#!/usr/bin/python3 # Copyright (C) 2013-2014 Florian Festi # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . import cairo import math import argparse from argparse import ArgumentParser import re from functools import wraps def dist(dx, dy): return (dx*dx+dy*dy)**0.5 def restore(func): @wraps(func) def f(self, *args, **kw): self.ctx.save() pt = self.ctx.get_current_point() func(self, *args, **kw) self.ctx.restore() self.ctx.move_to(*pt) return f class BoltPolicy: """Abstract class Distributes (bed) bolts on a number of segments (fingers of a finger joint) """ def drawbolt(self, pos): """Add a bolt to this segment?""" return False def numFingers(self, numfingers): """returns next smaller, possible number of fingers""" return numFingers def _even(self, numFingers): return (numFingers//2) * 2 def _odd(self, numFingers): if numFingers % 2: return numFingers else: return numFingers - 1 class Bolts(BoltPolicy): """Distribute a fixed number of bolts evenly""" def __init__(self, bolts=1): self.bolts = bolts def numFingers(self, numFingers): if self.bolts % 2: self.fingers = self._even(numFingers) else: self.fingers = numFingers return self.fingers def drawBolt(self, pos): if pos > self.fingers//2: pos = self.fingers - pos if pos==0: return False if pos == self.fingers//2 and not (self.bolts % 2): return False result = (math.floor((float(pos)*(self.bolts+1)/self.fingers)-0.01) != math.floor((float(pos+1)*(self.bolts+1)/self.fingers)-0.01)) #print pos, result, ((float(pos)*(self.bolts+1)/self.fingers)-0.01), ((float(pos+1)*(self.bolts+1)/self.fingers)-0.01) return result ############################################################################# ### Settings ############################################################################# class Settings: absolute_params = { } relative_params = { } def __init__(self, thickness, relative=True, **kw): self.values = self.absolute_params.copy() factor = 1.0 if relative: factor = thickness for name, value in self.relative_params.items(): self.values[name] = value * factor self.setValues(thickness, relative, **kw) def setValues(self, thickness, relative=True, **kw): factor = 1.0 if relative: factor = thickness for name, value in kw.items(): if name in self.absolute_params: self.values[name] = value elif name in self.relative_params: self.values[name] = value * factor else: raise ValueError("Unknown parameter for %s: %s" % ( self.__class__.__name__, name)) def __getattr__(self, name): return self.values[name] ############################################################################# ### Edges ############################################################################# class Edge: char = 'e' def __init__(self, boxes, settings): self.boxes = boxes self.ctx = boxes.ctx self.settings = settings def __getattr__(self, name): """Hack for using unalter code form Boxes class""" return getattr(self.boxes, name) def __call__(self, length, **kw): self.ctx.move_to(0,0) self.ctx.line_to(length, 0) self.ctx.translate(*self.ctx.get_current_point()) def width(self): return 0.0 def margin(self): return self.boxes.spacing def spacing(self): return self.width() + self.margin() def startAngle(self): return 0.0 def endAngle(self): return 0.0 class OutSetEdge(Edge): char = 'E' def width(self): return self.boxes.thickness class CompoundEdge(Edge): def __init__(self, boxes, types, lengths): Edge.