function to wrap """ @wraps(func) def f(self, *args, **kw): if "color" in kw: color = kw.pop("color") else: color = Color.INNER_CUT self.ctx.stroke() with self.saved_context(): self.set_source_color(color) func(self, *args, **kw) self.ctx.stroke() return f ############################################################################# ### Building blocks ############################################################################# class NutHole: """Draw a hex nut""" sizes = { "M1.6": (3.2, 1.3), "M2": (4, 1.6), "M2.5": (5, 2.0), "M3": (5.5, 2.4), "M4": (7, 3.2), "M5": (8, 4.7), "M6": (10, 5.2), "M8": (13.7, 6.8), "M10": (16, 8.4), "M12": (18, 10.8), "M14": (21, 12.8), "M16": (24, 14.8), "M20": (30, 18.0), "M24": (36, 21.5), "M30": (46, 25.6), "M36": (55, 31), "M42": (65, 34), "M48": (75, 38), "M56": (85, 45), "M64": (95, 51), } def __init__(self, boxes, settings): self.boxes = boxes self.ctx = boxes.ctx self.settings = settings def __getattr__(self, name): return getattr(self.boxes, name) @restore @holeCol def __call__(self, size, x=0, y=0, angle=0): size = self.sizes.get(size, (size,))[0] side = size / 3 ** 0.5 self.boxes.moveTo(x, y, angle) self.boxes.moveTo(-0.5 * side, 0.5 * size, angle) for i in range(6): self.boxes.edge(side) self.boxes.corner(-60) ############################################################################## ### Argument types ############################################################################## def argparseSections(s): """ Parse sections parameter :param s: string to parse """ result = [] s = re.split(r"\s|:", s) try: for part in s: m = re.match(r"^(\d+(\.\d+)?)/(\d+)$", part) if m: n = int(m.group(3)) result.extend([float(m.group(1)) / n] * n) continue m = re.match(r"^(\d+(\.\d+)?)\*(\d+)$", part) if m: n = int(m.group(3)) result.extend([float(m.group(1))] * n) continue result.append(float(part)) except ValueError: raise argparse.ArgumentTypeError("Don't understand sections string") if not result: result.append(0.0) return result class ArgparseEdgeType: """argparse type to select from a set of edge types""" names = edges.getDescriptions() edges = [] def __init__(self, edges=None): if edges: self.edges = list(edges) def __call__(self, pattern): if len(pattern) != 1: raise ValueError("Edge type can only have one letter.") if pattern not in self.edges: raise ValueError("Use one of the following values: " + ", ".join(edges)) return pattern def html(self, name, default, translate): options = "\n".join( ("""""" % (e, ' selected="selected"' if e == default else "", translate("%s %s" % (e, self.names.get(e, "")))) for e in self.edges)) return """\n""" % (name, options) def inx(self, name, viewname, arg): return (' \n' % (name, viewname, quoteattr(arg.help or "")) + ''.join((' %s %s\n' % ( e, e, self.names.get(e, "")) for e in self.edges)) + ' \n') class BoolArg: def __call__(self, arg): if not arg or arg.lower() in ("none", "0", "off", "false"): return False return True def html(self, name, default, _): if isinstance(default, (str)): default = self(default) return """ """ % \ (name, name, ' checked="checked"' if default else "") boolarg = BoolArg() class HexHolesSettings(edges.Settings): """Settings for hexagonal hole patterns Values: * absolute * diameter : 5.0 : diameter of the holes * distance : 3.0 : distance between the holes * style : "circle" : currently only supported style """ absolute_params = { 'diameter' : 10.0, 'distance' : 3.0, 'style' : ('circle', ), } relative_params = {} ############################################################################## ### Main class ############################################################################## class Boxes: """Main class -- Generator should sub class this """ webinterface = True ui_group = "Misc" description = "" # Markdown syntax is supported def __init__(self): self.formats = formats.Formats() self.ctx = None description = self.__doc__ if self.description: description += "\n\n" + self.description self.argparser = ArgumentParser(description=description) self.edgesettings = {} self.inkscapefile = None self.metadata = { "name" : self.__class__.__name__, "short_description" : self.__doc__, "description" : self.description, "group" : self.ui_group, "url" : "", "command_line" : "" } self.argparser._action_groups[1].title = self.__class__.__name__ + " Settings" defaultgroup = self.argparser.add_argument_group( "Default Settings") defaultgroup.add_argument( "--thickness", action="store", type=float, default=3.0, help="thickness of the material") defaultgroup.add_argument( "--output", action="store", type=str, default="box.svg", help="name of resulting file") defaultgroup.add_argument( "--format", action="store", type=str, default="svg", choices=self.formats.getFormats(), help="format of resulting file") defaultgroup.add_argument( "--tabs", action="store", type=float, default=0.0, help="width of tabs holding the parts in place in mm (not supported everywhere)") defaultgroup.add_argument( "--debug", action="store", type=boolarg, default=False, help="print surrounding boxes for some structures") defaultgroup.add_argument( "--reference", action="store", type=float, default=100, help="print reference rectangle with given length (zero to disable)") defaultgroup.add_argument( "--burn", action="store", type=float, default=0.1, help='burn correction in mm (bigger values for tighter fit). Use BurnTest in "Parts and Samples" to find the right value.') @contextmanager def saved_context(self): """ Generator: for saving and restoring contexts. """ cr = self.ctx cr.save() try: yield cr finally: cr.restore() def set_source_color(self, color): """ Sets the color of the pen. """ self.ctx.set_source_rgb(*color) def set_font(self, style, bold=False, italic=False): """ Set font style used :param style: "serif", "sans-serif" or "monospaced" :param bold: Use bold font :param italic: Use italic font """ self.ctx.set_font(style, bold, italic) def open(self): """ Prepare for rendering Create canvas and edge and other objects Call this before .render() """ if self.ctx is not None: return self.bedBoltSettings = (3, 5.5, 2, 20, 15) # d, d_nut, h_nut, l, l1 self.surface, self.ctx = self.formats.getSurface(self.format, self.output) if self.format == 'svg_Ponoko': self.ctx.set_line_width(0.01) self.set_source_color(Color.BLUE) else: self.ctx.set_line_width(max(2 * self.burn, 0.05)) self.set_source_color(Color.BLACK) self.spacing = 2 * self.burn + 0.5 * self.thickness self.set_font("sans-serif") self._buildObjects() if self.reference and self.format != 'svg_Ponoko': self.move(10, 10, "up", before=True) self.ctx.rectangle(0, 0, self.reference, 10) if self.reference < 40: self.text("%.fmm" % self.reference, self.reference + 5, 5, align="middle left") else: self.text("%.fmm" % self.reference, self.reference / 2.0, 5, align="middle center") self.move(10, 10, "up") self.ctx.stroke() def buildArgParser(self, *l, **kw): """ Add commonly used arguments :param \*l: parameter names :param \*\*kw: parameters with new default values Supported parameters are * floats: x, y, h, hi * argparseSections: sx, sy, sh * ArgparseEdgeType: bottom_edge, top_edge * boolarg: outside * str (selection): nema_mount """ for arg in l: kw[arg] = None for arg, default in kw.items(): if arg == "x": if default is None: default = 100.0 help = "inner width in mm" if "outside" in kw: help += " (unless outside selected)" self.argparser.add_argument( "--x", action="store", type=float, default=default, help=help) elif arg == "y": if default is None: default = 100.0 help = "inner depth in mm" if "outside" in kw: help += " (unless outside selected)" self.argparser.add_argument( "--y", action="store", type=float, default=default, help=help) elif arg == "sx": if default is None: default = "50*3" self.argparser.add_argument( "--sx", action="store", type=argparseSections, default=default, help="""sections left to right in mm. See --sy for format""") elif arg == "sy": if default is None: default = "50*3" self.argparser.add_argument( "--sy", action="store", type=argparseSections, default=default, help="""sections back to front in mm. Possible formats: overallwidth/numberof sections e.g. "250/5"; sectionwidth*numberofsections e.g. "50*5"; section widths separated by ":" e.g. "30:25.5:70""") elif arg == "sh": if default is None: default = "50*3" self.argparser.add_argument( "--sh", action="store", type=argparseSections, default=default, help="""sections bottom to top in mm. See --sy for format""") elif arg == "h": if default is None: default = 100.0 help = "inner height in mm" if "outside" in kw: help += " (unless outside selected)" self.argparser.add_argument( "--h", action="store", type=float, default=default, help=help) elif arg == "hi": if default is None: default = 0.0 self.argparser.add_argument( "--hi", action="store", type=float, default=default, help="inner height of inner walls in mm (unless outside selected)(leave to zero for same as outer walls)") elif arg == "bottom_edge": if default is None: default = "h" self.argparser.add_argument( "--bottom_edge", action="store", type=ArgparseEdgeType("Fhse"), choices=list("Fhse"), default=default, help="edge type for bottom edge") elif arg == "top_edge": if default is None: default = "e" self.argparser.add_argument( "--top_edge", action="store", type=ArgparseEdgeType("efFhcESikvLt"), choices=list("efFhcESikvfLt"), default=default, help="edge type for top edge") elif arg == "outside": if default is None: default = True self.argparser.add_argument( "--outside", action="store", type=boolarg, default=default, help="treat sizes as outside measurements that include the walls") elif arg == "nema_mount": if default is None: default = 23 self.argparser.add_argument( "--nema_mount", action="store", type=int, choices=list(sorted(self.nema_sizes.keys())), default=default, help="NEMA size of motor") else: raise ValueError("No default for argument", arg) def addSettingsArgs(self, settings, prefix=None, **defaults): prefix = prefix or settings.__name__[:-len("Settings")] settings.parserArguments(self.argparser, prefix, **defaults) self.edgesettings[prefix] = {} def parseArgs(self, args=None): """ Parse command line parameters :param args: (Default value = None) parameters, None for using sys.argv """ if args is None: args = sys.argv[1:] if len(args) > 1 and args[-1][0] != "-": self.inkscapefile = args[-1] del args[-1] args = [a for a in args if not a.startswith('--tab=')] self.metadata["cli"] = "boxes " + self.__class__.__name__ + " " + " ".join((quote(arg) for arg in args)) for key, value in vars(self.argparser.parse_args(args=args)).items(): # treat edge settings separately for setting in self.edgesettings: if key.startswith(setting + '_'): self.edgesettings[setting][key[len(setting)+1:]] = value continue setattr(self, key, value) # Change file ending to format if not given explicitly format = getattr(self, "format", "svg") if getattr(self, 'output', None) == 'box.svg': self.output = 'box.' + format.split("_")[0] def addPart(self, part, name=None): """ Add Edge or other part instance to this one and add it as attribute :param part: Callable :param name: (Default value = None) attribute name (__name__ as default) """ if name is None: name = part.__class__.__name__ name = name[0].lower() + name[1:] # if not hasattr(self, name): if isinstance(part, edges.BaseEdge): self.edges[part.char] = part else: setattr(self, name, part) def addParts(self, parts): for part in parts: self.addPart(part) def _buildObjects(self): """Add default edges and parts """ self.edges = {} self.addPart(edges.Edge(self, None)) self.addPart(edges.OutSetEdge(self, None)) edges.GripSettings(self.thickness).edgeObjects(self) # Finger joints # Share settings object s = edges.FingerJointSettings(self.thickness, True, **self.edgesettings.get("FingerJoint", {})) s.edgeObjects(self) self.addPart(edges.FingerHoles(self, s), name="fingerHolesAt") # Stackable edges.StackableSettings(self.thickness, True, **self.edgesettings.get("Stackable", {})).edgeObjects(self) # Dove tail joints edges.DoveTailSettings(self.thickness, True, **self.edgesettings.get("DoveTail", {})).edgeObjects(self) # Flex s = edges.FlexSettings(self.thickness, True, **self.edgesettings.get("Flex", {})) self.addPart(edges.FlexEdge(self, s)) # Clickable edges.ClickSettings(self.thickness, True, **self.edgesettings.get("Click", {})).edgeObjects(self) # Hinges edges.HingeSettings(self.thickness, True, **self.edgesettings.get("Hinge", {})).edgeObjects(self) edges.ChestHingeSettings(self.thickness, True, **self.edgesettings.get("ChestHinge", {})).edgeObjects(self) edges.CabinetHingeSettings(self.thickness, True, **self.edgesettings.get("CabinetHinge", {})).edgeObjects(self) # Sliding Lid edges.LidSettings(self.thickness, True, **self.edgesettings.get("Lid", {})).edgeObjects(self) # Rounded Triangle Edge edges.RoundedTriangleEdgeSettings(self.thickness, True, **self.edgesettings.get("RoundedTriangleEdge", {})).edgeObjects(self) # Grooved Edge edges.GroovedSettings(self.thickness, True, **self.edgesettings.get("Grooved", {})).edgeObjects(self) # HexHoles self.hexHolesSettings = HexHolesSettings(self.thickness, True, **self.edgesettings.get("HexHoles", {})) # Nuts self.addPart(NutHole(self, None)) # Gears self.addPart(gears.Gears(self)) s = edges.GearSettings(self.thickness, True, **self.edgesettings.get("Gear", {})) self.addPart(edges.RackEdge(self, s)) self.addPart(pulley.Pulley(self)) self.addPart(parts.Parts(self)) def adjustSize(self, l, e1=True, e2=True): # Char to edge object e1 = self.edges.get(e1, e1) e2 = self.edges.get(e2, e2) try: total = sum(l) walls = (len(l) - 1) * self.thickness except TypeError: total = l walls = 0 if isinstance(e1, edges.BaseEdge): walls += e1.startwidth() + e1.margin() elif e1: walls += self.thickness if isinstance(e2, edges.BaseEdge): walls += e2.startwidth() + e2.margin() elif e2: walls += self.thickness try: if total > 0.0: factor = (total - walls) / total else: factor = 1.0 return [s * factor for s in l] except TypeError: return l - walls def render(self): """Implement this method in your sub class. You will typically need to call .parseArgs() before calling this one""" self.open() # Change settings and creat new Edges and part classes here raise NotImplementedError self.close() def cc(self, callback, number, x=0.0, y=None): """Call callback from edge of a part :param callback: callback (callable or list of callables) :param number: number of the callback :param x: (Default value = 0.0) x position to be call on :param y: (Default value = None) y position to be called on (default does burn correction) """ if y is None: y = self.burn if hasattr(callback, '__getitem__'): try: callback = callback[number] number = None except (KeyError, IndexError): pass if callback and callable(callback): with self.saved_context(): self.moveTo(x, y) if number is None: callback() else: callback(number) self.ctx.move_to(0, 0) def getEntry(self, param, idx): """ Get entry from list or items itself :param param: list or item :param idx: index in list """ if isinstance(param, list): if len(param) > idx: return param[idx] else: return None else: return param def close(self): """Finish rendering Flush canvas to disk and convert output to requested format if needed. Call after .render()""" if self.ctx == None: return self.ctx.stroke() self.ctx = None self.surface.set_metadata(self.metadata) self.surface.flush() self.surface.finish() self.formats.convert(self.output, self.format, self.metadata) if self.inkscapefile: try: out = sys.stdout.buffer except AttributeError: out= sys.stdout svgutil.svgMerge(self.output, self.inkscapefile, out) ############################################################ ### Turtle graphics commands ############################################################ def corner(self, degrees, radius=0, tabs=0): """ Draw a corner This is what does the burn corrections :param degrees: angle :param radius: (Default value = 0) """ try: degrees, radius = degrees except: pass rad = degrees * math.pi / 180 if tabs and self.tabs: if degrees > 0: r_ = radius + self.burn tabrad = self.tabs / max(r_, 0.01) else: r_ = radius - self.burn tabrad = -self.tabs / max(r_, 0.01) length = abs(r_ * rad) tabs = min(tabs, int(length // (tabs*3*self.tabs))) if tabs and self.tabs: l = (length - tabs * self.tabs) / tabs lang = math.degrees(l / r_) if degrees < 0: lang = -lang #print(degrees, radius, l, lang, tabs, math.degrees(tabrad)) self.corner(lang/2., radius) for i in range(tabs-1): self.moveArc(math.degrees(tabrad), r_) self.corner(lang, radius) if tabs: self.moveArc(math.degrees(tabrad), r_) self.corner(lang/2., radius) return if ((radius > 0.5* self.burn and abs(degrees) > 36) or (abs(degrees) > 100)): steps = int(abs(degrees)/ 36.) + 1 for i in range(steps): self.corner(float(degrees)/steps, radius) return if degrees > 0: self.ctx.arc(0, radius + self.burn, radius + self.burn, -0.5 * math.pi, rad - 0.5 * math.pi) elif radius > self.burn: self.ctx.arc_negative(0, -(radius - self.burn), radius - self.burn, 0.5 * math.pi, rad + 0.5 * math.pi) else: # not rounded inner corner self.ctx.arc_negative(0, self.burn - radius, self.burn - radius, -0.5 * math.pi, -0.5 * math.pi + rad) self._continueDirection(rad) def edge(self, length, tabs=0): """ Simple line :param length: length in mm """ self.ctx.move_to(0, 0) if tabs and self.tabs: if self.tabs > length: self.ctx.move_to(length, 0) else: tabs = min(tabs, max(1, int(length // (tabs*3*self.tabs)))) l = (length - tabs * self.tabs) / tabs self.ctx.line_to(0.5*l, 0) for i in range(tabs-1): self.ctx.move_to((i+0.5)*l+self.tabs, 0) self.ctx.line_to((i+0.5)*l+self.tabs+l, 0) if tabs == 1: self.ctx.move_to((tabs-0.5)*l+self.tabs, 0) else: self.ctx.move_to((tabs-0.5)*l+2*self.tabs, 0) self.ctx.line_to(length, 0) else: self.ctx.line_to(length, 0) self.ctx.translate(*self.ctx.get_current_point()) def step(self, out): """ Create a parallel step prependicular to the current direction Positive values move to the outside of the part """ if out > 1E-5: self.corner(-90) self.edge(out) self.corner(90) elif out < -1E-5: self.corner(90) self.edge(-out) self.corner(-90) def curveTo(self, x1, y1, x2, y2, x3, y3): """control point 1, control point 2, end point :param x1: :param y1: :param x2: :param y2: :param x3: :param y3: """ self.ctx.curve_to(x1, y1, x2, y2, x3, y3) dx = x3 - x2 dy = y3 - y2 rad = math.atan2(dy, dx) self._continueDirection(rad) def polyline(self, *args): """ Draw multiple connected lines :param \*args: Alternating length in mm and angle in degrees. lengths may be a tuple (length, #tabs) angles may be tuple (angle, radius) """ for i, arg in enumerate(args): if i % 2: if isinstance(arg, tuple): self.corner(*arg) else: self.corner(arg) else: if isinstance(arg, tuple): self.edge(*arg) else: self.edge(arg) def bedBoltHole(self, length, bedBoltSettings=None, tabs=0): """ Draw an edge with slot for a bed bolt :param length: length of the edge in mm :param bedBoltSettings: (Default value = None) Dimmensions of the slot """ d, d_nut, h_nut, l, l1 = bedBoltSettings or self.bedBoltSettings self.edge((length - d) / 2.0, tabs=tabs//2) self.corner(90) self.edge(l1) self.corner(90) self.edge((d_nut - d) / 2.0) self.corner(-90) self.edge(h_nut) self.corner(-90) self.edge((d_nut - d) / 2.0) self.corner(90) self.edge(l - l1 - h_nut) self.corner(-90) self.edge(d) self.corner(-90) self.edge(l - l1 - h_nut) self.corner(90) self.edge((d_nut - d) / 2.0) self.corner(-90) self.edge(h_nut) self.corner(-90) self.edge((d_nut - d) / 2.0) self.corner(90) self.edge(l1) self.corner(90) self.edge((length - d) / 2.0, tabs=tabs-(tabs//2)) def edgeCorner(self, edge1, edge2, angle=90): """Make a corner between two Edges. Take width of edges into account""" edge1 = self.edges.get(edge1, edge1) edge2 = self.edges.get(edge2, edge2) self.edge(edge2.startwidth() * math.tan(math.radians(angle/2.))) self.corner(angle) self.edge(edge1.endwidth() * math.tan(math.radians(angle/2.))) def regularPolygon(self, corners=3, radius=None, h=None, side=None): """Give messures of a regular polygone :param corners: number of corners of the polygone :param radius: distance center to one of the corners :param h: distance center to one of the sides (height of sector) :param side: length of one side :return: (radius, h, side) """ if radius: side = 2 * math.sin(math.radians(180.0/corners)) * radius h = radius * math.cos(math.radians(180.0/corners)) elif h: side = 2 * math.tan(math.radians(180.0/corners)) * h radius = ((side/2.)**2+h**2)**0.5 elif side: h = 0.5 * side * math.tan(math.radians(90-180./corners)) radius = ((side/2.)