#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (C) 2013-2016 Florian Festi # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . import math import inspect import argparse import re import abc from boxes import gears def getDescriptions(): d = {edge.char: edge.description for edge in globals().values() if inspect.isclass(edge) and issubclass(edge, BaseEdge) and edge.char} d['j'] = d['i'] + " (other end)" d['J'] = d['I'] + " (other end)" d['k'] = d['i'] + " (both ends)" d['K'] = d['I'] + " (both ends)" d['O'] = d['o'] + ' (other end)' d['P'] = d['p'] + ' (other end)' d['U'] = d['u'] + ' top side' d['v'] = d['u'] + u' for 90° lid' d['V'] = d['u'] + u' 90° lid' return d class BoltPolicy(object): """Abstract class Distributes (bed) bolts on a number of segments (fingers of a finger joint) """ def drawbolt(self, pos): """Add a bolt to this segment? :param pos: number of the finger """ return False def numFingers(self, numfingers): """Return next smaller, possible number of fingers :param numfingers: number of fingers to aim for """ return numfingers def _even(self, numFingers): """ Return same or next smaller even number :param numFingers: """ return (numFingers // 2) * 2 def _odd(self, numFingers): """ Return same or next smaller odd number :param numFingers: """ if numFingers % 2: return numFingers else: return numFingers - 1 class Bolts(BoltPolicy): """Distribute a fixed number of bolts evenly""" def __init__(self, bolts=1): self.bolts = bolts def numFingers(self, numFingers): if self.bolts % 2: self.fingers = self._even(numFingers) else: self.fingers = numFingers return self.fingers def drawBolt(self, pos): """ Return if this finger needs a bolt :param pos: number of this finger """ if pos > self.fingers // 2: pos = self.fingers - pos if pos == 0: return False if pos == self.fingers // 2 and not (self.bolts % 2): return False return (math.floor((float(pos) * (self.bolts + 1) / self.fingers) - 0.01) != math.floor((float(pos + 1) * (self.bolts + 1) / self.fingers) - 0.01)) ############################################################################# ### Settings ############################################################################# class Settings(object): """Generic Settings class Used by different other classes to store messurements and details. Supports absolute values and settings that grow with the thickness of the material used. Overload the absolute_params and relative_params class attributes with the suported keys and default values. The values are available via attribute access. """ absolute_params = {} relative_params = {} @classmethod def parserArguments(cls, parser, prefix=None, **defaults): prefix = prefix or cls.__name__[:-len("Settings")] lines = cls.__doc__.split("\n") # Parse doc string descriptions = {} r = re.compile(r"^ +\* +(\S+) +: .* : +(.*)") for l in lines: m = r.search(l) if m: descriptions[m.group(1)] = m.group(2) group = parser.add_argument_group(lines[0] or lines[1]) group.prefix = prefix for name, default in (sorted(cls.absolute_params.items()) + sorted(cls.relative_params.items())): # Handle choices choices = None if isinstance(default, tuple): choices = default t = type(default[0]) for val in default: if (type(val) is not t or type(val) not in (bool, int, float, str)): raise ValueError("Type not supported: %r", val) default = default[0] # Overwrite default if name in defaults: default = defaults[name] if type(default) not in (bool, int, float, str): raise ValueError("Type not supported: %r", default) if type(default) is bool: from boxes import BoolArg t = BoolArg() else: t = type(default) group.add_argument("--%s_%s" % (prefix, name), type=t, action="store", default=default, choices=choices, help=descriptions.get(name)) def __init__(self, thickness, relative=True, **kw): self.values = {} for name, value in self.absolute_params.items(): if isinstance(value, tuple): value = value[0] if type(value) not in (bool, int, float, str): raise ValueError("Type not supported: %r", value) self.values[name] = value self.thickness = thickness factor = 1.0 if relative: factor = thickness for name, value in self.relative_params.items(): self.values[name] = value * factor self.setValues(thickness, relative, **kw) def edgeObjects(self, boxes, chars="", add=True): """ Generate Edge objects using this kind of settings :param boxes: Boxes object :param chars: sequence of chars to be used by Edge objects :param add: add the resulting Edge objects to the Boxes object's edges """ edges = [] return self._edgeObjects(edges, boxes, chars, add) def _edgeObjects(self, edges, boxes, chars, add): for i, edge in enumerate(edges): try: char = chars[i] edge.char = char except IndexError: pass except TypeError: pass if add: boxes.addParts(edges) return edges def setValues(self, thickness, relative=True, **kw): """ Set values :param thickness: thickness of the material used :param relative: (Default value = True) Do scale by thickness :param \*\*kw: parameters to set """ factor = 1.0 if relative: factor = thickness for name, value in kw.items(): if name in self.absolute_params: self.values[name] = value elif name in self.relative_params: self.values[name] = value * factor else: raise ValueError("Unknown parameter for %s: %s" % ( self.__class__.__name__, name)) def __getattr__(self, name): if "values" in self.