__init__(self, boxes, None) self.types = [self.edges.get(edge, edge) for edge in types] self.lengths = lengths self.length = sum(lengths) def width(self): return self.types[0].width() def margin(self): return max((e.margin() for e in self.types)) def __call__(self, length, **kw): if length and abs(length - self.length) > 1E-5: raise ValueError("Wrong length for CompoundEdge") for e, l in zip(self.types, self.lengths): # XXX different margins??? e(l) class Slot(Edge): def __init__(self, boxes, depth): Edge.__init__(self, boxes, None) self.depth = depth def __call__(self, length, **kw): if self.depth: self.boxes.corner(90) self.boxes.edge(self.depth) self.boxes.corner(-90) self.boxes.edge(length) self.boxes.corner(-90) self.boxes.edge(self.depth) self.boxes.corner(90) else: self.boxes.edge(self.length) class SlottedEdge(Edge): def __init__(self, boxes, sections, edge="e", slots=0): Edge.__init__(self, boxes, None) self.edge = self.edges.get(edge, edge) self.sections = sections self.slots = slots def width(self): return self.edge.width() def margin(self): return self.edge.margin() def __call__(self, length, **kw): for l in self.sections[:-1]: self.edge(l) if self.slots: Slot(self.boxes, self.slots)(self.thickness) else: self.edge(self.thickness) self.edge(self.sections[-1]) class FingerJointSettings(Settings): absolute_params = { "surroundingspaces" : 2, } relative_params = { "space" : 1.0, "finger" : 1.0, "height" : 1.0, "width" : 1.0, } class FingerJointEdge(Edge): char = 'f' positive = True def __call__(self, length, bedBolts=None, bedBoltSettings=None, **kw): positive = self.positive space, finger = self.settings.space, self.settings.finger fingers = int((length-(self.settings.surroundingspaces-1)*space) // (space+finger)) if bedBolts: fingers = bedBolts.numFingers(fingers) leftover = length - fingers*(space+finger) + space s, f, thickness = space, finger, self.thickness d, d_nut, h_nut, l, l1 = bedBoltSettings or self.bedBoltSettings p = 1 if positive else -1 if fingers <= 0: fingers = 0 leftover = length self.edge(leftover/2.0) for i in range(fingers): if i !=0: if not positive and bedBolts and bedBolts.drawBolt(i): self.hole(0.5*space, 0.5*self.thickness, 0.5*d) if positive and bedBolts and bedBolts.drawBolt(i): self.bedBoltHole(s, bedBoltSettings) else: self.edge(s) self.corner(-90*p) self.edge(self.settings.height) self.corner(90*p) self.edge(f) self.corner(90*p) self.edge(self.settings.height) self.corner(-90*p) self.edge(leftover/2.0) def margin(self): return self.boxes.spacing + self.boxes.thickness class FingerJointEdgeCounterPart(FingerJointEdge): char = 'F' positive = False def width(self): return self.boxes.thickness def margin(self): return self.boxes.spacing class FingerHoleEdge(Edge): char = 'h' def __call__(self, length, dist=None, bedBolts=None, bedBoltSettings=None, **kw): if dist is None: dist = self.fingerHoleEdgeWidth * self.thickness self.ctx.save() self.moveTo(0, dist+self.thickness/2) self.fingerHoles(length, bedBolts, bedBoltSettings) self.ctx.restore() # XXX continue path self.ctx.move_to(0, 0) self.ctx.line_to(length, 0) self.ctx.translate(*self.ctx.get_current_point()) def width(self): return (self.fingerHoleEdgeWidth+1) * self.thickness class CrossingFingerHoleEdge(Edge): def __init__(self, boxes, height, **kw): Edge.__init__(self, boxes, None, **kw) self.height = height def __call__(self, length, **kw): self.fingerHolesAt(length/2.0, 0, self.height) Edge.