**2+h**2)**0.5 return radius, h, side @restore def regularPolygonAt(self, x, y, corners, angle=0, r=None, h=None, side=None): """Draw regular polygone""" self.moveTo(x, y, angle) r, h, side = self.regularPolygon(corners, r, h, side) self.moveTo(-side/2.0, -h-self.burn) for i in range(corners): self.edge(side) self.corner(360./corners) def regularPolygonWall(self, corners=3, r=None, h=None, side=None, edges='e', hole=None, callback=None, move=None): """Create regular polygone as a wall :param corners: number of corners of the polygone :param radius: distance center to one of the corners :param h: distance center to one of the sides (height of sector) :param side: length of one side :param edges: (Default value = "e", may be string/list of length corners) :param hole: diameter of central hole (Default value = 0) :param callback: (Default value = None, middle=0, then sides=1..) :param move: (Default value = None) """ r, h, side = self.regularPolygon(corners, r, h, side) t = self.thickness if not hasattr(edges, "__getitem__") or len(edges) == 1: edges = [edges] * corners edges = [self.edges.get(e, e) for e in edges] edges += edges # append for wrapping around if corners % 2: th = r + h + edges[0].spacing() + ( max(edges[corners//2].spacing(), edges[corners//2+1].spacing()) / math.sin(math.radians(90-180/corners))) else: th = 2*h + edges[0].spacing() + edges[corners//2].spacing() tw = 0 for i in range(corners): ang = (180+360*i)/corners tw = max(tw, 2*abs(math.sin(math.radians(ang))* (r + max(edges[i].spacing(), edges[i+1].spacing())/ math.sin(math.radians(90-180/corners))))) if self.move(tw, th, move, before=True): return self.moveTo(0.5*tw-0.5*side, edges[0].margin()) if hole: self.hole(side/2., h+edges[0].startwidth() + self.burn, hole/2.) self.cc(callback, 0, side/2., h+edges[0].startwidth() + self.burn) for i in range(corners): self.cc(callback, i+1, 0, edges[i].startwidth() + self.burn) edges[i](side) self.edgeCorner(edges[i], edges[i+1], 360.0/corners) self.move(tw, th, move) def grip(self, length, depth): """Corrugated edge useful as an gipping area :param length: length :param depth: depth of the grooves """ grooves = max(int(length // (depth * 2.0)) + 1, 1) depth = length / grooves / 4.0 for groove in range(grooves): self.corner(90, depth) self.corner(-180, depth) self.corner(90, depth) def _latchHole(self, length): """ :param length: """ self.edge(1.1 * self.thickness) self.corner(-90) self.edge(length / 2.0 + 0.2 * self.thickness) self.corner(-90) self.edge(1.1 * self.thickness) def _latchGrip(self, length): """ :param length: """ self.corner(90, self.thickness / 4.0) self.grip(length / 2.0 - self.thickness / 2.0 - 0.2 * self.thickness, self.thickness / 2.0) self.corner(90, self.thickness / 4.0) def latch(self, length, positive=True, reverse=False): """Latch to fix a flex box door to the box :param length: length in mm :param positive: (Default value = True) False: Door side; True: Box side :param reverse: (Default value = False) True when running away from the latch """ if positive: if reverse: self.edge(length / 2.0) self.corner(-90) self.edge(self.thickness) self.corner(90) self.edge(length / 2.0) self.corner(90) self.edge(self.thickness) self.corner(-90) if not reverse: self.edge(length / 2.0) else: if reverse: self._latchGrip(length) else: self.corner(90) self._latchHole(length) if not reverse: self._latchGrip(length) else: self.corner(90) def handle(self, x, h, hl, r=30): """Creates an Edge with a handle :param x: width in mm :param h: height in mm :param hl: height if th grip hole :param r: (Default value = 30) radius of the corners """ d = (x - hl - 2 * r) / 2.0 # Hole with self.saved_context(): self.moveTo(d + 2 * r, 0) self.edge(hl - 2 * r) self.corner(-90, r) self.edge(h - 3 * r) self.corner(-90, r) self.edge(hl - 2 * r) self.corner(-90, r) self.edge(h - 3 * r) self.corner(-90, r) self.moveTo(0, 0) self.curveTo(d, 0, d, 0, d, -h + r) self.curveTo(r, 0, r, 0, r, r) self.edge(hl) self.curveTo(r, 0, r, 0, r, r) self.curveTo(h - r, 0, h - r, 0, h - r, -d) ### Navigation def moveTo(self, x, y=0.0, degrees=0): """ Move coordinate system to given point :param x: :param y: (Default value = 0.0) :param degrees: (Default value = 0) """ self.ctx.move_to(0, 0) self.ctx.translate(x, y) self.ctx.rotate(degrees * math.pi / 180.0) self.ctx.move_to(0, 0) def moveArc(self, angle, r=0.0): """ :param angle: :param r: (Default value = 0.0) """ if r < 0: r = -r angle = -angle rad = math.radians(angle) if angle > 0: self.moveTo(r*math.sin(rad), r*(1-math.cos(rad)), angle) else: self.moveTo(r*math.sin(-rad), -r*(1-math.cos(rad)), angle) def _continueDirection(self, angle=0): """ Set coordinate system to current position (end point) :param angle: (Default value = 0) heading """ self.ctx.translate(*self.ctx.get_current_point()) self.ctx.rotate(angle) def move(self, x, y, where, before=False): """Intended to be used by parts where can be combinations of "up" or "down", "left" or "right", "only", "mirror" and "rotated" when "only" is included the move is only done when before is True "mirror" will flip the part along the y axis "rotated" draws the parts rotated 90 counter clockwise The function returns whether actual drawing of the part should be omited. :param x: width of part :param y: height of part :param where: which direction to move :param before: (Default value = False) called before or after part being drawn """ if not where: where = "" terms = where.split() dontdraw = before and "only" in terms x += self.spacing y += self.spacing if "rotated" in terms: x, y = y, x moves = { "up": (0, y, False), "down": (0, -y, True), "left": (-x, 0, True), "right": (x, 0, False), "only": (0, 0, None), "mirror": (0, 0, None), "rotated": (0, 0, None), } if not before: self.ctx.stroke() # restore position self.ctx.restore() for term in terms: if not term in moves: raise ValueError("Unknown direction: '%s'" % term) mx, my, movebeforeprint = moves[term] if movebeforeprint and before: self.moveTo(mx, my) elif (not movebeforeprint and not before) or dontdraw: self.moveTo(mx, my) if not dontdraw: if before: # save position self.ctx.save() if self.debug: self.ctx.rectangle(0, 0, x, y) if "rotated" in terms: self.moveTo(x, 0, 90) x, y = y, x # change back for "mirror" if "mirror" in terms: self.moveTo(x, 0) self.ctx.scale(-1, 1) self.moveTo(self.spacing / 2.0, self.spacing / 2.0) self.ctx.new_part() return dontdraw @restore def circle(self, x, y, r): """ Draw a round disc :param x: position :param y: postion :param r: radius """ r += self.burn self.moveTo(x + r, y) a = 0 n = 10 da = 2 * math.pi / n for i in range(n): self.ctx.arc(-r, 0, r, a, a+da) a += da self.ctx.stroke() @restore @holeCol def hole(self, x, y, r=0.0, d=0.0, tabs=0): """ Draw a round hole :param x: position :param y: postion :param r: radius """ if not r: r = d / 2.0 if r < self.burn: r = self.burn + 1E-9 r_ = r - self.burn self.moveTo(x + r_, y, -90) self.corner(-360, r, tabs) @restore @holeCol def rectangularHole(self, x, y, dx, dy, r=0, center_x=True, center_y=True): """ Draw a rectangular hole :param x: position :param y: position :param dx: width :param dy: height :param r: (Default value = 0) radius of the corners :param center_x: (Default value = True) if True, x position is the center, else the start :param center_y: (Default value = True) if True, y position is the center, else the start """ r = min(r, dx/2., dy/2.) x_start = x if center_x else x + dx / 2.0 y_start = y - dy / 2.0 if center_y else y self.moveTo(x_start, y_start + self.burn, 180) self.edge(dx / 2.0 - r) # start with an edge to allow easier change of inner corners for d in (dy, dx, dy, dx / 2.0 + r): self.corner(-90, r) self.edge(d - 2 * r) @restore @holeCol def dHole(self, x, y, r=None, d=None, w=None, rel_w=0.75, angle=0): if r is None: r = d / 2.0 if w is None: w = 2.0 * r * rel_w w -= r if r <= 0.0: return if abs(w) > r: return self.hole(x, y, r) a = math.degrees(math.acos(w / r)) self.moveTo(x, y, angle-a) self.moveTo(r-self.burn, 0, -90) self.corner(-360+2*a, r) self.corner(-a) self.edge(2*r*math.sin(math.radians(a))) @restore @holeCol def flatHole(self, x, y, r=None, d=None, w=None, rel_w=0.75, angle=0): if r is None: r = d / 2.0 if w is None: w = r * rel_w else: w = w / 2.0 if r < 0.0: return if abs(w) > r: return self.hole(x, y, r) a = math.degrees(math.acos(w / r)) self.moveTo(x, y, angle-a) self.moveTo(r-self.burn, 0, -90) for i in range(2): self.corner(-180+2*a, r) self.corner(-a) self.edge(2*r*math.sin(math.radians(a))) self.corner(-a) @restore def text(self, text, x=0, y=0, angle=0, align="", fontsize=10, color=[0.0, 0.0, 0.0]): """ Draw text :param text: text to render :param x: (Default value = 0) :param y: (Default value = 0) :param angle: (Default value = 0) :param align: (Default value = "") string with combinations of (top|middle|bottom) and (left|center|right) separated by a space """ self.moveTo(x, y, angle) text = text.split("\n") lines = len(text) height = lines * fontsize + (lines - 1) * 0.4 * fontsize align = align.split() halign = "left" moves = { "top": -height, "middle": -0.5 * height, "bottom": 0, "left": "left", "center": "middle", "right": "end", } for a in align: if a in moves: if isinstance(moves[a], str): halign = moves[a] else: self.moveTo(0, moves[a]) else: raise ValueError("Unknown alignment: %s" % align) for line in reversed(text): self.ctx.show_text(line, fs=fontsize, align=halign, rgb=color) self.moveTo(0, 1.4 * fontsize) tx_sizes = { 1 : 0.61, 2 : 0.70, 3 : 0.82, 4 : 0.96, 5 : 1.06, 6 : 1.27, 7 : 1.49, 8 : 1.75, 9 : 1.87, 10 : 2.05, 15 : 2.40, 20 : 2.85, 25 : 3.25, 30 : 4.05, 40 : 4.85, 45 : 5.64, 50 : 6.45, 55 : 8.05, 60 : 9.60, 70 : 11.20, 80 : 12.80, 90 : 14.40, 100 : 16.00, } @restore @holeCol def TX(self, size, x=0, y=0, angle=0): """Draw a star pattern :param size: 1 to 100 :param x: (Default value = 0) :param y: (Default value = 0) :param angle: (Default value = 0) """ self.moveTo(x, y, angle) size = self.tx_sizes.get(size, 0) ri = 0.5 * size * math.tan(math.radians(30)) ro = ri * (2**0.5-1) self.moveTo(size * 0.5 - self.burn, 0, -90) for i in range(6): self.corner(45, ri) self.corner(-150, ro) self.corner(45, ri) nema_sizes = { # motor,flange, holes, screws 8: (20.3, 16, 15.4, 3), 11: (28.2, 22, 23, 4), 14: (35.2, 22, 26, 4), 16: (39.2, 22, 31, 4), 17: (42.2, 22, 31, 4), 23: (56.4, 38.1, 47.1, 5.2), 24: (60, 36, 49.8, 5.1), 34: (86.3, 73, 69.8, 6.6), 42: (110, 55.5, 89, 8.5), } @restore def NEMA(self, size, x=0, y=0, angle=0, screwholes=None): """Draw holes for mounting a NEMA stepper motor :param size: Nominal size in tenths of inches :param x: (Default value = 0) :param y: (Default value = 0) :param angle: (Default value = 0) """ width, flange, holedistance, diameter = self.nema_sizes[size] if screwholes: diameter = screwholes self.moveTo(x, y, angle) if self.debug: self.rectangularHole(0, 0, width, width) self.hole(0, 0, 0.5 * flange) for x in (-1, 1): for y in (-1, 1): self.hole(x * 0.5 * holedistance, y * 0.5 * holedistance, 0.5 * diameter) # hexHoles def hexHolesRectangle(self, x, y, settings=None, skip=None): """Fills a rectangle with holes in a hex pattern. Settings have: r : radius of holes b : space between holes style : what types of holes (not yet implemented) :param x: width :param y: height :param settings: (Default value = None) :param skip: (Default value = None) function to check if hole should be present gets x, y, r, b, posx, posy """ if settings is None: settings = self.hexHolesSettings r, b, style = settings.diameter/2, settings.distance, settings.style w = r + b / 2.0 dist = w * math.cos(math.pi / 6.0) # how many half circles do fit cx = int((x - 2 * r) // (w)) + 2 cy = int((y - 2 * r) // (dist)) + 2 # what's left on the sides lx = (x - (2 * r + (cx - 2) * w)) / 2.0 ly = (y - (2 * r + ((cy // 2) * 2) * dist - 2 * dist)) / 2.0 for i in range(cy // 2): for j in range((cx - (i % 2)) // 2): px = 2 * j * w + r + lx py = i * 2 * dist + r + ly if i % 2: px += w if skip and skip(x, y, r, b, px, py): continue self.hole(px, py, r=r) def __skipcircle(self, x, y, r, b, posx, posy): cx, cy = x / 2.0, y / 2.0 return (dist(posx - cx, posy - cy) > (cx - r)) def hexHolesCircle(self, d, settings=None): """ Fill circle with holes in a hex pattern :param d: diameter of the circle :param settings: (Default value = None) """ d2 = d / 2.0 self.hexHolesRectangle(d, d, settings=settings, skip=self.__skipcircle) def hexHolesPlate(self, x, y, rc, settings=None): """ Fill a plate with holes in a hex pattern :param x: width :param y: height :param rc: radius of the corners :param settings: (Default value = None) """ def skip(x, y, r, b, posx, posy): """ :param x: :param y: :param r: :param b: :param posx: :param posy: """ posx = abs(posx - (x / 2.0)) posy = abs(posy - (y / 2.0)) wx = 0.5 * x - rc - r wy = 0.5 * y - rc - r if (posx <= wx) or (posy <= wx): return 0 return dist(posx - wx, posy - wy) > rc self.hexHolesRectangle(x, y, settings, skip=skip) def hexHolesHex(self, h, settings=None, grow=None): """ Fill a hexagon with holes in a hex pattern :param h: height :param settings: (Default value = None) :param grow: (Default value = None) """ if settings is None: settings = self.hexHolesSettings r, b, style = settings.diameter/2, settings.distance, settings.style self.ctx.rectangle(0, 0, h, h) w = r + b / 2.0 dist = w * math.cos(math.pi / 6.0) cy = 2 * int((h - 4 * dist) // (4 * w)) + 1 leftover = h - 2 * r - (cy - 1) * 2 * r if grow == 'space ': b += leftover / (cy - 1) / 2 # recalulate with adjusted values w = r + b / 2.0 dist = w * math.cos(math.pi / 6.0) self.moveTo(h / 2.0 - (cy // 2) * 2 * w, h / 2.0) for j in range(cy): self.hole(2 * j * w, 0, r) for i in range(1, cy / 2 + 1): for j in range(cy - i): self.hole(j * 2 * w + i * w, i * 2 * dist, r) self.hole(j * 2 * w + i * w, -i * 2 * dist, r) def flex2D(self, x, y, width=1): """ Fill a rectangle with a pattern allowing bending in both axis :param x: width :param y: height :param width: width between the lines of the pattern in multiples of thickness """ width *= self.thickness cx = int(x // (5 * width)) cy = int(y // (5 * width)) if cx == 0 or cy == 0: return wx = x / 5. / cx wy = y / 5. / cy armx = (4 * wx, 90, 4 * wy, 90, 2 * wx, 90, 2 * wy) army = (4 * wy, 90, 4 * wx, 90, 2 * wy, 90, 2 * wx) for i in range(cx): for j in range(cy): if (i + j) % 2: with self.saved_context(): self.moveTo((5 * i) * wx, (5 * j) * wy) self.polyline(*armx) with self.saved_context(): self.moveTo((5 * i + 5) * wx, (5 * j + 5) * wy, -180) self.polyline(*armx) else: with self.saved_context(): self.moveTo((5 * i + 5) * wx, (5 * j) * wy, 90) self.polyline(*army) with self.saved_context(): self.moveTo((5 * i) * wx, (5 * j + 5) * wy, -90) self.polyline(*army) self.ctx.stroke() @restore def fingerHoleRectangle(self, dx, dy, x=0., y=0., angle=0., outside=False): """ Place finger holes for four walls - attaching a box on this plane :param dx: size in x direction :param dy: size in y direction :param x: x position of the center :param y: y position of the center :param angle: angle in which the rectangle is placed :param outside: meassure size from the outside of the walls - not the inside """ self.moveTo(x, y, angle) d = 0.5*self.thickness if outside: d = -d self.fingerHolesAt(dx/2+d, -dy/2, dy, 90) self.fingerHolesAt(-dx/2-d, -dy/2, dy, 90) self.fingerHolesAt(-dx/2, -dy/2-d, dx, 0) self.fingerHolesAt(-dx/2, dy/2+d, dx, 0) ################################################## ### parts ################################################## def _splitWall(self, pieces, side): """helper for roundedPlate and surroundingWall figures out what sides to split """ return [ (False, False, False, False, True), (True, False, False, False, True), (True, False, True, False, True), (True, True, True, False, True), (True, True, True, True, True), ][pieces][side] def roundedPlate(self, x, y, r, edge="f", callback=None, holesMargin=None, holesSettings=None, bedBolts=None, bedBoltSettings=None, wallpieces=1, extend_corners=True, move=None): """Plate with rounded corner fitting to .surroundingWall() For the callbacks the sides are counted depending on wallpieces :param x: width :param y: hight :param r: radius of the corners :param callback: (Default value = None) :param holesMargin: (Default value = None) set to get hex holes :param holesSettings: (Default value = None) :param bedBolts: (Default value = None) :param bedBoltSettings: (Default value = None) :param wallpieces: (Default value = 1) # of separate surrounding walls :param extend_corners: (Default value = True) have corners outset with teh edges :param move: (Default value = None) """ corner_holes = True t = self.thickness edge = self.edges.get(edge, edge) overallwidth = x + 2 * edge.spacing() overallheight = y + 2 * edge.spacing() if self.move(overallwidth, overallheight, move, before=True): return lx = x - 2*r ly = y - 2*r self.moveTo(edge.spacing(), edge.margin()) self.moveTo(r, 0) if wallpieces > 4: wallpieces = 4 wallcount = 0 for nr, l in enumerate((lx, ly, lx, ly)): if self._splitWall(wallpieces, nr): for i in range(2): self.cc(callback, wallcount, y=edge.startwidth()+self.burn) edge(l / 2.0 , bedBolts=self.getEntry(bedBolts, wallcount), bedBoltSettings=self.getEntry(bedBoltSettings, wallcount)) wallcount += 1 else: self.cc(callback, wallcount, y=edge.startwidth()+self.burn) edge(l, bedBolts=self.getEntry(bedBolts, wallcount), bedBoltSettings=self.getEntry(bedBoltSettings, wallcount)) wallcount += 1 if extend_corners: if corner_holes: with self.saved_context(): self.moveTo(0, edge.startwidth()) self.polyline(0, (90, r), 0, -90, t, -90, 0, (-90, r+t), 0, -90, t, -90, 0,) self.ctx.stroke() self.corner(90, r + edge.startwidth()) else: self.step(-edge.endwidth()) self.corner(90, r) self.step(edge.startwidth()) self.ctx.restore() self.ctx.save() self.moveTo(edge.margin(), edge.margin()) if holesMargin is not None: self.moveTo(holesMargin, holesMargin) if r > holesMargin: r -= holesMargin else: r = 0 self.hexHolesPlate(x - 2 * holesMargin, y - 2 * holesMargin, r, settings=holesSettings) self.move(overallwidth, overallheight, move) def surroundingWall(self, x, y, r, h, bottom='e', top='e', left="D", right="d", pieces=1, extend_corners=True, callback=None, move=None): """ Wall(s) with flex fiting around a roundedPlate() For the callbacks the sides are counted depending on pieces :param x: width of matching roundedPlate :param y: height of matching roundedPlate :param r: corner radius of matching roundedPlate :param h: inner height of the wall (without edges) :param bottom: (Default value = 'e') Edge type :param top: (Default value = 'e') Edge type :param left: (Default value = 'D') left edge(s) :param right: (Default value = 'd') right edge(s) :param pieces: (Default value = 1) number of separate pieces :param callback: (Default value = None) :param move: (Default value = None) """ t = self.thickness c4 = (r + self.burn) * math.pi * 0.5 # circumference of quarter circle c4 = c4 / self.edges["X"].settings.stretch top = self.edges.get(top, top) bottom = self.edges.get(bottom, bottom) left = self.edges.get(left, left) right = self.edges.get(right, right) # XXX assumes startwidth == endwidth if extend_corners: topwidth = t bottomwidth = t else: topwidth = top.startwidth() bottomwidth = bottom.startwidth() overallwidth = 2*x + 2*y - 8*r + 4*c4 + (self.edges["d"].spacing() + self.edges["D"].spacing() + self.spacing) * pieces overallheight = h + top.spacing() + bottom.spacing() if self.move(overallwidth, overallheight, move, before=True): return self.moveTo(left.spacing(), bottom.margin()) wallcount = 0 tops = [] # edges needed on the top for this wall segment if pieces<=2 and (y - 2 * r) < 1E-3: # remove zero length y sides c4 *= 2 sides = (x/2-r, x - 2*r, x - 2*r) if pieces > 0: # hack to get the right splits pieces += 1 else: sides = (x/2-r, y - 2*r, x - 2*r, y - 2*r, x - 2*r) for nr, l in enumerate(sides): if self._splitWall(pieces, nr) and nr > 0: self.cc(callback, wallcount, y=bottomwidth + self.burn) wallcount += 1 bottom(l / 2.) tops.append(l / 2.) # complete wall segment with self.saved_context(): self.edgeCorner(bottom, right, 90) right(h) self.edgeCorner(right, top, 90) for n, d in enumerate(reversed(tops)): if n % 2: # flex self.step(topwidth-top.endwidth()) self.edge(d) self.step(top.startwidth()-topwidth) else: top(d) self.edgeCorner(top, left, 90) left(h) self.edgeCorner(left, bottom, 90) if nr == len(sides) - 1: break # start new wall segment tops = [] self.moveTo(right.margin() + left.margin() + self.spacing) self.cc(callback, wallcount, y=bottomwidth + self.burn) wallcount += 1 bottom(l / 2.) tops.append(l / 2.) else: self.cc(callback, wallcount, y=bottomwidth + self.burn) wallcount += 1 bottom(l) tops.append(l) self.step(bottomwidth-bottom.endwidth()) self.edges["X"](c4, h + topwidth + bottomwidth) self.step(bottom.startwidth()-bottomwidth) tops.append(c4) self.move(overallwidth, overallheight, move) def rectangularWall(self, x, y, edges="eeee", ignore_widths=[], holesMargin=None, holesSettings=None, bedBolts=None, bedBoltSettings=None, callback=None, move=None): """ Rectangular wall for all kind of box like objects :param x: width :param y: height :param edges: (Default value = "eeee") bottom, right, top, left :param ignore_widths: list of edge_widths added to adjacent edge :param holesMargin: (Default value = None) :param holesSettings: (Default value = None) :param bedBolts: (Default value = None) :param bedBoltSettings: (Default value = None) :param callback: (Default value = None) :param move: (Default value = None) """ if len(edges) != 4: raise ValueError("four edges required") edges = [self.edges.get(e, e) for e in edges] edges += edges # append for wrapping around overallwidth = x + edges[-1].spacing() + edges[1].spacing() overallheight = y + edges[0].spacing() + edges[2].spacing() if self.move(overallwidth, overallheight, move, before=True): return if 7 not in ignore_widths: self.moveTo(edges[-1].spacing()) if 6 not in ignore_widths: self.moveTo(0, edges[0].margin()) for i, l in enumerate((x, y, x, y)): self.cc(callback, i, y=edges[i].startwidth() + self.burn) e1, e2 = edges[i], edges[i + 1] if (2*i-1 in ignore_widths or 2*i-1+8 in ignore_widths): l += edges[i-1].endwidth() if 2*i in ignore_widths: l += edges[i+1].startwidth() e2 = self.edges["e"] if 2*i+1in ignore_widths: e1 = self.edges["e"] edges[i](l, bedBolts=self.getEntry(bedBolts, i), bedBoltSettings=self.getEntry(bedBoltSettings, i)) self.edgeCorner(e1, e2, 90) if holesMargin is not None: self.moveTo(holesMargin, holesMargin + edges[0].startwidth()) self.hexHolesRectangle(x - 2 * holesMargin, y - 2 * holesMargin, settings=holesSettings) self.move(overallwidth, overallheight, move) def flangedWall(self, x, y, edges="FFFF", flanges=None, r=0.0, callback=None, move=None): """Rectangular wall with flanges extending the regular size This is similar to the rectangularWall but it may extend to either side replacing the F edge with fingerHoles. Use with E and F for edges only. :param x: width :param y: height :param edges: (Default value = "FFFF") bottom, right, top, left :param flanges: (Default value = None) list of width of the flanges :param r: radius of the corners of the flange :param callback: (Default value = None) :param move: (Default value = None) """ t = self.thickness if not flanges: flanges = [0.0] * 4 while len(flanges) < 4: flanges.append(0.0) flanges = flanges + flanges # double to allow looping around tw = x + 2*t + flanges[1] + flanges[3] th = y + 2*t + flanges[0] + flanges[2] if self.move(tw, th, move, True): return rl = min(r, max(flanges[-1], flanges[0])) self.moveTo(rl) for i in range(4): l = y if i % 2 else x rl = min(r, max(flanges[i-1], flanges[i])) rr = min(r, max(flanges[i], flanges[i+1])) self.cc(callback, i, x=-rl) if flanges[i]: if edges[i] == "F": self.fingerHolesAt(flanges[i-1]+t-rl, 0.5*t+flanges[i], l, angle=0) self.edge(l+flanges[i-1]+flanges[i+1]+2*t-rl-rr) else: self.edge(flanges[i-1]+t-rl) self.edges.get(edges[i], edges[i])(l) self.edge(flanges[i+1]+t-rr) self.corner(90, rr) self.move(tw, th, move) def rectangularTriangle(self, x, y, edges="eee", r=0.0, num=1, bedBolts=None, bedBoltSettings=None, callback=None, move=None): """ Rectangular triangular wall :param x: width :param y: height :param edges: (Default value = "eee") bottom, right[, diagonal] :param r: radius towards the hypothenuse :param num: (Default value = 1) number of triangles :param bedBolts: (Default value = None) :param bedBoltSettings: (Default value = None) :param callback: (Default value = None) :param move: (Default value = None) """ edges = [self.edges.get(e, e) for e in edges] if len(edges) == 2: edges.append(self.edges["e"]) if len(edges) != 3: raise ValueError("two or three edges required") r = min(r, x, y) width = x + edges[-1].spacing() + edges[1].spacing() height = y + edges[0].spacing() + edges[2].spacing() if num > 1: width += edges[-1].spacing() + edges[1].spacing() + 2*self.spacing height += 0.7*r + edges[0].spacing() + edges[2].spacing() + self.spacing overallwidth = width * (num // 2 + num % 2) overallheight = height alpha = math.degrees(math.atan2(y-r, float(x-r))) if self.move(overallwidth, overallheight, move, before=True): return if self.debug: self.rectangularHole(width/2., height/2., width, height) if num > 1: self.moveTo(self.spacing + edges[-1].spacing()) for n in range(num): self.moveTo(edges[-1].spacing()+self.spacing, edges[0].margin()) if n % 2 == 1: self.moveTo(2*edges[1].spacing()+self.spacing, 0) if num > 1: self.moveTo(edges[1].spacing(), 0) for i, l in enumerate((x, y)): self.cc(callback, i, y=edges[i].startwidth() + self.burn) edges[i](l, bedBolts=self.getEntry(bedBolts, i), bedBoltSettings=self.getEntry(bedBoltSettings, i)) self.edgeCorner(edges[i], edges[i + 1], 90) self.corner(alpha, r) self.cc(callback, 2) edges[2](((x-r)**2+(y-r)**2)**0.5) self.corner(90-alpha, r) self.corner(90) self.ctx.stroke() if n % 2: self.moveTo(-edges[1].spacing()-2*self.spacing-edges[-1].spacing(), height-edges[0].spacing(), 180) else: self.moveTo(width+1*edges[1].spacing()-self.spacing-2*edges[-1].spacing(), height-edges[0].spacing(), 180) self.move(overallwidth, overallheight, move) def trapezoidWall(self, w, h0, h1, edges="eeee", callback=None, move=None): """ Rectangular trapezoidal wall :param w: width :param h0: left height :param h1: right height :param edges: (Default value = "eee") bottom, right, left :param callback: (Default value = None) :param move: (Default value = None) """ edges = [self.edges.get(e, e) for e in edges] overallwidth = w + edges[-1].spacing() + edges[1].spacing() overallheight = max(h0, h1) + edges[0].spacing() if self.move(overallwidth, overallheight, move, before=True): return a = math.degrees(math.atan((h1-h0)/w)) l = ((h0-h1)**2+w**2)**0.5 self.moveTo(edges[-1].spacing(), edges[0].margin()) self.cc(callback, 0, y=edges[0].startwidth()) edges[0](w) self.edgeCorner(edges[0], edges[1], 90) self.cc(callback, 1, y=edges[1].startwidth()) edges[1](h1) self.edgeCorner(edges[1], self.edges["e"], 90) self.corner(a) self.cc(callback, 2) edges[2](l) self.corner(-a) self.edgeCorner(self.edges["e"], edges[-1], 90) self.cc(callback, 3, y=edges[-1].startwidth()) edges[3](h0) self.edgeCorner(edges[-1], edges[0], 90) self.move(overallwidth, overallheight, move) def trapezoidSideWall(self, w, h0, h1, edges="eeee", radius=0.0, callback=None, move=None): """ Rectangular trapezoidal wall :param w: width :param h0: left height :param h1: right height :param edges: (Default value = "eeee") bottom, right, left :param radius: (Default vaule = 0.0) radius of upper corners :param callback: (Default value = None) :param move: (Default value = None) """ edges = [self.edges.get(e, e) for e in edges] overallwidth = w + edges[-1].spacing() + edges[1].spacing() overallheight = max(h0, h1) + edges[0].spacing() if self.move(overallwidth, overallheight, move, before=True): return r = min(radius, abs(h0-h1)) ws = w-r if h0 > h1: ws += edges[1].endwidth() else: ws += edges[3].startwidth() hs = abs(h1-h0) - r a = math.degrees(math.atan(hs/ws)) l = (ws**2+hs**2)**0.5 self.moveTo(edges[-1].spacing(), edges[0].margin()) self.cc(callback, 0, y=edges[0].startwidth()) edges[0](w) self.edgeCorner(edges[0], edges[1], 90) self.cc(callback, 1, y=edges[1].startwidth()) edges[1](h1) if h0 > h1: self.polyline(0, (90-a, r)) self.cc(callback, 2) edges[2](l) self.polyline(0, (a, r), edges[3].startwidth(), 90) else: self.polyline(0, 90, edges[1].endwidth(), (a, r)) self.cc(callback, 2) edges[2](l) self.polyline(0, (90-a, r)) self.cc(callback, 3, y=edges[-1].startwidth()) edges[3](h0) self.edgeCorner(edges[-1], edges[0], 90) self.move(overallwidth, overallheight, move) ### polygonWall and friends def _polygonWallExtend(self, borders, edge, close=False): posx, posy = 0, 0 ext = [ 0.0 ] * 4 angle = 0 def checkpoint(ext, x, y): ext[0] = min(ext[0], x) ext[1] = min(ext[1], y) ext[2] = max(ext[2], x) ext[3] = max(ext[3], y) for i in range(len(borders)): if i % 2: try: a, r = borders[i] except TypeError: angle = (angle + borders[i]) % 360 continue if a > 0: centerx = posx + r * math.cos(math.radians(angle+90)) centery = posy + r * math.sin(math.radians(angle+90)) else: centerx = posx + r * math.cos(math.radians(angle-90)) centery = posy + r * math.sin(math.radians(angle-90)) for direction in (0, 90, 180, 270): if (a > 0 and angle <= direction and (angle + a) % 360 >= direction): direction -= 90 elif (a < 0 and angle >= direction and (angle + a) % 360 <= direction): direction -= 90 else: continue checkpoint(ext, centerx + r * math.cos(math.radians(direction)), centery + r * math.sin(math.radians(direction))) #print("%4s %4s %4s %f %f" % (angle, direction+90, angle+a, centerx + r * math.cos(math.radians(direction)), centery + r * math.sin(math.radians(direction)))) angle = (angle + a) % 360 if a > 0: posx = centerx + r * math.cos(math.radians(angle-90)) posy = centery + r * math.sin(math.radians(angle-90)) else: posx = centerx + r * math.cos(math.radians(angle+90)) posy = centery + r * math.sin(math.radians(angle+90)) else: posx += borders[i] * math.cos(math.radians(angle)) posy += borders[i] * math.sin(math.radians(angle)) checkpoint(ext, posx, posy) ext[0] -= edge.margin() ext[1] -= edge.margin() ext[2] += edge.margin() ext[3] += edge.margin() return ext def polygonWall(self, borders, edge="f", turtle=False, callback=None, move=None): e = self.edges.get(edge, edge) t = self.thickness # XXX edge.margin() minx, miny, maxx, maxy = self._polygonWallExtend(borders, e) tw, th = maxx - minx, maxy - miny if not turtle: if self.move(tw, th, move, True): return self.moveTo(-minx, -miny) length_correction = 0. for i in range(0, len(borders), 2): self.cc(callback, i) self.edge(length_correction) l = borders[i] - length_correction next_angle = borders[i+1] if isinstance(next_angle, (int, float)) and next_angle < 0: length_correction = t * math.tan(math.radians((-next_angle / 2))) else: length_correction = 0.0 l -= length_correction e(l) self.edge(length_correction) self.corner(next_angle, tabs=1) if not turtle: self.move(tw, th, move) @restore def polygonWalls(self, borders, h, bottom="F", top="F", symetrical=True): bottom = self.edges.get(bottom, bottom) top = self.edges.get(top, top) t = self.thickness # XXX edge.margin() leftsettings = copy.deepcopy(self.edges["f"].settings) lf, lF, lh = leftsettings.edgeObjects(self, add=False) rightsettings = copy.deepcopy(self.edges["f"].settings) rf, rF, rh = rightsettings.edgeObjects(self, add=False) length_correction = 0. angle = borders[-1] i = 0 part_cnt = 0 self.moveTo(0, bottom.margin()) while i < len(borders): if symetrical: if part_cnt % 2: left, right = lf, rf else: # last part of an uneven lot if (part_cnt == (len(borders)//2)-1): left, right = lF, rf else: left, right = lF, rF else: left, right = lf, rF top_lengths = [] top_edges = [] self.moveTo(left.spacing() + self.spacing, 0) l = borders[i] - length_correction leftsettings.setValues(self.thickness, angle=angle) angle = borders[i+1] while isinstance(angle, (tuple, list)): bottom(l) angle, radius = angle lr = abs(math.radians(angle) * radius) self.edges["X"](lr, h + 2*t) # XXX top_lengths.append(l) top_lengths.append(lr) top_edges.append(top) top_edges.append("E") i += 2 l = borders[i] angle = borders[i+1] rightsettings.setValues(self.thickness, angle=angle) if angle < 0: length_correction = t * math.tan(math.radians((-angle / 2))) else: length_correction = 0.0 l -= length_correction bottom(l) top_lengths.append(l) top_edges.append(top) with self.saved_context(): self.edgeCorner(bottom, right, 90) right(h) self.edgeCorner(right, top, 90) top_edges.reverse() top_lengths.reverse() edges.CompoundEdge(self, top_edges, top_lengths)(sum(top_lengths)) self.edgeCorner(top, left, 90) left(h) self.edgeCorner(left, bottom, 90) self.ctx.stroke() self.moveTo(right.spacing() + self.spacing) part_cnt += 1 i += 2 ################################################## ### Place Parts ################################################## def partsMatrix(self, n, width, move, part, *l, **kw): """place many of the same part :param n: number of parts :param width: number of parts in a row (0 for same as n) :param move: (Default value = None) :param part: callable that draws a part and knows move param :param \*l: params for part :param \*\*kw: keyword params for part """ if n <= 0: return if not width: width = n rows = n//width + (1 if n % width else 0) if not move: move = "" move = move.split() #move down / left before for m in move: if m == "left": kw["move"] = "left only" for i in range(width): part(*l, **kw) if m == "down": kw["move"] = "down only" for i in range(rows): part(*l, **kw) # draw matrix for i in range(rows): with self.saved_context(): for j in range(width): if "only" in move: break if width*i+j >= n: break kw["move"] = "right" part(*l, **kw) kw["move"] = "up only" part(*l, **kw) # Move back down if "up" not in move: kw["move"] = "down only" for i in range(rows): part(*l, **kw) # Move right if "right" in move: kw["move"] = "right only" for i in range(width): part(*l, **kw) def mirrorX(self, f, offset=0.0): """Wrap a function to draw mirrored at the y axis :param f: function to wrap :param offset: (default value = 0.0) axis to mirror at """ def r(): self.moveTo(offset, 0) with self.saved_context(): self.ctx.scale(-1, 1) f() return r def mirrorY(self, f, offset=0.0): """Wrap a function to draw mirrored at the x axis :param f: function to wrap :param offset: (default value = 0.0) axis to mirror at """ def r(): self.moveTo(0, offset) with self.saved_context(): self.ctx.scale(1, -1) f() return r