__dict__ and name in self.values: return self.values[name] raise AttributeError ############################################################################# ### Edges ############################################################################# class BaseEdge(object): """Abstract base class for all Edges""" char = None description = "Abstract Edge Class" def __init__(self, boxes, settings): self.boxes = boxes self.ctx = boxes.ctx self.settings = settings def __getattr__(self, name): """Hack for using unalter code form Boxes class""" return getattr(self.boxes, name) @abc.abstractmethod def __call__(self, length, **kw): pass def startwidth(self): """Amount of space the beginning of the edge is set below the inner space of the part """ return 0.0 def endwidth(self): return self.startwidth() def margin(self): """Space needed right of the starting point""" return 0.0 def spacing(self): """Space the edge needs outside of the inner space of the part""" return self.startwidth() + self.margin() def startAngle(self): """Not yet supported""" return 0.0 def endAngle(self): """Not yet supported""" return 0.0 class Edge(BaseEdge): """Straight edge""" char = 'e' description = "Straight Edge" positive = False def __call__(self, length, bedBolts=None, bedBoltSettings=None, **kw): """Draw edge of length mm""" if bedBolts: # distribute the bolts aequidistantly interval_length = length / bedBolts.bolts if self.positive: d = (bedBoltSettings or self.bedBoltSettings)[0] for i in range(bedBolts.bolts): self.hole(0.5 * interval_length, 0.5 * self.thickness, 0.5 * d) self.edge(interval_length, tabs= (i == 0 or i == bedBolts.bolts - 1)) else: for i in range(bedBolts.bolts): self.bedBoltHole(interval_length, bedBoltSettings, tabs= (i == 0 or i == bedBolts.bolts - 1)) else: self.edge(length, tabs=2) class OutSetEdge(Edge): """Straight edge out set by one thickness""" char = 'E' description = "Straight Edge (outset by thickness)" positive = True def startwidth(self): return self.boxes.thickness ############################################################################# #### Gripping Edge ############################################################################# class GripSettings(Settings): """Settings for GrippingEdge Values: * absolute_params * style : "wave : "wave" or "bumps" * outset : True : extend outward the straight edge * relative (in multiples of thickness) * depth : 0.3 : depth of the grooves """ absolute_params = { "style": ("wave", "bumps"), "outset": True, } relative_params = { "depth": 0.3, } def edgeObjects(self, boxes, chars="g", add=True): edges = [GrippingEdge(boxes, self)] return self._edgeObjects(edges, boxes, chars, add) class GrippingEdge(BaseEdge): description = """Corrugated edge useful as an gipping area""" char = 'g' def wave(self, length): depth = self.settings.depth grooves = int(length // (depth * 2.0)) + 1 depth = length / grooves / 4.0 o = 1 if self.settings.outset else -1 for groove in range(grooves): self.corner(o * -90, depth) self.corner(o * 180, depth) self.corner(o * -90, depth) def bumps(self, length): depth = self.settings.depth grooves = int(length // (depth * 2.0)) + 1 depth = length / grooves / 2.0 o = 1 if self.settings.outset else -1 if self.settings.outset: self.corner(-90) else: self.corner(90) self.edge(depth) self.corner(-180) for groove in range(grooves): self.corner(180, depth) self.corner(-180, 0) if self.settings.outset: self.corner(90) else: self.edge(depth) self.corner(90) def margin(self): if self.settings.outset: return self.settings.depth else: return 0.0 def __call__(self, length, **kw): if length == 0.0: return getattr(self, self.settings.style)(length) class CompoundEdge(BaseEdge): """Edge composed of multiple different Edges""" description = "Compound Edge" def __init__(self, boxes, types, lengths): super(CompoundEdge, self).__init__(boxes, None) self.types = [self.edges.get(edge, edge) for edge in types] self.lengths = lengths self.length = sum(lengths) def startwidth(self): return self.types[0].startwidth() def endwidth(self): return self.types[-1].endwidth() def margin(self): return max((e.margin() + e.startwidth() for e in self.types)) - self.types[0].startwidth() def __call__(self, length, **kw): if length and abs(length - self.length) > 1E-5: raise ValueError("Wrong length for CompoundEdge") lastwidth = self.types[0].startwidth() for e, l in zip(self.types, self.lengths): diff = e.startwidth() - lastwidth if diff > 1E-5: self.boxes.corner(-90) self.boxes.edge(diff) self.boxes.corner(90) elif diff < -1E-5: self.boxes.corner(90) self.boxes.edge(-diff) self.boxes.corner(-90) e(l) lastwidth = e.endwidth() ############################################################################# #### Slots ############################################################################# class Slot(BaseEdge): """Edge with an slot to slid another pice through """ description = "Slot" def __init__(self, boxes, depth): super(Slot, self).__init__(boxes, None) self.depth = depth def __call__(self, length, **kw): if self.depth: self.boxes.corner(90) self.boxes.edge(self.depth) self.boxes.corner(-90) self.boxes.edge(length) self.boxes.corner(-90) self.boxes.edge(self.depth) self.boxes.corner(90) else: self.boxes.edge(self.length) class SlottedEdge(BaseEdge): """Edge with multiple slots""" description = "Straight Edge with slots" def __init__(self, boxes, sections, edge="e", slots=0): super(SlottedEdge, self).