__call__(self, length) class DoveTailSettings(Settings): absolute_params = { "angle" : 50, } relative_params = { "size" : 3, "depth" : 1.5, "radius" : 0.2, } class DoveTailJoint(Edge): char = 'd' positive = True def __call__(self, length, **kw): s = self.settings radius = max(s.radius, self.boxes.burn) # no smaller than burn positive = self.positive a = s.angle + 90 alpha = 0.5*math.pi - math.pi*s.angle/180.0 l1 = radius/math.tan(alpha/2.0) diffx = 0.5*s.depth/math.tan(alpha) l2 = 0.5*s.depth / math.sin(alpha) sections = int((length) // (s.size*2)) leftover = length - sections*s.size*2 p = 1 if positive else -1 self.edge((s.size+leftover)/2.0+diffx-l1) for i in range(sections): self.corner(-1*p*a, radius) self.edge(2*(l2-l1)) self.corner(p*a, radius) self.edge(2*(diffx-l1)+s.size) self.corner(p*a, radius) self.edge(2*(l2-l1)) self.corner(-1*p*a, radius) if iidx: return param[idx] else: return None else: return param def close(self): self.ctx.stroke() self.surface.flush() self.surface.finish() f = open(self.output, "r+") s = f.read(1024) pos = s.find('pt"') if pos > 0: f.seek(pos) f.write("mm") else: print("Could not replace pt with mm") pos = s.find('pt"', pos+3) if pos > 0: f.seek(pos) f.write("mm") else: print("Could not replace pt with mm") ############################################################ ### Turtle graphics commands ############################################################ def corner(self, degrees, radius=0): rad = degrees*math.pi/180 if degrees > 0: self.ctx.arc(0, radius+self.burn, radius+self.burn, -0.5*math.pi, rad - 0.5*math.pi) elif radius > self.burn: self.ctx.arc_negative(0, -(radius-self.burn), radius-self.burn, 0.5*math.pi, rad + 0.5*math.pi) else: # not rounded inner corner self.ctx.arc_negative(0, self.burn-radius, self.burn-radius, -0.5*math.pi, -0.5*math.pi+rad) self.continueDirection(rad) def edge(self, length): self.ctx.move_to(0,0) self.ctx.line_to(length, 0) self.ctx.translate(*self.ctx.get_current_point()) def curveTo(self, x1, y1, x2, y2, x3, y3): """control point 1, control point 2, end point""" self.ctx.curve_to(x1, y1, x2, y2, x3, y3) dx = x3-x2 dy = y3-y2 rad = math.atan2(dy, dx) self.continueDirection(rad) def polyline(self, *args): for i, arg in enumerate(args): if i % 2: self.corner(arg) else: self.edge(arg) def bedBoltHole(self, length, bedBoltSettings=None): d, d_nut, h_nut, l, l1 = bedBoltSettings or self.bedBoltSettings self.edge((length-d)/2.0) self.corner(90) self.edge(l1) self.corner(90) self.edge((d_nut-d)/2.0) self.corner(-90) self.edge(h_nut) self.corner(-90) self.edge((d_nut-d)/2.0) self.corner(90) self.edge(l-l1-h_nut) self.corner(-90) self.edge(d) self.corner(-90) self.edge(l-l1-h_nut) self.corner(90) self.edge((d_nut-d)/2.0) self.corner(-90) self.edge(h_nut) self.corner(-90) self.edge((d_nut-d)/2.0) self.corner(90) self.edge(l1) self.corner(90) self.edge((length-d)/2.0) def grip(self, length, depth): """corrugated edge useful as an gipping area""" grooves = int(length // (depth*2.0)) + 1 depth = length / grooves / 4.0 for groove in range(grooves): self.corner(90, depth) self.corner(-180, depth) self.corner(90, depth) def _latchHole(self, length): self.edge(1.1*self.thickness) self.corner(-90) self.edge(length/2.0+0.2*self.thickness) self.corner(-90) self.edge(1.1*self.thickness) def _latchGrip(self, length): self.corner(90, self.thickness/4.0) self.grip(length/2.0-self.thickness/2.0-0.2*self.thickness, self.thickness/2.0) self.corner(90, self.thickness/4.0) def latch(self, length, positive=True, reverse=False): """Fix a flex box door at the box positive: False: Door