__init__(boxes, Settings(boxes.thickness)) self.edge = self.edges.get(edge, edge) self.sections = sections self.slots = slots def startwidth(self): return self.edge.startwidth() def endwidth(self): return self.edge.endwidth() def margin(self): return self.edge.margin() def __call__(self, length, **kw): for l in self.sections[:-1]: self.edge(l) if self.slots: Slot(self.boxes, self.slots)(self.settings.thickness) else: self.edge(self.settings.thickness) self.edge(self.sections[-1]) ############################################################################# #### Finger Joints ############################################################################# class FingerJointSettings(Settings): """Settings for Finger Joints Values: * absolute * surroundingspaces : 2 : maximum space at the start and end in multiple of normal spaces * angle: 90 : Angle of the walls meeting * relative (in multiples of thickness) * space : 2.0 : space between fingers * finger : 2.0 : width of the fingers * width : 1.0 : width of finger holes * edge_width : 1.0 : space below holes of FingerHoleEdge * play : 0.0 : extra space to allow movement """ absolute_params = { "surroundingspaces": 2.0, "angle" : 90.0, } relative_params = { "space": 2.0, "finger": 2.0, "width": 1.0, "edge_width": 1.0, "play" : 0.0, } def edgeObjects(self, boxes, chars="fFh", add=True): edges = [FingerJointEdge(boxes, self), FingerJointEdgeCounterPart(boxes, self), FingerHoleEdge(boxes, self), ] return self._edgeObjects(edges, boxes, chars, add) class FingerJointBase: def calcFingers(self, length, bedBolts): space, finger = self.settings.space, self.settings.finger fingers = int((length - (self.settings.surroundingspaces - 1) * space) // (space + finger)) if not finger: fingers = 0 if bedBolts: fingers = bedBolts.numFingers(fingers) leftover = length - fingers * (space + finger) + space if fingers <= 0: fingers = 0 leftover = length return fingers, leftover def fingerLength(self, angle): if angle >=90: return self.settings.thickness, 0 a = 90 - (180-angle) / 2.0 fingerlength = self.settings.thickness * math.tan(math.radians(a)) b = 90-2*a spacerecess = -math.sin(math.radians(b)) * fingerlength return fingerlength, spacerecess class FingerJointEdge(BaseEdge, FingerJointBase): """Finger joint edge """ char = 'f' description = "Finger Joint" positive = True def __call__(self, length, bedBolts=None, bedBoltSettings=None, **kw): positive = self.positive s, f, thickness = self.settings.space, self.settings.finger, self.settings.thickness p = 1 if positive else -1 fingers, leftover = self.calcFingers(length, bedBolts) if not positive: play = self.settings.play f += play s -= play leftover -= play self.edge(leftover / 2.0, tabs=1) l1,l2 = self.fingerLength(self.settings.angle) h = l1-l2 d = (bedBoltSettings or self.bedBoltSettings)[0] for i in range(fingers): if i != 0: if not positive and bedBolts and bedBolts.drawBolt(i): self.hole(0.5 * s, 0.5 * self.settings.thickness, 0.5 * d) if positive and bedBolts and bedBolts.drawBolt(i): self.bedBoltHole(s, bedBoltSettings) else: self.edge(s) self.polyline(0, -90 * p, h, 90 * p, f, 90 * p, h, -90 * p) self.edge(leftover / 2.0, tabs=1) def margin(self): """ """ widths = self.fingerLength(self.settings.angle) if self.positive: return widths[0] - widths[1] else: return 0 def startwidth(self): widths = self.fingerLength(self.settings.angle) return widths[self.positive] class FingerJointEdgeCounterPart(FingerJointEdge): """Finger joint edge - other side""" char = 'F' description = "Finger Joint (opposing side)" positive = False class FingerHoles(FingerJointBase): """Hole matching a finger joint edge""" def __init__(self, boxes, settings): self.boxes = boxes self.ctx = boxes.ctx self.settings = settings def __call__(self, x, y, length, angle=90, bedBolts=None, bedBoltSettings=None): """ Draw holes for a matching finger joint edge :param x: position :param y: position :param length: length of matching edge :param angle: (Default value = 90) :param bedBolts: (Default value = None) :param bedBoltSettings: (Default value = None) """ self.boxes.ctx.save() self.boxes.moveTo(x, y, angle) s, f = self.settings.space, self.settings.finger p = self.settings.play b = self.boxes.burn fingers, leftover = self.calcFingers(length, bedBolts) if self.boxes.debug: self.ctx.rectangle(b, -self.settings.width / 2 + b, length - 2 * b, self.settings.width - 2 * b) for i in range(fingers): pos = leftover / 2.0 + i * (s + f) if bedBolts and bedBolts.drawBolt(i): d = (bedBoltSettings or self.boxes.bedBoltSettings)[0] self.boxes.hole(pos - 0.5 * s, 0, d * 0.5) self.boxes.rectangularHole(pos + 0.5 * f, 0, f+p, self.settings.width+p) self.ctx.restore() self.ctx.move_to(0, 0) class FingerHoleEdge(BaseEdge): """Edge with holes for a parallel finger joint""" char = 'h' description = "Edge (parallel Finger Joint Holes)" def __init__(self, boxes, fingerHoles=None, **kw): settings = None if isinstance(fingerHoles, Settings): settings = fingerHoles fingerHoles = FingerHoles(boxes, settings) super(FingerHoleEdge, self).__init__(boxes, settings, **kw) self.fingerHoles = fingerHoles or boxes.fingerHolesAt def __call__(self, length, bedBolts=None, bedBoltSettings=None, **kw): dist = self.fingerHoles.settings.edge_width with self.saved_context(): self.fingerHoles( 0, dist + self.settings.thickness / 2, length, 0, bedBolts=bedBolts, bedBoltSettings=bedBoltSettings) self.edge(length, tabs=2) def startwidth(self): """ """ return self.fingerHoles.settings.edge_width + self.settings.thickness class CrossingFingerHoleEdge(Edge): """Edge with holes for finger joints 90° above""" description = "Edge (orthogonal Finger Joint Holes)" char = '|' def __init__(self, boxes, height, fingerHoles=None, **kw): super(CrossingFingerHoleEdge, self).__init__(boxes, None, **kw) self.fingerHoles = fingerHoles or boxes.fingerHolesAt self.height = height def __call__(self, length, **kw): self.fingerHoles(length / 2.0, self.burn, self.height) super(CrossingFingerHoleEdge, self).