side; True: Box side reverse: True when running away from the latch """ if positive: if reverse: self.edge(length/2.0-self.burn) self.corner(-90) self.edge(self.thickness) self.corner(90) self.edge(length/2.0) self.corner(90) self.edge(self.thickness) self.corner(-90) if not reverse: self.edge(length/2.0-self.burn) else: if reverse: self._latchGrip(length) else: self.corner(90) self._latchHole(length) if not reverse: self._latchGrip(length) else: self.corner(90) def handle(self, x, h, hl, r=30): """Creates and Edge with a handle""" d = (x-hl-2*r)/2.0 if d < 0: print("Handle too wide") self.ctx.save() # Hole self.moveTo(d+2*r, 0) self.edge(hl-2*r) self.corner(-90, r) self.edge(h-3*r) self.corner(-90, r) self.edge(hl-2*r) self.corner(-90, r) self.edge(h-3*r) self.corner(-90, r) self.ctx.restore() self.moveTo(0,0) self.curveTo(d, 0, d, 0, d, -h+r) self.curveTo(r, 0, r, 0, r, r) self.edge(hl) self.curveTo(r, 0, r, 0, r, r) self.curveTo(h-r, 0, h-r, 0, h-r, -d) ### Navigation def moveTo(self, x, y=0.0, degrees=0): self.ctx.move_to(0, 0) self.ctx.translate(x, y) self.ctx.rotate(degrees*math.pi/180.0) self.ctx.move_to(0, 0) def continueDirection(self, angle=0): self.ctx.translate(*self.ctx.get_current_point()) self.ctx.rotate(angle) def move(self, x, y, where, before=False): """Intended to be used by parts where can be combinations of "up", "down", "left", "right" and "only" when "only" is included the move is only done when before is True The function returns whether actual drawing of the part should be omited. """ if not where: return False terms = where.split() dontdraw = before and "only" in terms moves = { "up": (0, y, False), "down" : (0, -y, True), "left" : (-x, 0, True), "right" : (x, 0, False), "only" : (0, 0, None), } for term in terms: if not term in moves: raise ValueError("Unknown direction: '%s'" % term) x, y, movebeforeprint = moves[term] if movebeforeprint and before: self.moveTo(x, y) elif (not movebeforeprint and not before) or dontdraw: self.moveTo(x, y) return dontdraw # Building blocks def fingerHolesAt(self, x, y, length, angle=90, bedBolts=None, bedBoltSettings=None): self.ctx.save() self.moveTo(x, y, angle) self.fingerHoles(length, bedBolts, bedBoltSettings) self.ctx.restore() @restore def hole(self, x, y, r): self.moveTo(x+r, y) self.ctx.arc(-r, 0, r, 0, 2*math.pi) @restore def rectangularHole(self, x, y, dx, dy, r=0): self.moveTo(x+r-dx/2.0, y-dy/2.0, 180) for d in (dy, dx, dy, dx): self.corner(-90, r) self.edge(d-2*r) @restore def text(self, text, x=0, y=0, angle=0, align=""): self.moveTo(x, y, angle) (tx, ty, width, height, dx, dy) = self.ctx.text_extents(text) align = align.split() moves = { "top" : (0, -height), "middle" : (0, -0.5*height), "bottom" : (0, 0), "left" : (0, 0), "center" : (-0.5*width, 0), "right" : (-width, 0), } for a in align: if a in moves: self.moveTo(*moves[a]) else: raise ValueError("Unknown alignment: %s" % align) self.ctx.scale(1, -1) self.ctx.show_text(text) @restore def NEMA(self, size, x=0, y=0, angle=0): nema = { # motor,flange, holes, screws 8 : (20.3, 16, 15.4, 3), 11 : (28.2, 22, 23, 4), 14 : (35.2, 22, 26, 4), 16 : (39.2, 22, 31, 4), 17 : (42.2, 22, 31, 4), 23 : (56.4, 38.1, 47.1, 5.2), 24 : (60, 36, 49.8, 5.1), 34 : (86.3, 73, 69.8, 6.6), 42 : (110, 55.5, 89, 8.5), } width, flange, holedistance, diameter = nema[size] self.moveTo(x, y, angle) if self.debug: self.rectangularHole(0, 0, width, width) self.hole(0,0, 0.5*flange) for x in (-1, 1): for y in (-1, 1): self.hole(x*0.5*holedistance, y*0.5*holedistance, 0.5*diameter) # hexHoles def hexHolesRectangle(self, x, y, settings=None, skip=None): """ Fills a rectangle with holes. r : radius of holes b : space between holes style : what types of holes (not yet implemented) skip : function to check if hole should be present gets x, y, r, b, posx, posy """ if settings is None: settings = self.hexHolesSettings r, b, style = settings w = r+b/2.0 dist = w * math.cos(math.pi/6.0) # how many half circles do fit cx = int((x-2*r) // (w)) + 2 cy = int((y-2*r) // (dist)) + 2 # what's left on the sides lx = (x - (2*r+(cx-2)*w))/2.0 ly = (y - (2*r+((cy//2)*2)*dist-2*dist))/2.0 for i in range(cy//2): for j in range((cx-(i%2))//2): px = 2*j*w + r + lx py = i*2*dist + r + ly if i % 2: px += w if skip and skip(x, y, r, b, px, py): continue self.hole(px, py, r) def __skipcircle(self, x, y, r, b, posx, posy): cx, cy = x/2.0, y/2.0 return (dist(posx-cx, posy-cy) > (cx-r)) def hexHolesCircle(self, d, settings=None): d2 = d/2.0 self.hexHolesRectangle(d, d, settings=settings, skip=self.__skipcircle) def hexHolesPlate(self, x, y, rc, settings=None): def skip(x, y, r, b, posx, posy): posx = abs(posx-(x/2.0)) posy = abs(posy-(y/2.0)) wx = 0.5*x-rc-r wy = 0.5*y-rc-r if (posx <= wx) or (posy <= wx): return 0 return dist(posx-wx, posy-wy) > rc self.hexHolesRectangle(x, y, settings, skip=skip) def hexHolesHex(self, h, settings=None, grow=None): if settings is None: settings = self.hexHolesSettings r, b, style = settings self.ctx.rectangle(0, 0, h, h) w = r+b/2.0 dist = w * math.cos(math.pi/6.0) cy = 2 * int((h-4*dist)// (4*w)) + 1 leftover = h-2*r-(cy-1)*2*r if grow=='space ': b += leftover / (cy-1) / 2 # recalulate with adjusted values w = r+b/2.0 dist = w * math.cos(math.pi/6.0) self.moveTo(h/2.0-(cy//2)*2*w, h/2.0) for j in range(cy): self.hole(2*j*w, 0, r) for i in range(1, cy/2+1): for j in range(cy-i): self.hole(j*2*w+i*w, i*2*dist, r) self.hole(j*2*w+i*w, -i*2*dist, r) ################################################## ### parts ################################################## def roundedPlate(self, x, y, r, callback=None, holesMargin=None, holesSettings=None, bedBolts=None, bedBoltSettings=None, move=None): """fits surroundingWall first edge is split to have a joint in the middle of the side callback is called at the beginning of the straight edges 0, 1 for the two part of the first edge, 2, 3, 4 for the others set holesMargin to get hex holes. """ overallwidth = x+2*self.fingerJointEdge.spacing() overallheight = y+2*self.fingerJointEdge.spacing() if self.move(overallwidth, overallheight, move, before=True): return self.ctx.save() self.moveTo(self.fingerJointEdge.margin(), self.fingerJointEdge.margin()) self.moveTo(r, 0) self.cc(callback, 0) self.fingerJointEdge(x/2.0-r, bedBolts=self.getEntry(bedBolts, 0), bedBoltSettings=self.getEntry(bedBoltSettings, 0)) self.cc(callback, 1) self.fingerJointEdge(x/2.0-r, bedBolts=self.getEntry(bedBolts, 1), bedBoltSettings=self.getEntry(bedBoltSettings, 1)) for i, l in zip(range(3), (y, x, y)): self.corner(90, r) self.cc(callback, i+2) self.fingerJointEdge(l-2*r, bedBolts=self.getEntry(bedBolts, i+2), bedBoltSettings=self.getEntry(bedBoltSettings, i+2)) self.corner(90, r) self.ctx.restore() self.ctx.save() self.moveTo(self.fingerJointEdge.margin(), self.fingerJointEdge.margin()) if holesMargin is not None: self.moveTo(holesMargin, holesMargin) if r > holesMargin: r -= holesMargin else: r = 0 