__call__(length) ############################################################################# #### Stackable Joints ############################################################################# class StackableSettings(Settings): """Settings for Stackable Edges Values: * absolute_params * angle : 60 : inside angle of the feet * relative (in multiples of thickness) * height : 2.0 : height of the feet * width : 4.0 : width of the feet * holedistance : 1.0 : distance from finger holes to bottom edge """ absolute_params = { "angle": 60, } relative_params = { "height": 2.0, "width": 4.0, "holedistance": 1.0, } def edgeObjects(self, boxes, chars="sS", add=True, fingersettings=None): fingersettings = fingersettings or boxes.edges["f"].settings edges = [StackableEdge(boxes, self, fingersettings), StackableEdgeTop(boxes, self, fingersettings)] return self._edgeObjects(edges, boxes, chars, add) class StackableEdge(BaseEdge): """Edge for having stackable Boxes. The Edge creates feet on the bottom and has matching recesses on the top corners.""" char = "s" description = "Stackable (bottom, finger joint holes)" bottom = True def __init__(self, boxes, settings, fingerjointsettings): super(StackableEdge, self).__init__(boxes, settings) self.fingerjointsettings = fingerjointsettings def __call__(self, length, **kw): s = self.settings r = s.height / 2.0 / (1 - math.cos(math.radians(s.angle))) l = r * math.sin(math.radians(s.angle)) p = 1 if self.bottom else -1 if self.bottom: self.boxes.fingerHolesAt(0, s.height + self.settings.holedistance + 0.5 * self.boxes.thickness, length, 0) self.boxes.edge(s.width, tabs=1) self.boxes.corner(p * s.angle, r) self.boxes.corner(-p * s.angle, r) self.boxes.edge(length - 2 * s.width - 4 * l) self.boxes.corner(-p * s.angle, r) self.boxes.corner(p * s.angle, r) self.boxes.edge(s.width, tabs=1) def _height(self): return self.settings.height + self.settings.holedistance + self.settings.thickness def startwidth(self): return self._height() if self.bottom else 0 def margin(self): return 0 if self.bottom else self._height() class StackableEdgeTop(StackableEdge): char = "S" description = "Stackable (top)" bottom = False ############################################################################# #### Hinges ############################################################################# class HingeSettings(Settings): """Settings for Hinges and HingePins Values: * absolute_params * style : "outset" : "outset" or "flush" * outset : False : have lid overlap at the sides (similar to OutSetEdge) * pinwidth : 1.0 : set to lower value to get disks surrounding the pins * grip_percentage" : 0 : percentage of the lid that should get grips * relative (in multiples of thickness) * hingestrength : 1 : thickness of the arc holding the pin in place * axle : 2 : diameter of the pin hole * grip_length : 0 : fixed length of the grips on he lids """ absolute_params = { "style": ("outset", "flush"), "outset": False, "pinwidth": 0.5, "grip_percentage": 0, } relative_params = { "hingestrength": 1, # 1.5-0.5*2**0.5, "axle": 2, "grip_length": 0, } def edgeObjects(self, boxes, chars="iIjJkK", add=True): edges = [ Hinge(boxes, self, 1), HingePin(boxes, self, 1), Hinge(boxes, self, 2), HingePin(boxes, self, 2), Hinge(boxes, self, 3), HingePin(boxes, self, 3), ] return self._edgeObjects(edges, boxes, chars, add) class Hinge(BaseEdge): char = 'i' description = "Straight edge with hinge eye" def __init__(self, boxes, settings=None, layout=1): super(Hinge, self).__init__(boxes, settings) if not (0 < layout <= 3): raise ValueError("layout must be 1, 2 or 3 (got %i)" % layout) self.layout = layout self.char = "eijk"[layout] self.description = self.description + ('', ' (start)', ' (end)', ' (both ends)')[layout] def margin(self): return 3 * self.settings.thickness def outset(self, _reversed=False): t = self.settings.thickness r = 0.5 * self.settings.axle alpha = math.degrees(math.asin(0.5 * t / r)) pinl = (self.settings.axle ** 2 - self.settings.thickness ** 2) ** 0.5 * self.settings.pinwidth pos = math.cos(math.radians(alpha)) * r hinge = ( 0, 90 - alpha, 0, (-360, r), 0, 90 + alpha, t, 90, 0.5 * t, (180, t + pos), 0, (-90, 0.5 * t), 0 ) if _reversed: hinge = reversed(hinge) self.polyline(*hinge) self.boxes.rectangularHole(-pos, -0.5 * t, pinl, self.settings.thickness) else: self.boxes.rectangularHole(pos, -0.5 * t, pinl, self.settings.thickness) self.polyline(*hinge) def outsetlen(self): t = self.settings.thickness r = 0.5 * self.settings.axle alpha = math.degrees(math.asin(0.5 * t / r)) pos = math.cos(math.radians(alpha)) * r return 2 * pos + 1.5 * t def flush(self, _reversed=False): t = self.settings.thickness hinge = ( 0, -90, 0.5 * t, (180, 0.5 * self.settings.axle + self.settings.hingestrength), 0, (-90, 0.5 * t), 0 ) pos = 0.5 * self.settings.axle + self.settings.hingestrength pinl = (self.settings.axle ** 2 - self.settings.thickness ** 2) ** 0.5 * self.settings.pinwidth if _reversed: hinge = reversed(hinge) self.hole(0.5 * t + pos, -0.5 * t, 0.5 * self.settings.axle) self.boxes.rectangularHole(0.5 * t + pos, -0.5 * t, pinl, self.settings.thickness) else: self.hole(pos, -0.5 * t, 0.5 * self.settings.axle) self.boxes.rectangularHole(pos, -0.5 * t, pinl, self.settings.thickness) self.polyline(*hinge) def flushlen(self): return self.settings.axle + 2 * self.settings.hingestrength + 0.5 * self.settings.thickness def __call__(self, l, **kw): hlen = getattr(self, self.settings.style + 'len', self.outsetlen)() if self.layout & 1: getattr(self, self.settings.style, self.outset)() self.edge(l - (self.layout & 1) * hlen - bool(self.layout & 2) * hlen, tabs=2) if self.layout & 2: getattr(self, self.settings.style, self.outset)(True) class HingePin(BaseEdge): char = 'I' description = "Edge with hinge pin" def __init__(self, boxes, settings=None, layout=1): super(HingePin, self).__init__(boxes, settings) if not (0 < layout <= 3): raise ValueError("layout must be 1, 2 or 3 (got %i)" % layout) self.layout = layout self.char = "EIJK"[layout] self.description = self.description + ('', ' (start)', ' (end)', ' (both ends)')[layout] def startwidth(self): if self.layout & 1: return 0 else: return self.settings.outset * self.boxes.thickness def endwidth(self): if self.layout & 2: return 0 else: return self.settings.outset * self.boxes.thickness def margin(self): return self.settings.thickness def outset(self, _reversed=False): t = self.settings.thickness r = 0.5 * self.settings.axle alpha = math.degrees(math.asin(0.5 * t / r)) pos = math.cos(math.radians(alpha)) * r pinl = (self.settings.axle ** 2 - self.settings.thickness ** 2) ** 0.5 * self.settings.pinwidth pin = (pos - 0.5 * pinl, -90, t, 90, pinl, 90, t, -90) if self.settings.outset: pin += ( pos - 0.5 * pinl + 1.5 * t, -90, t, 90, 0, ) else: pin += (pos - 0.5 * pinl,) if _reversed: pin = reversed(pin) self.polyline(*pin) def outsetlen(self): t = self.settings.thickness r = 0.5 * self.settings.axle alpha = math.degrees(math.asin(0.5 * t / r)) pos = math.cos(math.radians(alpha)) * r if self.settings.outset: return 2 * pos + 1.5 * self.settings.thickness else: return 2 * pos def flush(self, _reversed=False): t = self.settings.thickness pinl = (self.settings.axle ** 2 - t ** 2) ** 0.5 * self.settings.pinwidth d = (self.settings.axle - pinl) / 2.0 pin = (self.settings.hingestrength + d, -90, t, 90, pinl, 90, t, -90, d) if self.settings.outset: pin += ( 0, self.settings.hingestrength + 0.5 * t, -90, t, 90, 0, ) if _reversed: pin = reversed(pin) self.polyline(*pin) def flushlen(self): l = self.settings.hingestrength + self.settings.axle if self.settings.outset: l += self.settings.hingestrength + 0.5 * self.settings.thickness return l def __call__(self, l, **kw): plen = getattr(self, self.settings.style + 'len', self.outsetlen)() glen = l * self.settings.grip_percentage + \ self.settings.grip_length if not self.settings.outset: glen = 0.0 glen = min(glen, l - plen) if self.layout & 1 and self.layout & 2: getattr(self, self.settings.style, self.outset)() self.edge(l - 2 * plen, tabs=2) getattr(self, self.settings.style, self.outset)(True) elif self.layout & 1: getattr(self, self.settings.style, self.outset)() self.edge(l - plen - glen, tabs=2) self.edges['g'](glen) else: self.edges['g'](glen) self.edge(l - plen - glen, tabs=2) getattr(self, self.settings.style, self.outset)(True) ############################################################################# #### Chest Hinge ############################################################################# class ChestHingeSettings(Settings): """Settings for Chest Hinges Values: * relative (in multiples of thickness) * pin_height : 2.0 : radius of the disc rotating in the hinge * hinge_strength : 1.0 : thickness of the arc holding the pin in place """ relative_params = { "pin_height" : 2.0, "hinge_strength" : 1.0, "play" : 0.1, } def pinheight(self): return ((0.9*self.pin_height)**2-self.thickness**2)**0.5 def edgeObjects(self, boxes, chars="oOpPqQ", add=True): edges = [ ChestHinge(boxes, self), ChestHinge(boxes, self, 1), ChestHingeTop(boxes, self), ChestHingeTop(boxes, self, 1), ChestHingePin(boxes, self), ChestHingeFront(boxes, self), ] return self._edgeObjects(edges, boxes, chars, add) class ChestHinge(BaseEdge): description = "Edge with chest hinge" char = "o" def __init__(self, boxes, settings=None, reversed=False): super(ChestHinge, self).__init__(boxes, settings) self.reversed = reversed self.char = "oO"[reversed] self.description = self.description + (' (start)', ' (end)')[reversed] def __call__(self, l, **kw): t = self.settings.thickness p = self.settings.pin_height s = self.settings.hinge_strength pinh = self.settings.pinheight() if self.reversed: self.hole(l+t, 0, p, tabs=4) self.rectangularHole(l+0.5*t, -0.5*pinh, t, pinh) else: self.hole(-t, -s-p, p, tabs=4) self.rectangularHole(-0.5*t, -s-p-0.5*pinh, t, pinh) poly = (0, -180, t, (270, p+s), 0, -90, l+t-p-s) if self.reversed: poly = reversed(poly) self.polyline(*poly) def margin(self): if self.reversed: return 0*(self.settings.pin_height+self.settings.hinge_strength) else: return 1*(self.settings.pin_height+self.settings.hinge_strength) def startwidth(self): if self.reversed: return self.settings.pin_height+self.settings.hinge_strength return 0 def endwidth(self): if self.reversed: return 0 return self.settings.pin_height+self.settings.hinge_strength class ChestHingeTop(ChestHinge): "Edge above a chest hinge" char = "p" def __init__(self, boxes, settings=None, reversed=False): super(ChestHingeTop, self).__init__(boxes, settings) self.reversed = reversed self.char = "oO"[reversed] self.description = self.description + (' (start)', ' (end)')[reversed] def __call__(self, l, **kw): t = self.settings.thickness p = self.settings.pin_height s = self.settings.hinge_strength play = self.settings.play poly = (0, -180, t, -180, 0, (-90, p+s+play), 0, 90, l+t-p-s-play) if self.reversed: poly = reversed(poly) self.polyline(*poly) def startwidth(self): if self.reversed: return self.settings.play+self.settings.pin_height+self.settings.hinge_strength return 0 def endwidth(self): if self.reversed: return 0 return self.settings.play+self.settings.pin_height+self.settings.hinge_strength def margin(self): if self.reversed: return 0. else: return 1*(self.settings.play+self.settings.pin_height+self.settings.hinge_strength) class ChestHingePin(BaseEdge): description = "Edge with pins for an chest hinge" char = "q" def __call__(self, l, **kw): t = self.settings.thickness p = self.settings.pin_height s = self.settings.hinge_strength pinh = self.settings.pinheight() poly = [0, -90, s+p-pinh, -90, t, 90, pinh, 90,] poly += [l+2*t,] + list(reversed(poly)) self.polyline(*poly) def margin(self): return (self.settings.pin_height+self.settings.hinge_strength) class ChestHingeFront(Edge): description = "Edge opposing a chest hinge" char = "Q" def startwidth(self): return self.settings.pin_height+self.settings.hinge_strength ############################################################################# #### Cabinet Hinge ############################################################################# class CabinetHingeSettings(Settings): """Settings for Cabinet Hinges Values: * absolute_params * bore : 3.2 : diameter of the pin hole in mm * eyes_per_hinge : 5 : pieces per hinge * hinges : 2 : number of hinges per edge * style : inside : style of hinge used * relative (in multiples of thickness) * eye : 1.5 : radius of the eye (in multiples of thickness) * play : 0.05 : space between eyes (in multiples of thickness) * spacing : 2.0 : minimum space around the hinge """ absolute_params = { "bore": 3.2, "eyes_per_hinge" : 5, "hinges" : 2, "style" : ("inside", "outside"), } relative_params = { "eye": 1.5, "play" : 0.05, "spacing": 2.0, } def edgeObjects(self, boxes, chars="uUvV", add=True): edges = [CabinetHingeEdge(boxes, self), CabinetHingeEdge(boxes, self, top=True), CabinetHingeEdge(boxes, self, angled=True), CabinetHingeEdge(boxes, self, top=True, angled=True), ] for e, c in zip(edges, chars): e.char = c return self._edgeObjects(edges, boxes, chars, add) class CabinetHingeEdge(BaseEdge): """Edge with cabinet hinges""" char = "u" description = "Edge with cabinet hinges" def __init__(self, boxes, settings=None, top=False, angled=False): super(CabinetHingeEdge, self).__init__(boxes, settings) self.top = top self.angled = angled self.char = "uUvV"[bool(top)+2*bool(angled)] def startwidth(self): return self.settings.thickness if self.top and self.angled else 0.0 def __poly(self): n = self.settings.eyes_per_hinge p = self.settings.play e = self.settings.eye t = self.settings.thickness spacing = self.settings.spacing if self.settings.style == "outside" and self.angled: e = t elif self.angled and not self.top: # move hinge up to leave space for lid e -= t if self.top: # start with space poly = [spacing, 90, e+p, 180, 0] else: # start with hinge eye poly = [spacing+p, 90, e+p, 0] for i in range(n): if (i % 2) ^ self.top: # space poly += [90, t + 2*p, 90] else: # hinge eye poly += [t-p, -90, t, -90, t-p] if (n % 2) ^ self.top: # stopped with hinge eye poly += [0, e+p, 90, p+spacing] else: # stopped with space poly += [0, 180, e+p, 90, 0+spacing ] width = (t+p) * n + p + 2 * spacing return poly, width def __call__(self, l, **kw): n = self.settings.eyes_per_hinge p = self.settings.play e = self.settings.eye t = self.settings.thickness hn = self.settings.hinges poly, width = self.__poly() if self.settings.style == "outside" and self.angled: e = t elif self.angled and not self.top: # move hinge up to leave space for lid e -= t hn = min(hn, int(l // width)) if hn == 1: self.edge((l-width) / 2, tabs=2) for j in range(hn): for i in range(n): if not (i % 2) ^ self.top: self.rectangularHole(self.settings.spacing+0.5*t+p+i*(t+p), e+2.5*t, t, t) self.polyline(*poly) if j < (hn - 1): self.edge((l-hn*width) / (hn-1), tabs=2) if hn == 1: self.edge((l-width) / 2, tabs=2) def parts(self, move=None): e, b = self.settings.eye, self.settings.bore t = self.settings.thickness n = self.settings.eyes_per_hinge * self.settings.hinges pairs = n // 2 + 2 * (n % 2) if self.settings.style == "outside": th = 2*e + 4*t tw = n * (max(3*t, 2*e) + self.boxes.spacing) else: th = 4*e+3*t+self.boxes.spacing tw = max(e, 2*t) * pairs if self.move(tw, th, move, True): return if self.settings.style == "outside": ax = max(t/2, e-t) self.moveTo(t+ax) for i in range(n): if self.angled: if i > n // 2: l = 4 * t + ax else: l = 5 * t + ax else: l = 3 * t + e self.hole(0, e, b/2.0) da = math.asin((t-ax) / e) dad = math.degrees(da) dy = e * (1-math.cos(da)) self.polyline(0, (180-dad, e), 0, (-90+dad), dy+l-e, (90, t)) self.polyline(0, 90, t, -90, t, 90, t, 90, t, -90, t, -90, t, 90, t, 90, (ax+t)-e, -90, l-3*t, (90, e)) self.moveTo(2*max(e, 1.5*t) + self.boxes.spacing) self.move(tw, th, move) return if e <= 2*t: if self.angled: corner = [2*e-t, (90, 2*t - e), 0, -90, t, (90, e)] else: corner = [2*e, (90, 2*t)] else: a = math.asin(2*t/e) ang = math.degrees(a) corner = [e*(1-math.cos(a))+2*t, -90+ang, 0, (180-ang, e)] self.moveTo(max(e, 2*t)) for i in range(n): self.hole(0, e, b/2.0) self.polyline(*[0, (180, e), 0, -90, t, 90, t, -90, t, -90, t, 90, t, 90, t, (90, t)] + corner) self.moveTo(self.boxes.spacing, 4*e+3*t+self.boxes.spacing, 180) if i % 2: self.moveTo(2*max(e, 2*t) + 2*self.boxes.spacing) self.move(th, tw, move) ############################################################################# #### Slide-on lid ############################################################################# class LidSettings(FingerJointSettings): """Settings for Slide-on Lids Inherited: """ __doc__ += FingerJointSettings.