self.hexHolesPlate(x-2*holesMargin, y-2*holesMargin, r, settings=holesSettings) self.ctx.restore() self.ctx.stroke() self.move(overallwidth, overallheight, move) def surroundingWall(self, x, y, r, h, bottom='e', top='e', callback=None, move=None): """ h : inner height, not counting the joints callback is called a beginn of the flat sides with 0 for right half of first x side; 1 and 3 for y sides; 2 for second x side 4 for second half of the first x side """ c4 = (r+self.burn)*math.pi*0.5 # circumference of quarter circle c4 = 0.9 * c4 # stretch flex 10% top = self.edges.get(top, top) bottom = self.edges.get(bottom, bottom) topwidth = top.width() bottomwidth = bottom.width() overallwidth = 2*x + 2*y - 8*r + 4*c4 + \ self.edges["d"].spacing() + self.edges["D"].spacing() overallheight = h + top.spacing() + bottom.spacing() if self.move(overallwidth, overallheight, move, before=True): return self.ctx.save() self.moveTo(self.edges["D"].margin(), bottom.margin()) self.cc(callback, 0, y=bottomwidth+self.burn) bottom(x/2.0-r) for i, l in zip(range(4), (y, x, y, 0)): self.flexEdge(c4, h+topwidth+bottomwidth) self.cc(callback, i+1, y=bottomwidth+self.burn) if i < 3: bottom(l-2*r) bottom(x/2.0-r) self.corner(90) self.edge(bottomwidth) self.doveTailJoint(h) self.edge(topwidth) self.corner(90) top(x/2.0-r) for i, l in zip(range(4), (y, x, y, 0)): self.edge(c4) if i < 3: top(l - 2*r) top(x/2.0-r) self.corner(90) self.edge(topwidth) self.doveTailJointCounterPart(h) self.edge(bottomwidth) self.corner(90) self.ctx.restore() self.ctx.stroke() self.move(overallwidth, overallheight, move) def rectangularWall(self, x, y, edges="eeee", holesMargin=None, holesSettings=None, bedBolts=None, bedBoltSettings=None, callback=None, move=None): if len(edges) != 4: raise ValueError("four edges required") edges = [self.edges.get(e, e) for e in edges] edges += edges # append for wrapping around overallwidth = x + edges[-1].spacing() + edges[1].spacing() overallheight = y + edges[0].spacing() + edges[2].spacing() if self.move(overallwidth, overallheight, move, before=True): return self.ctx.save() self.moveTo(edges[-1].margin(), edges[0].margin()) for i, l in enumerate((x, y, x, y)): self.edge(edges[i-1].width()) self.cc(callback, i, y=edges[i].width()+self.burn) edges[i](l, bedBolts=self.getEntry(bedBolts, i), bedBoltSettings=self.getEntry(bedBoltSettings, i)) self.edge(edges[i+1].width()) self.corner(90-edges[i].endAngle()-edges[i+1].startAngle()) if holesMargin is not None: self.moveTo(holesMargin+edges[-1].width(), holesMargin+edges[0].width()) self.hexHolesRectangle(x-2*holesMargin, y-2*holesMargin) self.ctx.restore() self.ctx.stroke() self.move(overallwidth, overallheight, move) ################################################## ### main ################################################## class DemoBox(Boxes): """A simple fully enclosed box showcasing different finger joints""" def __init__(self): Boxes.__init__(self) self.buildArgParser("x", "y", "h") def render(self): x, y, h, t = self.x, self.y, self.h, self.thickness self.open(2*x+10*self.thickness, y+2*h+20*self.thickness) self.ctx.save() self.moveTo(t, t) self.rectangularWall(x, y, "ffff") self.moveTo(x+4*t, 0) self.rectangularWall(x, y, "FFFF") self.ctx.restore() self.moveTo(t, y+4*t) for i in range(2): for l in (x, y): self.rectangularWall(l, h, "hffF") self.moveTo(l+4*t, 0) self.moveTo(-x-y-8*t, h+4*t) self.close() if __name__ == '__main__': b = DemoBox() b.parseArgs() b.render()