__doc__ absolute_params = FingerJointSettings.absolute_params.copy() relative_params = FingerJointSettings.relative_params.copy() relative_params.update( { "play": 0.05, "finger": 3.0, "space": 2.0, } ) absolute_params.update( { "second_pin": True, "spring": ("both", "none", "left", "right"), } ) def edgeObjects(self, boxes, chars=None, add=True): edges = [LidEdge(boxes, self), LidHoleEdge(boxes, self), LidRight(boxes, self), LidLeft(boxes, self), LidSideRight(boxes, self), LidSideLeft(boxes, self), ] return self._edgeObjects(edges, boxes, chars, add) class LidEdge(FingerJointEdge): char = "l" description = "Edge for slide on lid" class LidHoleEdge(FingerHoleEdge): char = "L" description = "Edge for slide on lid" class LidRight(BaseEdge): char = "n" description = "Edge for slide on lid (right)" rightside = True def __call__(self, length, **kw): t = self.boxes.thickness if self.rightside: spring = self.settings.spring in ("right", "both") else: spring = self.settings.spring in ("left", "both") if spring: l = min(6*t, length - 2*t) a = 30 sqt = 0.4 * t / math.cos(math.radians(a)) sw = 0.5 * t p = [0, 90, 1.5*t+sw, -90, l, (-180, 0.25*t), l-0.2*t, 90, sw, 90-a, sqt, 2*a, sqt, -a, length-t ] else: p = [t, 90, t, -90, length-t] pin = self.settings.second_pin if pin: pinl = 2*t p[-1:] = [length-2*t-pinl, -90, t, 90, pinl, 90, t, -90, t] if not self.rightside: p = list(reversed(p)) self.polyline(*p) def startwidth(self): if self.rightside: # or self.settings.second_pin: return self.boxes.thickness else: return 0.0 def endwidth(self): if not self.rightside: # or self.settings.second_pin: return self.boxes.thickness else: return 0.0 def margin(self): if not self.rightside: # and not self.settings.second_pin: return self.boxes.thickness else: return 0.0 class LidLeft(LidRight): char = "m" description = "Edge for slide on lid (left)" rightside = False class LidSideRight(BaseEdge): char = "N" description = "Edge for slide on lid (box right)" rightside = True def __call__(self, length, **kw): t = self.boxes.thickness s = self.settings.play pin = self.settings.second_pin if self.rightside: spring = self.settings.spring in ("right", "both") else: spring = self.settings.spring in ("left", "both") if spring: p = [s, -90, t+s, -90, t+s, 90, t-s, 90, length+t] else: p = [t+s, -90, t+s, -90, 2*t+s, 90, t-s, 90, length+t] if pin: pinl = 2*t p[-1:] = [p[-1]-t-2*pinl, 90, 2*t+s, -90, 2*pinl+s, -90, t+s, -90, pinl, 90, t, 90, pinl+t-s] holex = 0.6 * t holey = -0.5*t if self.rightside: p = list(reversed(p)) holex = length - holex holey = 1.5*t if spring: self.rectangularHole(holex, holey, 0.4*t, t+2*s) self.polyline(*p) def startwidth(self): return 2*self.boxes.thickness if self.rightside else 0.0 def endwidth(self): return 2*self.boxes.thickness if not self.rightside else 0.0 def margin(self): return 2*self.boxes.thickness if not self.rightside else 0.0 class LidSideLeft(LidSideRight): char = "M" description = "Edge for slide on lid (box left)" rightside = False ############################################################################# #### Click Joints ############################################################################# class ClickSettings(Settings): """Settings for Click-on Lids """ absolute_params = { "angle": 5, } relative_params = { "depth": 3.0, "bottom_radius": 0.1, } def edgeObjects(self, boxes, chars="cC", add=True): edges = [ClickConnector(boxes, self), ClickEdge(boxes, self)] return self._edgeObjects(edges, boxes, chars, add) class ClickConnector(BaseEdge): char = "c" description = "Click on (bottom side)" def hook(self, reverse=False): t = self.settings.thickness a = self.settings.angle d = self.settings.depth r = self.settings.bottom_radius c = math.cos(math.radians(a)) s = math.sin(math.radians(a)) p1 = (0, 90 - a, c * d) p2 = ( d + t, -90, t * 0.5, 135, t * 2 ** 0.5, 135, d + 2 * t + s * 0.5 * t) p3 = (c * d - s * c * 0.2 * t, -a, 0) if not reverse: self.polyline(*p1) self.corner(-180, r) self.polyline(*p2) self.corner(-180 + 2 * a, r) self.polyline(*p3) else: self.polyline(*reversed(p3)) self.corner(-180 + 2 * a, r) self.polyline(*reversed(p2)) self.corner(-180, r) self.polyline(*reversed(p1)) def hookWidth(self): t = self.settings.thickness a = self.settings.angle d = self.settings.depth r = self.settings.bottom_radius c = math.cos(math.radians(a)) s = math.sin(math.radians(a)) return 2 * s * d * c + 0.5 * c * t + c * 4 * r def hookOffset(self): a = self.settings.angle d = self.settings.depth r = self.settings.bottom_radius c = math.cos(math.radians(a)) s = math.sin(math.radians(a)) return s * d * c + 2 * r def finger(self, length): t = self.settings.thickness self.polyline( 2 * t, 90, length, 90, 2 * t, ) def __call__(self, length, **kw): t = self.settings.thickness self.edge(4 * t) self.hook() self.finger(2 * t) self.hook(reverse=True) self.edge(length - 2 * (6 * t + 2 * self.hookWidth()), tabs=2) self.hook() self.finger(2 * t) self.hook(reverse=True) self.edge(4 * t) def margin(self): return 2 * self.settings.thickness class ClickEdge(ClickConnector): char = "C" description = "Click on (top)" def startwidth(self): return self.boxes.thickness def margin(self): return 0.0 def __call__(self, length, **kw): t = self.settings.thickness o = self.hookOffset() w = self.hookWidth() p1 = ( 4 * t + o, 90, t, -90, 2 * (t + w - o), -90, t, 90, 0) self.polyline(*p1) self.edge(length - 2 * (6 * t + 2 * w) + 2 * o, tabs=2) self.polyline(*reversed(p1)) ############################################################################# #### Dove Tail Joints ############################################################################# class DoveTailSettings(Settings): """Settings for Dove Tail Joints Values: * absolute * angle : 50 : how much should fingers widen (-80 to 80) * relative (in multiples of thickness) * size : 3 : from one middle of a dove tail to another * depth : 1.5 : how far the dove tails stick out of/into the edge * radius : 0.2 : radius used on all four corners """ absolute_params = { "angle": 50, } relative_params = { "size": 3, "depth": 1.5, "radius": 0.2, } def edgeObjects(self, boxes, chars="dD", add=True): edges = [DoveTailJoint(boxes, self), DoveTailJointCounterPart(boxes, self)] return self._edgeObjects(edges, boxes, chars, add) class DoveTailJoint(BaseEdge): """Edge with dove tail joints """ char = 'd' description = "Dove Tail Joint" positive = True def __call__(self, length, **kw): s = self.settings radius = max(s.radius, self.boxes.burn) # no smaller than burn positive = self.positive a = s.angle + 90 alpha = 0.5 * math.pi - math.pi * s.angle / 180.0 l1 = radius / math.tan(alpha / 2.0) diffx = 0.5 * s.depth / math.tan(alpha) l2 = 0.5 * s.depth / math.sin(alpha) sections = int((length) // (s.size * 2)) leftover = length - sections * s.size * 2 p = 1 if positive else -1 self.edge((s.size + leftover) / 2.0 + diffx - l1, tabs=1) for i in range(sections): self.corner(-1 * p * a, radius) self.edge(2 * (l2 - l1)) self.corner(p * a, radius) self.edge(2 * (diffx - l1) + s.size) self.corner(p * a, radius) self.edge(2 * (l2 - l1)) self.corner(-1 * p * a, radius) if i < sections - 1: # all but the last self.edge(2 * (diffx - l1) + s.size) self.edge((s.size + leftover) / 2.0 + diffx - l1, tabs=1) self.ctx.translate(*self.ctx.get_current_point()) def margin(self): """ """ return self.settings.depth class DoveTailJointCounterPart(DoveTailJoint): """Edge for other side of dove joints """ char = 'D' description = "Dove Tail Joint (opposing side)" positive = False def margin(self): return 0.0 class FlexSettings(Settings): """Settings for Flex Values: * absolute * stretch : 1.05 : Hint of how much the flex part should be shortend * relative (in multiples of thickness) * distance : 0.5 : width of the pattern perpendicular to the cuts * connection : 1.0 : width of the gaps in the cuts * width" : 5.0 : width of the pattern in direction of the cuts """ relative_params = { "distance": 0.5, "connection": 1.0, "width": 5.0, } absolute_params = { "stretch": 1.05, } class FlexEdge(BaseEdge): """Edge with flex cuts - use straight edge for the opposing side""" char = 'X' description = "Flex cut" def __call__(self, x, h, **kw): dist = self.settings.distance connection = self.settings.connection width = self.settings.width burn = self.boxes.burn h += 2 * burn lines = int(x // dist) leftover = x - lines * dist sections = max(int((h - connection) // width), 1) sheight = ((h - connection) / sections) - connection for i in range(1, lines): pos = i * dist + leftover / 2 if i % 2: self.ctx.move_to(pos, 0) self.ctx.line_to(pos, connection + sheight) for j in range((sections - 1) // 2): self.ctx.move_to(pos, (2 * j + 1) * sheight + (2 * j + 2) * connection) self.ctx.line_to(pos, (2 * j + 3) * (sheight + connection)) if not sections % 2: self.ctx.move_to(pos, h - sheight - connection) self.ctx.line_to(pos, h) else: if sections % 2: self.ctx.move_to(pos, h) self.ctx.line_to(pos, h - connection - sheight) for j in range((sections - 1) // 2): self.ctx.move_to( pos, h - ((2 * j + 1) * sheight + (2 * j + 2) * connection)) self.ctx.line_to( pos, h - (2 * j + 3) * (sheight + connection)) else: for j in range(sections // 2): self.ctx.move_to(pos, h - connection - 2 * j * (sheight + connection)) self.ctx.line_to(pos, h - 2 * (j + 1) * (sheight + connection)) self.ctx.move_to(0, 0) self.ctx.line_to(x, 0) self.ctx.translate(*self.ctx.get_current_point()) class GearSettings(Settings): """Settings for rack (and pinion) edge Values: * absolute_params * dimension : 3.0 : modulus of the gear (in mm) * angle : 20.0 : pressure angle * profile_shift : 20.0 : Profile shift * clearance : 0.0 : clearance """ absolute_params = { "dimension" : 3.0, "angle" : 20.0, "profile_shift" : 20.0, "clearance" : 0.0, } relative_params = {} class RackEdge(BaseEdge): char = "R" description = "Rack (and pinion) Edge" def __init__(self, boxes, settings): super(RackEdge, self).__init__(boxes, settings) self.gear = gears.Gears(boxes) def __call__(self, length, **kw): params = self.settings.values.copy() params["draw_rack"] = True params["rack_base_height"] = -1E-36 params["rack_teeth_length"] = int(length // params["dimension"]) params["rack_base_tab"] = (length - (params["rack_teeth_length"]) * params["dimension"]) / 2.0 s_tmp = self.boxes.spacing self.boxes.spacing = 0 self.moveTo(length, 0, 180) self.gear(move="", **params) self.moveTo(0, 0, 180) self.boxes.spacing = s_tmp def margin(self): return self.settings.dimension * 1.1 class RoundedTriangleEdgeSettings(Settings): """Settings for RoundedTriangleEdge Values: * absolute_params * height : 150. : height above the wall * radius : 30. : radius of top corner * r_hole : 0. : radius of hole * relative (in multiples of thickness) * outset : 0 : extend the triangle along the length of the edge """ absolute_params = { "height" : 150., "radius" : 30., "r_hole" : 2., } relative_params = { "outset" : 0., } def edgeObjects(self, boxes, chars="t", add=True): edges = [RoundedTriangleEdge(boxes, self)] return self._edgeObjects(edges, boxes, chars, add) class RoundedTriangleEdge(Edge): """Makes an 'edge' with a rounded triangular bumpout and optional hole""" description = "Triangle for handle" char = "t" def __call__(self, length, **kw): length += 2 * self.settings.outset r = self.settings.radius if r > length / 2: r = length / 2 if length-2*r < self.settings.height: # avoid division by zero angle = 90-math.degrees(math.atan( (length-2*r)/(2*self.settings.height))) l = self.settings.height / math.cos(math.radians(90-angle)) else: angle = math.degrees(math.atan( 2*self.settings.height/(length-2*r))) l = 0.5 * (length-2*r) / math.cos(math.radians(angle)) if self.settings.outset: self.polyline(0, -180, self.settings.outset, 90) else: self.corner(-90) if self.settings.r_hole: self.hole(self.settings.height, length/2., self.settings.r_hole) self.corner(90-angle, r, tabs=1) self.edge(l, tabs=1) self.corner(2*angle, r, tabs=1) self.edge(l, tabs=1) self.corner(90-angle, r, tabs=1) if self.settings.outset: self.polyline(0, 90, self.settings.outset, -180) else: self.corner(-90) def margin(self): return self.settings.height + self.settings.radius